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Physics at the turn of the 19th century



Classical Mechanics tested by new phenomena

At the end of the 19th century Classical Mechanics and

Classical Statistical Mechanics are very well established:

⇝ Newton theory

⇝ Thermodynamics and kinetic theories

⇝ Electromagnetic theory and Maxwell equations

⇝ geometrical and physical optics understood in terms

of electromagnetic waves

However, Classical Physics is inadequate to describe some

phenomena related to emission and absorption of light.

2



Classical Mechanics tested by new phenomena

At the end of the 19th century Classical Mechanics and

Classical Statistical Mechanics are very well established:

⇝ Newton theory

⇝ Thermodynamics and kinetic theories

⇝ Electromagnetic theory and Maxwell equations

⇝ geometrical and physical optics understood in terms

of electromagnetic waves

However, Classical Physics is inadequate to describe some

phenomena related to emission and absorption of light.

2



The black body radiation

Black body: the incident

light is all absorbed, and the

equilibrium condition depends

only on the temperature T .

h = Planck constant ∼ 10−27Joule-seconds

Units: [h] = Energy× Time (Action) and [ν] = 1/Time.
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The Photoelectric Effect

The surface of a conductor hit by a beam of light emits electrons:

The light is exchanged in bundles,

and it travels in bundles.
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The Photoelectric Effect

The surface of a conductor hit by a beam of light emits electrons:

Observations:

i. e− emitted only if the frequency is larger than a given value;

ii. the kinetic energy of the e− has a maximum;

iii. number of e−/second is proportional to the beam intensity.

The light is exchanged in bundles,

and it travels in bundles.
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The Photoelectric Effect

The surface of a conductor hit by a beam of light emits electrons:

Einstein (1905): the extraction of an electron results from

the interaction between a single quantum of radiation and

a single atom of the metal.

The light is exchanged in bundles,

and it travels in bundles.
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Emission and Absorption Spectra

Balmer formula: the frequencies λn of the emission and

absorption spectra of the hydrogen atom are given by:

1

λn
= R

(
1

4
− 1

n2

)
, n = 3, 4, . . .
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Atomic structure of matter

Rutherford (1911): the atom has lots of free space. Its

mass is concentrated in a tiny nucleus ∼ 10−13cm, surrounded

by electrons moving far apart (atom radious ∼ 10−8cm).

Main problem:

Electric charges in mo-

vement radiate accor-

ding to Maxwell equa-

tions; how can the

atom be stable?
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A new theory



Bohr model-atom (1913)

1. For most of the time no emission;

2. For a very short period of time there is emission of e.m.

aa radiation with frequency νij = |Ei − Ej |/h;
3. The electron can have only discrete energies: En = −1

2
hνen .

Predictions: energy levels and amplitude of the e− orbits

En = −2π2

h2
e4me

n2
, an =

h2n2

4π2e2me
n = 1, 2, 3, . . .
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A long story made short

1913-24 The old quantum theory (Born, Sommerfeld)

Limitations: only bounded orbits, difficulties with

multielectron atoms, lack of internal coherence

1925-26 The new theory

Matrix Mechanics: Heisenberg, Born, Jordan, Dirac

Focus on the observables: e.g. amplitudes and

frequencies of the emitted radiation (Anm, νnm)

Wave mechanics: De Broglie, Schrödinger

Focus on the wave behaviour: the electron is

described by a scalar function ψ(x , t)
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A paradigmatic example



The electron two slits experiment

Davisson, Germer (1927): W is a source of electrons, H1

and H2 holes. On the photographic plate G scintillations are

observed, which are interpreted as electron impacts on the plate.

A typical output for small linear size of H2. The smaller is H2

the larger is the linear size of the region occupied by the spots.
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The electron two slits experiment

Let us now perform the experiment using two holes:
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Classical Mechanics

expected pattern

Actual pattern
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Dynamics of the spot formation

After many identically prepared experiment, the overall scheme

of spots looks like the interference pattern in water waves

De Broglie ‘24:

λB = h/|p|
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The electron two slits experiment

� The distribution of impact positions is similar to the

interference pattern generated by spherical waves emitted

by two coherent point-like sources → wave description

� In spite of an identical initial experimental preparation,

impacts are distributed in a macroscopic region of the

plate. As a result, only a statistical description of impact

positions is possible → ontological probability

� The impact positions statistics differs qualitatively and

quantitatively from the one observed when a single hole is

open → effect of measurement in Quantum Mechanics
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The Schrödinger equation

following the line of thought of Wave Mechanics



Schrödinger equation: derivation by optical analogy

The wave equation in optics
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Schrödinger equation: derivation by optical analogy

Evolution of the generic component u of the electric field in

the scalar optics approximation

∆u(x , t)− 1

v 2
f (x)

∂2t u(x , t) = 0 , vf = λ ν .

where vf (x) = n(x)/c is the phase velocity, n(x) the refraction

index of the medium, c the speed of sound.

The monocromatic component of u satisfies

∆ũ(x , ν) +
4π2ν2

v 2
f (x)

ũ(x , ν) = 0 ,

with ũ(x , ν) =
∫
dt e i2πνtu(x , t).
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Schrödinger equation: derivation by optical analogy

Analogy between Geometrical Optics and Classical Mechanics:

the trajectory of a point particle with mass m, energy E and

subject to a potential V (x)

coincides

with the trajectory of a light propagating in a medium with

phase velocity

vf (x) =
E√

2m (E − V (x))

15



Schrödinger equation: derivation by optical analogy

Wave Optics (Maxwell)

∆ũ(x , ν) + 4π2 ν2

v2
f
(x)

ũ(x , ν) = 0

λ→ 0

Geometrical Optics (Fermat)

vf (x) = c/n(x)

h → 0

Classical Mechanics (Newton)

m,E ,V (x)

Wave Mechanics (Schrödinger)

∆ψ̃(x , ν) + 4π2 2m(E−V (x))

h2
ψ̃(x , ν) = 0?

vf (x) =
E√

2m (E−V (x))

Idea: we associate to the microscopic particle a wave with

phase velocity: vf (x) =
E√

2m(E − V (x))
(optical analogy)

frequence: ν = E/h (Planck-Einstein).

In particular: λ(x) = vf (x)
ν

= h√
2m(E−V (x))

= h
|p| (De Broglie).
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∆ũ(x , ν) + 4π2 ν2

v2
f
(x)
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The stationary Schrödinger equation:

By analogy we assumed that ψ̃(x , ν) =
∫
dt e2πiνtψ(x , t)

satisfies

∆ψ̃(x , ν) + 4π2 2m(E − V (x))

h2
ψ̃(x , ν) = 0

With ℏ = h/2π we obtain the stationary Schrödinger equation

− ℏ2
2m

∆ψ̃(x , ν) + V (x) ψ̃(x , ν) = E ψ̃(x , ν)

By multiplying by e−2πiνt , using E = hν and integrating over ν:

− ℏ2
2m

∆ψ(x , t) + V (x)ψ(x , t)

=

∫
e−2πiνthν ψ̃(x , ν)dν =

h

−2πi

∫
d

dt

(
e−2πiνt

)
ψ̃(x , ν)dν

= iℏ
∂

∂t
ψ(x , t)
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The time dependent Schrödinger equation:

iℏ
∂ψ(x , t)

∂t
= − ℏ2

2m
∆ψ(x , t)+V (x)ψ(x , t) (∗)

� We have derived (∗) by an heuristic argument.

From now on (∗) will be assumed;

� (∗) is a PDE while in classical mechanics one solves ODEs;

� (∗) is linear → interference phenomena;

� ψ(x , t) is complex valued: not direct physical meaning;

� Conservation law: for ψ regular enough and decaying for

large x , we have
∫
R3 |ψ(x , t)|2dx =

∫
R3 |ψ(x , 0)|2dx .

19



The time dependent Schrödinger equation:

iℏ
∂ψ(x , t)

∂t
= − ℏ2

2m
∆ψ(x , t)+V (x)ψ(x , t) (∗)

� We have derived (∗) by an heuristic argument.

From now on (∗) will be assumed;

� (∗) is a PDE while in classical mechanics one solves ODEs;

� (∗) is linear → interference phenomena;

� ψ(x , t) is complex valued: not direct physical meaning;

� Conservation law: for ψ regular enough and decaying for

large x , we have
∫
R3 |ψ(x , t)|2dx =

∫
R3 |ψ(x , 0)|2dx .

19



The time dependent Schrödinger equation:

iℏ
∂ψ(x , t)

∂t
= − ℏ2

2m
∆ψ(x , t)+V (x)ψ(x , t) (∗)

� We have derived (∗) by an heuristic argument.

From now on (∗) will be assumed;

� (∗) is a PDE while in classical mechanics one solves ODEs;

� (∗) is linear → interference phenomena;

� ψ(x , t) is complex valued: not direct physical meaning;

� Conservation law: for ψ regular enough and decaying for

large x , we have
∫
R3 |ψ(x , t)|2dx =

∫
R3 |ψ(x , 0)|2dx .

19



The time dependent Schrödinger equation:

iℏ
∂ψ(x , t)

∂t
= − ℏ2

2m
∆ψ(x , t)+V (x)ψ(x , t) (∗)

� We have derived (∗) by an heuristic argument.

From now on (∗) will be assumed;

� (∗) is a PDE while in classical mechanics one solves ODEs;

� (∗) is linear → interference phenomena;

� ψ(x , t) is complex valued: not direct physical meaning;

� Conservation law: for ψ regular enough and decaying for

large x , we have
∫
R3 |ψ(x , t)|2dx =

∫
R3 |ψ(x , 0)|2dx .

19



The time dependent Schrödinger equation:

iℏ
∂ψ(x , t)

∂t
= − ℏ2

2m
∆ψ(x , t)+V (x)ψ(x , t) (∗)

� We have derived (∗) by an heuristic argument.

From now on (∗) will be assumed;

� (∗) is a PDE while in classical mechanics one solves ODEs;

� (∗) is linear → interference phenomena;

� ψ(x , t) is complex valued: not direct physical meaning;

� Conservation law: for ψ regular enough and decaying for

large x , we have
∫
R3 |ψ(x , t)|2dx =

∫
R3 |ψ(x , 0)|2dx .

19



Interpretation of the Schrödinger equation

Schrödinger: ρ = e |ψ(x , t)|2 density of charge. But

� solutions of (∗) tipically spread in space as times goes by;

� a fraction of the electronic charge never observed.

Statistical interpretation (Born, 1926)

|ψ(x , t)|2 = probability density to find the microscopic particle

in x at time t. For any measurable set A,
∫
A
|ψ(x , t)|2dx =

probability to find the particle in A at time t.

Suppose to perform N experiments in identical conditions, and

denote with NA,t the number of times the particle is found in

A at time t. Then:
NA,t

N
−−−→
N large

∫
A
|ψ(x , t)|2dx
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Interpretation of the Schrödinger equation

Statistical interpretation: even if I completely know the

state ψ(x , t) what I can predict in general is only the

probability/statistical distribution of results.

Which is the meaning of this probability?

Might this probability be removed (hidden variables)

or is it intrinsic?

Is the wave function as real as physical fields are
considered to be, or just a mathematical expression

of our inability to access the microscopic world?

Is there a boundary among the classical and quantum

description, and how to identify it?
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The plan of our class

We will state the formalism of the theory and explore its

consequences through three paradigmatic one particle models:

� Free particle

⇝ Double slit experiment

� Harmonic Oscillator

+ Bose-Einstein Statistics

⇝ Black-body radiation

� Hydrogen Atom

⇝ Emission/Absorbion Spectra, stability of the atom

We will apply the theory to many-particle systems, and we

focus on macroscopic observables (density of particles, energy,

pressure...) in the very spirit of Statistical Mechanics.
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