The New Era of Multi-Messenger Astroparticle Physics, IFPU, February 2024

What is the present understanding of LIV with transients?

Samanta Macera, PhD Student at GSSI

Outline

- Basic theoretical framework
- Gamma-ray bursts as LIV laboratories
- Most recent results from GRBs
- Caveats: EBL absorption and intrinsic spectral lags
- Future prospects

LIV: (Very) Basic theoretical framework

Quantum Gravity \leftarrow Energy-dependent dispersion relation $E_{Pl} = \sqrt{\hbar c^5/G} \simeq 1.22 \times 10^{19} \text{ GeV}$

$$E^{2} = p^{2}c^{2}\left[1 - \sum_{n=1}^{\infty} \mathcal{S}\left(\frac{E}{E_{\mathrm{QG},n}}\right)^{n}\right] \implies v_{\gamma}(E) = \frac{\partial E}{\partial p} \simeq c\left[1 - \mathcal{S}\frac{n+1}{2}\left(\frac{E}{E_{\mathrm{QG},n}}\right)^{n}\right]$$

LIV: (Very) Basic theoretical framework

Quantum Gravity \leftarrow Energy-dependent dispersion relation $E_{Pl} = \sqrt{\hbar c^5/G} \simeq 1.22 \times 10^{19} \text{ GeV}$

$$E^{2} = p^{2}c^{2} \left[1 - \sum_{n=1}^{\infty} \mathcal{S}\left(\frac{E}{E_{\mathrm{QG},n}}\right)^{n} \right] \implies v_{\gamma}(E) = \frac{\partial E}{\partial p} \simeq c \left[1 - \mathcal{S}\frac{n+1}{2} \left(\frac{E}{E_{\mathrm{QG},n}}\right)^{n} \right]$$

$$\Delta t_{LIV}(n, E_2, E_1) \simeq S \frac{n+1}{2} \frac{E_2^n - E_1^n}{E_{\text{QG}, n}^n} \int_0^{z_s} dz \frac{(1+z)^n}{H(z)} \equiv \tau_n (E_2^n - E_1^n)$$

Vardanyan et al 2023 Amelino-Camelia et al 2002

LIV: (Very) Basic theoretical framework

Quantum Gravity \leftarrow Energy-dependent dispersion relation $E_{Pl} = \sqrt{\hbar c^5/G} \simeq 1.22 \times 10^{19} \text{ GeV}$

$$E^{2} = p^{2}c^{2} \left[1 - \sum_{n=1}^{\infty} S\left(\frac{E}{E_{\text{QG},n}}\right)^{n} \right] \implies v_{\gamma}(E) = \frac{\partial E}{\partial p} \simeq c \left[1 - S\frac{n+1}{2} \left(\frac{E}{E_{\text{QG},n}}\right)^{n} \right]$$

$$\Delta t_{LIV}(n, E_2, E_1) \simeq S \frac{n+1}{2} \frac{E_2^n - E_1^n}{E_{\text{QG}, n}^n} \int_0^{z_s} dz \frac{(1+z)^n}{H(z)} \equiv \tau_n (E_2^n - E_1^n)$$

Vardanyan et al 2023 Amelino-Camelia et al 2002

LIV: Key Ingredients

signal variability)

6

LIV: Key Ingredients

effects depends inversely on the signal variability)

Photons with different energies $\Delta t_{LIV}(n, E_2, E_1) \simeq S \frac{n+1}{2} \frac{\overbrace{E_2^n - E_1^n}}{E_{QG,n}^n} \int_0^{z_s} dz \frac{(1+z)^n}{H(z)} \equiv \tau_n (E_2^n - E_1^n)$ Fast variability (The sensitivity to detect TOF ffects depends inversely on the Large Distances

Gamma-ray Bursts

1 - Fast Variability and Spectral lag

Example of extreme variability: GRB 211211A

1 - Fast Variability and Spectral lag

Spectral lag between different energy bands observed in many GRBs

Light Curves from two different channels of Swift/BAT

CCF vs time delay

1 - Fast Variability and Spectral lag

Spectral lag between different energy bands observed in many GRBs

CCF vs time delay

2 - Highest energy photons

Some examples:

- GRB 090510 \rightarrow 31 GeV (Fermi-LAT)
- GRB 080916C \rightarrow 13 GeV (Fermi-LAT)
- GRB 090902B \rightarrow 33.4 GeV (Fermi-LAT)
- GRB 180720B \rightarrow 300 GeV (H.E.S.S.)
- GRB 190114C: \rightarrow 1 TeV (Magic)
- GRB 221009A \rightarrow > 10 TeV (LHAASO)

GRB 180720B

Abdalla et al 2019

3 - Large distances

Redshift distribution

Some estimates from GRBs:

Photon energy: ~ 30 GeV, Average redshift: ~ 1, Average delay : ~ 1s

$$\Delta t_{LIV}(n, E_2, E_1) \simeq S \frac{n+1}{2} \frac{E_2^n - E_1^n}{E_{\text{QG}, n}^n} \int_0^{z_s} dz \frac{(1+z)^n}{H(z)}$$

 $E_{\rm QG} \sim 10^{19} {\rm ~GeV}$ Planck Energy Scale

Caveat 1: EBL absorption

Photons can interact with the Extragalactic Background Light (EBL; ${\sim}10^{-3}~eV$ to 10~eV) and produce pairs

 \rightarrow Attenuation of the flux

$$E_{\text{EBL}} \approx \frac{2(m_e c^2)^2}{(1+z)^2 E} \approx 0.5(1+z)^{-2} E_{1\,\text{TeV}}^{-1} \,\text{eV}$$

$$\lambda_{\gamma\gamma}(E) = [\sigma_{\gamma\gamma}n_{\text{EBL}}(E_{\text{EBL}})]^{-1} \approx [0.26\sigma_T n_{\text{EBL}}(E_{\text{EBL}})]^{-1} \simeq 19n_{\text{EBL},-1}^{-1} \text{ Mpc}$$

Gill et al 2022

Dominguez et al 2011

Caveat 1: EBL absorption

H.E.S.S. Collaboration

Magic Collaboration

Caveat 2: Spectral lag in GRBs

Spectral lags for long and short GRBs

- Both positive and negative lags for long GRBs;
- Short GRBs consistent with lag ~ 0 s;

Bernardini et al 2015

Caveat 2: Spectral lag in GRBs \rightarrow Intrinsic lag?

Spectral lags for long and short GRBs

- Both positive and negative lags for long GRBs;
- Short GRBs consistent with lag ~ 0 s;

Astrophysical origin of the delay

- Intrinsic cooling of radiating electrons;
- Accelerating outflows with decreasing B;
- Up-scattering of soft radiation via IC;
- Spectral evolution

$$\Delta \tau = \Delta \tau_{\rm int} + \Delta \tau_{\rm LIV} \qquad \Delta t_{\rm int} = b(1+z)$$

Caveat 3: High-energy photons from prompt or afterglow?

 \rightarrow Important to have a proper physical model to estimate the true delay time

Synchrotron model? \rightarrow Time-resolved analysis of a sample of 14 GRBs, spectra fitted with **physical models** (synchrotron and synchrotron + power-law) in the energy range **10 keV - 10 GeV**

GRB 090510

GRB 080916C

Lorentz Invariance Violation with Gamma-ray Bursts

Ghirlanda et al 2010

- \rightarrow Study of GRB 090510 at energies > 0.1 GeV,
- \rightarrow highest photon energy 31 GeV, whose arrival time coincides with the peak of afterglow emission;
- \rightarrow assume that it is produced at the beginning of the afterglow, and it arrives delayed by 0.22 s

Result:
$$M_{\rm QG} > 4.7 M_{\rm Planck}$$

Ghirlanda et al 2010

- \rightarrow Study of GRB 090510 at energies > 0.1 GeV,
- \rightarrow highest photon energy 31 GeV, whose arrival time coincides with the peak of afterglow emission;

Result:

 \rightarrow assume that it is produced at the beginning of the afterglow, and it arrives delayed by 0.22 s

$$M_{\rm QG} > 4.7 M_{\rm Planck}$$

Ackermann et al 2009

- \rightarrow Study of GRB 090510;
- \rightarrow highest photon energy 31 GeV, interpreted as prompt-related;

 $M_{QG,1}/M_{Planck} > 102$

Important assumptions on the physical model of prompt emission

Bernardini et al 2017

 \rightarrow Study of a sample of 21 short GRBs (classified by *Swift*-BAT) with measured z

 \rightarrow Use the discrete CCF to measure the lag between two different channels (50-100 keV, 150-200 keV)

Result:

 $E_{\rm QG} > 1.48 \times 10^{16} \text{ GeV} (95\% \text{ c.l.}).$

GRB 190114C

- Detection of photons above 0.2 TeV;
- Conservative assumptions on the intrinsic spectral and temporal emission properties;
- Use models for the light curve;
- Maximum likelihood analysis

Result: $E_{QG,1} > 0.58 \times 10^{19} \,\text{GeV}$

 \rightarrow below the limits put by GRB 090510

Acciari et al 2020, Magic Collaboration

LHAASO Collaboration, 2023

 \rightarrow Study of GRB 221009A

Prompt emission still ongoing

 \rightarrow Detection of gamma rays up to 13 TeV for the first time during 230-900s after the trigger;

Result: $M_{QG,1}/M_{Planck} > 1.5$ \longrightarrow In agreement with Ackermann et al 2009 for GRB 090510

LHAASO Collaboration, 2023

 \rightarrow Study of GRB 221009A

Prompt emission still ongoing

 \rightarrow Detection of gamma rays up to 13 TeV for the first time during 230-900s after the trigger;

Result: $M_{QG,1}/M_{Planck} > 1.5$ \longrightarrow In agreement with Ackermann et al 2009 for GRB 090510

... How do we proceed?

Better sensitivity in the 0.1 - 100 GeV energy range
High-energy and very high-energy observations during prompt (High energy photons + fast variability)

Future Prospects

LIV with Large Sized Telescope

- Sensitivity between 20 and 150 GeV;
 - Threshold energy down to ~25 GeV
- Ability to re-position within 20 s → good for observing GRBs early emission; →see Biswajit Banerjee's talk
- Parabolic mirror: 23 m, ~400 m²
- Field of View ~ 4.3°

LIV with Large Sized Telescope

GRB 090510

HE photon ~ 30 GeV

Time-delay ~ 1 s

If flux observations improved by a factor ~ 10 (at least)

 \rightarrow we can detect sources like GRB 090510 with much higher redshift \rightarrow **better constraints on LIV**

Conclusions

- LIV theories can be tested with Gamma-ray Bursts;
- So far we have lower limits which seems to push the quantum gravity energy scale at energies higher than the Planck energy, excluding some theories;
- > In order to improve our understanding of LIV theories, we need:
 - Instruments with better sensitivity in the high-energy range;
 - Observation of high energy photons during the prompt phase of GRBs;
 - Proper modelling of the prompt emission
 - inferred LIV limits could be significantly affected by poorly understood intrinsic source

Thank you for your attention