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Abstract

Quantum statistical mechanics deals with the study of quantum systems made up
by a large number of particles. In particular it aims to understand the macroscopic
behavior of these systems, starting from their microscopic fundamental description.
While in the absence of interaction, the properties of many body systems can be
deduced from the single particle Hamilton operator, in presence of interactions one
needs to study the full N particle Schroedinger equation, with N very large and
virtually infinite. This requires the development of new mathematical methods and
tools.
These notes summarize the content of a course given at GSSI during March 2021,
aiming to give an introduction to many particle problems in quantum mechanics,
from a mathematical perspective, as a preparation to follow research seminars and
advanced courses on this topic.

Contents

1



1 Quantum Many particle systems
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1 Quantum Many particle systems

The mathematical description of many-particle quantum systems stems naturally from
the one particle postulates we have discussed in the first part of the class. Systems of
N (spinless) particles moving in Ω ⊂ Rd are described by wave functions

ΨN ∈ L2(ΩN ,dx1, . . . ,dxN ) = L2(Ω)⊗N (1.1)

with

∥ΨN∥22 =

∫
ΩN

dx1 . . . dxN
∣∣ΨN (x1, . . . , xN )

∣∣2 = 1 , (1.2)

where xj denotes the position of the j-th particle. The probability to find the N
particles in a region X ⊂ ΩN when the system is described by the wave function
ΨN (x1, . . . , xN ) is given by

P
(
{x1, . . . , xN} ⊂ X;ψN (x1, . . . , xN )

)
=

∫
X

∣∣ΨN (x1, . . . , xN )
∣∣2dx1 · · · dxN . (1.3)

Many-body observables are described by self-adjoint operators on L2(ΩN ). Let A
be an observable, represented by the self-adjoint operator A on L2(ΩN ), then the
probability to get a value of the observable A in the interval I ∈ R is given by

P
(
A ∈ I;ψN (x1, . . . , xN )

)
= ⟨ψN , EA(I)ψN ⟩L2(ΩN ) (1.4)

where ⟨·, ·⟩L2(ΩN ) is the scalar product in L2(ΩN ) and {EA(λ)} denotes the spectral
family associated to the self-adjoint operator A. Finally, the evolution of theN particle
wave function is given by the solution of the Cauchy problem{

iℏ∂tψN (x1, . . . , xN ; t) = HNψN (x1, . . . , xN ; t)

ψN (x1, . . . , xN ; 0) = ψN,0(x1, . . . , xN )
(1.5)

with HN the Hamiltonian of the system which is a self-adjoint operator on L2(ΩN ).
Typically, one consider Hamiltonians with two body interactions having the form

HN =

N∑
j=1

hj +
∑
i<j

Vij(xi − xj) (1.6)

where hj acts only on the degree of freedon of the j-th particle, and Vij describes the
interaction between particles i and j. More precisely, with a slight abuse of notation
we are denoting with the same symbol hj the operator on L

2(ΩN ) which acts as hj on
the j particle and as the identity on the remaining N − 1 particles and similarly Vij is
used to denote both the operator acting on the two-particle space and the operator on
the whole N particle space which acts as the identity on the remaining N−2 particles.

The simplest non interacting Hamiltonian would be HN =
∑
j(−

ℏ2

2mj
∆xj ) withmj the

mass if the j-th particle. Note that restricting the attention to Hamiltonian of the form
(??), one neglects the possibility of k-body interactions, for all k ≥ 3. A three body
interaction is a potential which depends at the same time on 3 particles V (x1, x2, x3).
In physics fundamental interactions are two body interaction. However three body
interaction or, more generally, k body interaction might also play a role. Note that
existence and uniqueness of the solution of Eq. (??) is equivalent to self-adjointness
of HN .

Remark. Elementary particles have an internal degree of freedom called spin, which
is characterized by a specific number which takes one of the values S = 0, 1/2, 1, . . . .
In this class we will only consider the spinless case, corresponding to S = 0. More
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1 Quantum Many particle systems

generally, a quantum particle with spin S is described by a wave function in the Hilbert
space L2(Ω) ⊗ C(2S+1) := L2(Ω;C(2S+1)), hence a quantum system made up by N
particles with spin S will be described by

ΨN (x1, δ1; . . . ;xN , δN ) = Ψδ1,...,δN (x1, . . . , xN ) = ΨN (z1, . . . , zN ) (1.7)

with zj = (xj , δj), xj ∈ Ω and δj ∈ {1, 2, . . . , 2S + 1}. For example electrons are spin
1/2 particles, hence their wave function is a pair of ordinary complex valued functions

ψ(x, σ) ∈ L2(Ω) , σ = 1, 2 , (1.8)

with normalization condition
∑
σ=1,2 ∥ψ(x, σ)∥2 = 1.

1.A Bosons and Fermions

In the following we are going to consider systems of many identical particles. This
has important consequences in quantum mechanics. Indeed, while in classical physics
particles follow trajectories, and therefore it is always possible to follow a given target
particle, in quantum mechanics there are no trajectories. So, identical particles are
really indistinguishable.

Indistinguishibility translates into the fact that we can only measure observables
which are invariant with respect to any permutation of the N particles. For π ∈ SN
an element of the group of permutations of N objects, let us consider the unitary
operator Uπ acting on L2(ΩN ) s.t.(

UπΨN
)
(x1, . . . , xN ) = ΨN (xπ(1), . . . , xπ(N)) (1.9)

We say that a N particle observable A is is permutation symmetric if and only if the
corresponding self-adjoint operator A satisfies

U∗
πAUπ = A or equivalently [A,Uπ] = 0 ∀π ∈ SN . (1.10)

In particular if we are considering indistinguishable particles the Hamiltonian HN

defined in Eq. (??) has to be permutation symmetric, therefore the form of the one
particle operators hj has to be the same for any j = i, . . . , N , in the sense that for all
j = 1, . . . , N

hj = I⊗ · · · ⊗ h
j−th position

⊗ · · · ⊗ I . (1.11)

For example

hj = −∆xj
+ Vext(xj) (1.12)

for an external potential Vext which acts in the same way on all particles. Similarly
the two-body interaction Vij can’t depend on the pair ij. Summarizing, the typical
Hamiltonian acting on N indistinguishable particles is

HN =

N∑
j=1

(−∆xj
+ Vext(xj)) +

∑
i<j

V (xi − xj) . (1.13)

Note that from now on we are setting ℏ = 1 and we are considering particles of mass
1/2.

Let ψ ∈ L2(ΩN ) be the state of a quantum system made up byN identical particles.
Then ∥Uπψ∥ = ∥ψ∥ = 1 and clearly

⟨UπΨN , AUπΨN ⟩ = ⟨ψ,U∗
πAUπψ⟩ = ⟨ΨN , AΨN ⟩ (1.14)

for every permutation symmetric operator A. This means that the wave functions
ΨN and UπΨN for any π ∈ SN describe the same state. This would mean that there
is not a one-to-one correspondence between physical states and wave functions. To
avoid this redundancy, one postulates that the only allowed wave functions are those
for which Uπψ = eiαπψ for all π ∈ SN . It turns out that in three dimensions there are
only two possible behaviors with respect to permutations satisfying the requirement
that UπΨN = eiαπΨN for all π ∈ SN , namely

3



1 Quantum Many particle systems

� completely symmetric wave functions

UπΨN (x) = ΨN (x) ∀π (1.15)

� completely antisymmetric wave functions

UπΨN (x) = δπΨN (x) (1.16)

where δπ is the sign of the permutation ( i.e. δπ = 1 if π consists of an even
number of transpositions, and δπ = −1 if π consists of an odd number of trans-
positions).

Particles described by symmetric wave functions are called bosons. Particles described
by antisymmetric wave functions are called fermions. As it turns out the symmetry of
a particle is directly related with its spin (this statement, known as the spin statistics
theorem can be justified in relativistic quantum field theory). Particles with integer
spin are bosons; particles with half integer spin are fermions (es electrons). Note:
wave functions describing systems with distinguishable particles do not have symme-
try restrictions; wave functions describing systems with different species of particles
have symmetry conditions within particles of the same species.
We introduce the Hilbert space of symmetric and antisymmetric L2(ΩN ) functions
to be considered when dealing with N particle bosonic and fermionic systems respec-
tively:

L2
s(Ω

N ) = {ΨN ∈ L2(ΩN ) : UπΨN = ΨN ∀π ∈ SN}
L2
a(Ω

N ) = {ΨN ∈ L2(ΩN ) : UπΨN = δπΨN ∀π ∈ SN} .
(1.17)

Remark. It is common in the physics literature to refer to the choice of symmetry
type as the statistics of the particles or of their wave function. More exactly the
requirement of symmetry under exchange is referred to as Bose-Einstein statistics,
the antisymmetry requirement is referred to as Fermi-Dirac statistics.

The simplest example of a bosonic wave function is the product of N copies of an
arbitrary wave function φ ∈ L2(Ω):

ΨN (x1, . . . , xN ) =

N∏
j=1

φ(xj) (1.18)

Clearly ∥ΨN∥ = 1 and ΨN is symmetric with respect to any permutation. More
generally, starting from {φj}j≥1 of L2(Ω), we can consider products of the form

φj1 ⊗ · · · ⊗ φjN . (1.19)

Unless all the ji’s are the same, this function is not symmetric w.r.t. permutations.
However it can be made symmetric as follows:

PSN (φj1 ⊗ . . . φjN )(x1, . . . , xN ) :=

√
1

ℓ1! · · · ℓk!N !

∑
π∈SN

φj1(xπ(1)) · · ·φjN (xπ(N))

(1.20)
if {j1, . . . , jN} contains k different indices appearing respectively ℓ1, ℓ2, . . . , ℓk times
(where of course ℓ1 + . . .+ ℓk = N). Then PSN (φj1 ⊗ . . . φjN )(x1, . . . , xN ) is a bosonic
wave function.

What about fermionic wave functions? Given an arbitrary product

φj1 ⊗ · · · ⊗ φjN (1.21)

one can try to antisymmetrize it, similarly as before

PAN (φj1 ⊗ . . . φjN )(x1, . . . , xN ) :=

√
1

N !

∑
π∈SN

δπφj1(xπ(1)) · · ·φjN (xπ(N)) (1.22)
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1 Quantum Many particle systems

Note however that the sum equal zero unless the {φj} are linearly independent. In
the latter case PAN (φj1 ⊗ . . . φjN ) is indeed a fermionic wave function. Note that
PAN (φj1 ⊗ . . . φjN ) can be written as a determinant:

PAN (φj1 ⊗ . . . φjN )(x1, . . . , xN ) =
1√
N !

det

∣∣∣∣∣∣∣∣
φi1(x1) . . . φiN (x1)
φi1(x2) . . . φiN (x2)
. . . . . . . . .

φi1(xN ) . . . φiN (xN )

∣∣∣∣∣∣∣∣ . (1.23)

Such a wave function is usually referred to as a Slater determinant. Note that since
Slater determinant vanishes if the set is linearly dependent we get in particular that
all φjs have to be different from each other. This fact is known as Pauli exclusion
principle: in a N fermion system, two particles cannot be in the same state, two
particle cannot be described by the same one particle wave function (this only applies
to product wave functions).

Remark Starting from a basis {φj} of the one-particle space L2(Ω) we can obtain
a basis of L2

s(Ω
N ) or L2

a(Ω
N ) by taking {PSN (φj1 ⊗ . . . φjN )} or {PAN (φj1 ⊗ . . . φjN )}

respectively.

1.B Pure and mixed states

As we have seen N quantum particles in Ω can be described through a normalized
wavefunction ΨN ∈ L2(ΩN ) so that the expectation of an observable A in the state
ΨN is given by ⟨ΨN , AΨN ⟩. Let us introduce now the projection γN = |ΨN ⟩⟨ΨN |,
then the expectation of the observable A written in terms of γN takes the form

⟨ΨN , AΨN ⟩ = Tr(AγN ) . (1.24)

where Tr(S) denotes the trace of the operator S defined by Tr(S) =
∑
k⟨φk, Sφk⟩ for

any {φk} orthonormal basis. The reason why we introduced the equivalent description
thorough γN of the system is that it be easily generalized to consider mixed states.
More precisely, we can consider not only orthogonal projections but also operators of
the form

γN =
∑
j

λj |ΨN,j⟩⟨ΨN,j | (1.25)

where 0 ≤ λj ≤ 1 such that
∑
j λj = 1 and ΨN,j ∈ L2(ΩN ) such that ∥ΨN,j∥2 = 1.

The interpretation is as follows: γN given by (??) described a system which is in the
state ΨN,j with probability λj .

Remark The introduction of states of the form given in Eq. (??) can be justified
by saying that we want to include in our description of quantum systems, in addition
to the intrinsic probability already encoded in the theory, the so called epistemic
probability. Suppose for example that we only know that a certain N particle quantum
system is in one of the orthonormal states {ψN,1, ψN,2, . . . , ψN,n} with probabilities
{p1, p2, . . . , pn} pi ≥ 0,

∑n
i=1 pi = 1 respectively. If we now measure on the state the

observable described by the operator A in L2(ΩN ), it appears natural to require the
expected outcome of the observation to be given by ⟨A⟩ =

∑n
n=1 pi⟨ψi, Aψi⟩ .

Recalling that by the spectral theorem for compact operators we know that every
trace class operator γN can be rewritten in the form in Eq. (??) we can say that
a mixed N particle state is a non-negative trace class operator on L2(ΩN ) such that
Tr(γN ) = 1 (Note that since γN ≥ 0 and Tr(γN ) = 1 we immediately get 0 ≤ λj ≤ 1∀j
which also implies γN ≤ 1. ). An operator γN satisfying the properties just mentioned
is called a density matrix. A bosonic (fermionic) density matrix is defined analogously
as a non-negative density matrix on L2

s(Ω
N ) (L2

a(Ω
N )) with unitary trace.

Remark A trace class operator is a compact operator A such that Tr|A| =
∑
j |λj | <

∞ where λj are its eigenvalues and ΨN,j the corresponding eigenfunctions (A certainly
has only discrete spectrum due to compactness).
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1 Quantum Many particle systems

The evolution equation of the state γN is given by the equation

i∂γN (t) = [H, γN (t)] , γN (0) = γN (1.26)

called Von Neumann equation. This evolution law can be easily checked for density
matrices of the form γN =

∑
j λj |ΨN,j⟩⟨ΨN,j |, with ΨN,j satisfying the Schroedinger

equation (??). Moreover the probabilistic prediction relative to an observable A when
the system is in the state γN (t) is

P(A ∈ I; γN (t)) := Tr(γN (t)EA(I)) (1.27)

where {EA(λ)} denotes the spectral family associated to the self-adjoint operator A.

Remark Let us mention that von Neumann equation (??) differs from the Heisem-
berg equation which describes the evolution of the observables in the Heisemberg
picture by a sign (see [?, Eq. (5.29)]

To conclude this section we would like to point out an important difference between
pure (i.e. described by ΨN ∈ L2(ΩN ) or, equivalently, by γN = |ΨN ⟩⟨ΨN | ) and mixed
states. Given two pure states ΨN and ΦN we can consider the new pure state given
by ΨN+ΦN√

2
corresponding to the density matrix

γN,pure =
1

2

[
|ΨN ⟩⟨ΨN |+ |ΨN ⟩⟨ΦN |+ |ΦN ⟩⟨ΨN |+ |ΦN ⟩⟨ΦN |

]
. (1.28)

On the other hand, we can also consider the mixed state given by

γN,mixed =
|ΨN ⟩⟨ΨN |+ |ΦN ⟩⟨ΦN |

2
. (1.29)

Then, for any observables A we get

Tr(AγN,pure) =
1

2

[
⟨ΨN , AΨN ⟩+ ⟨ΦN , AΦN ⟩+ ⟨ΨN , AΦN ⟩+ ⟨ΦN , AΨN ⟩

]
Tr(AγN,mixed) =

1

2

[
⟨ΨN , AΨN ⟩+ ⟨ΦN , AΦN ⟩

] (1.30)

i.e. the expectation on the pure state contains additional off diagonal terms that can
produce interference. One often distinguish between coherent (for pure states) and
incoherent (for mixed states) superpositions. Note that, for a generic density matrix
γN if Trγ2N = 1 then γN is a projector, and hence it is a pure state.

1.C Reduced density matrices

If γN is an N particle bosonic (fermionic) density matrix (in the case of indistinguish-
able particles the definition is slightly different), with kernel γN (x⃗; y⃗) we define the
k-particle reduced density matrix to be the integral operator acting on the bosonic
(fermionic) k particle space with kernel

γ
(k)
N (z1, . . . , zk; z

′
1, . . . , z

′
k)

:=
N !

(N − k)!

∫
ΩN−k

γN (z1, . . . , zk, zk+1 . . . zN ; z′1, . . . , z
′
k, zk+1 . . . zN )dzk+1 . . . zN

(1.31)

where the presence of the factor N !/(N − k)! comes from the symmetry assumptions.

One says that γ
(k)
N is obtained by taking the partial trace of γN over the last (N − k)

particles and writes

γ
(k)
N =

N !

(N − k)!
Trk+1,...,NγN (1.32)

(the meaning of this operation is defined by (??)).
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1 Quantum Many particle systems

Exercise 1. Check that if γN is fermionic or bosonic density matrix then the k particle

reduced density matrix γ
(k)
N satisfies the following properties:

i) γ
(k)
N is non negative;

ii) Trγ
(k)
N = N !

(N−k)! .

Examples of reduced densities

Consider the bosonic wave function ΨN = φ⊗N . The kernel of the k particle density
matrix is given by

γ
(k)
N (x1, . . . , xk;x

′
1, . . . , x

′
k)

=
N !

(N − k)!

∫
dxk+1 . . . dxNφ(x1) . . . φ(xk)φ(x′1) . . . φ(x

′
k)|φ(xk+1)|2 · · · |φ(xN )|2

=
N !

(N − k)!

k∏
j=1

φ(xj)φ(x′j) . (1.33)

Therefore

γ
(k)
N =

N !

(N − k)!
|φ⟩⟨φ|⊗k . (1.34)

Consider the fermionic state

ΨN (x1, . . . , xN ) =
1√
N !

det

∣∣∣∣∣∣
φi1(x1) . . . φiN (x1)
. . . . . . . . .

φi1(xN ) . . . φiN (xN )

∣∣∣∣∣∣ (1.35)

where {φj} define an orthonormal basis. The kernel of the one particle density matrix
is given by

γ
(1)
N (x;x) = N

∫
dx2 . . . dxN

( 1√
N !

∑
π

δπφπ1
(x)φπ2

(x2) · · ·φπN
(xN )

)
×

( 1√
N !

∑
π′

δπ′φπ′
1
(x′) φπ′

2
(x2) · · ·φπ′

N
(xN )

)
=

N

N !

∑
π,π′

φπ1
(x)φπ′

1
(x′)

N∏
j=2

∫
dxjφπj

(xj)φπ′
j
(x′j)︸ ︷︷ ︸

δπj=π′
j

=
N

N !

∑
π,π′

φπ1
(x)φπ′

1
(x′)

=

N∑
j=1

φj(x)φj(x
′) (1.36)

Therefore

γ
(1)
N =

N∑
j=1

|φj⟩⟨φj | (1.37)

Note that 1
N γ

(1)
N = 1

N

∑N
j=1 |φj⟩⟨φj | is the density matrix of a one particle system in a

mixed state being with equal probability in one of the N states φ1, . . . , φN (reducing
to one particle, which means, as long as one consider one particle observables, the
fermionic N -body system with wave function as above, behaves as a one particle
system in a mixed state being with equal probability in one of the states φj ’).

Exercise 2. Compute γ
(2)
N for the fermionic state defined in (??).
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Reduced density matrices and observables

The reason why reduced density matrices are a convenient tool to deal with many
particle problems becomes apparent if we focus on the goal of computing observables.

If k < N , the k-th reduced density γ
(k)
N does not contain the full information about the

system under consideration. Integrating out the degrees of freedom of (N−k) particles
means that we lost a lot of information. However, the knowledge of γ

(k)
N is enough,

if we are only interested in computing the expectation of observables depending non
trivially only on k particles.

In fact, given an operator O(k) on L2(Ωk) we can construct a permutation sym-
metric k-particle observable

O =
1

(N − k)!

∑
π∈SN

O
(k)
π(1),...,π(k) (1.38)

where O
(k)
π(1),...,π(k) denotes the operator acting as O(k) on the particles π(1), . . . , π(k)

and as the identity on the remaining N − k particles. The expectation of O on the
state γN is then given by

Tr(OγN ) =
1

(N − k)!

∑
π∈SN

Tr(O
(k)
π(1),...,π(k)γN )

=
1

(N − k)!

∑
π∈SN

Tr(O
(k)
1,...,kγN )

=
1

(N − k)!

∑
π∈SN

Tr1,...,k(O
(k)
π(1),...,π(k)Trk+1,...,NγN )

= Tr(O(k)γ
(k)
N )

(1.39)

where in the last line the trace is over the k particle space. For example, as we have
seen the Hamiltonian acting on N indistinguishable particles has typically the form
given in Eq. (??), therefore we can rewrite

HN = H1 +H2 (1.40)

where H1 is the sum of one particle operators and H2 is the sum of two particles
operators. Thus, to compute H1 and H2 in the state described by the density matrix

γN it is enough to know γ
(1)
N and γ

(2)
N :

TrHNγN = Tr(−∆+ Vext(x))γ
(1)
N +

1

2
TrV (x1 − x2)γ

(2)
N (1.41)

If one focus on the problem of computing the minimum of the energy, γ
(1)
N and γ

(2)
N

are the two most important reduced densities.
One may think that the problem of minimizing the energy

inf
∥ψN∥=1

ψN∈L2(RdN )

〈
ψN , HNψN

〉
= inf

0≤γN≤1
TrγNHN (1.42)

is equivalent to minimize the quantity Tr(−∆ + Vext(x))γ
(1)
N + 1

2TrV (x1 − x2)γ
(2)
N

over all possible one and two particle density matrices. This problem looks much

simpler than the original one, because γ
(1)
N and γ

(2)
N are operators on L2(Ω) and L2(Ω2)

respectively, while γN is an operator over L2(ΩN ) and N is going to be large. The
reason why the second problem is not simpler is that it is very difficult to characterize
the set of all those γ(2) for which there exists γN s.t. γ(2) is the two particle density
matrix associated with γN (it is called the N representability problem). In fact there
is no known set of conditions on γ(2) which guarantee the existence of γN . Some
necessary conditions are known ( it is certaintly not enough that γ(2) ≥ 0 with Trγ(2) =
N(N − 1)), but sufficient conditions are not known.
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What is known are necessary and sufficient conditions for a non negative trace
class operator γ(1) with Trγ(1) = N to be the one particle density matrix γN . We
state the two theorems, one for bosons and one for fermions, referring to [?] for the
proofs.

Theorem 1 (Admissibility of γ(1), bosons). Let γ(1) be a s.a., non negative operator
on L2(R3) with Trγ(1) = N , for some N ∈ N. Then exists a bosonic density matrix
γN (with γ(xπ1

, . . . , xπN
;x′π′

1
, . . . , x′π′

N
) = γ(x1, . . . , xN ;x′1, . . . , x

′
N ) forall π, π′ ∈ SN )

such that γ(1) = NTr2,...,NγN . If N ≥ 2, γ can be chosen to be a pure state, that is
there exists ψ ∈ L2(R3N ), symmetric, with γ(1) = NTr2,...,N |ψ⟩⟨ψ|.

Theorem 2 (Admissibility of γ(1), fermions). Let γ(1) satisfy the hypotheses of The-
orem ??. Then there is a fermionic N -particle density matrix γN such that γ(1) =
NTr2,...,NγN if and only if γ(1) satisfies the additional condition

γ(1) ≤ 1 . (1.43)

It is not true, in general, that γN can be chosen to be a pure state. In particular,
whenever γ(1) has N − 1 eigenvalues equal to 1 and at least N +1 positive eigenvalues
then cannot be pure.
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2 Statistical Mechanics

2 Statistical Mechanics

In the previous section we introduced the mathematical formalism allowing us to
describe many particle systems in quantum mechanics. Our next goal is to get infor-
mation about the macroscopic observables characterizing quantum systems made up
by a large number of particles (density of particles, energy, entropy, pressure...) in
the very spirit of Statistical Mechanics. The core idea is that we are not interested in
the microscopic details of the systems, but only in measuring macroscopic observables
at equilibrium (and actually many different microscopic realizations of a given system
may lead to the same set of macroscopic observables). This leads to the introduction
of Statistical Ensembles, as in classical physics, namely to “rules” allowing to asso-
ciate a probability measure to families of equilibrium quantum states, corresponding
to a given set of macroscopic parameters. Before describing the set of statistical en-
sembles which are of relevance in quantum mechanics, we find useful to introduce the
formalism of second quantization.

2.A Second Quantization

In this section we introduce the formalism of second quantization. As long as we
work with states of exactly N particles, the formalism it is just a convenient language
for calculations. It will become however essential to introduce the Grand Canonical
Ensemble where the number of particle in the system is not fixed.

Let start introducing Fock space i.e. Hilbert space

F =
⊕
n≥0

Hn (2.1)

where Hn = L2
s(Ω

n) (respectively L2
a(Ω

n)) is the n-particle bosonic (fermionic) space
and we set H0 = C.
Given two vectors Φ = {Φ(n)}n≥0,Ψ = {Ψ(n)}n≥0 ∈ F we define the inner product

⟨Φ,Ψ⟩F =
∑
n≥0

⟨Φ(n),Ψ(n)⟩Hn
(2.2)

and denote by ∥ · ∥F the corresponding norm.
On F we introduce the number of particle operator N defined by

(NΨ)(n) = nΨ(n) (2.3)

for any Ψ = {ψ(n)}n≥0 such that∑
n≥0

n2∥ψ(n)∥2Hn
<∞ . (2.4)

Hence a vector Ψ = {ψ(n)}n≥0 describes a state which has n-particle with prob-
ability ∥ψ(n)∥2Hn

. Note that states with exactly N partciels i.e. of the form Ψ =
{0, . . . , 0, ψN , 0, . . . } are eigenvectors of N with eigenvalue N. The vacuum vector
Ω = {1, 0, . . . } which describes a system with zero particles plays a special role.

On Fock space F , a particularly useful concept are the creation and annihilation
operators a∗(f) and a(f), with f ∈ H1, the one-particle Hilbert space. Their explicit
definitions and properties depend on whether we are considering a system of bosons
or fermions. In the bosonic space, given Ψ = {Ψ(n)}n≥0 such that Ψ(n) ∈ L2

s(Ω
n) an

n-particle wave function, we set

(a∗(f)Ψ)(n)(x1, . . . , xn) =
1√
n

n∑
i=1

f(xi)Ψ
(n−1)(x1, . . . , �xi, . . . , xn),

(a(f)Ψ)(n)(x1, . . . , xn) =
√
n+ 1

∫
Ω

dxf(x)Ψ(n+1)(x1, . . . , xn, x).

(2.5)

10



2 Statistical Mechanics

Thus, in the bosonic case a∗(f), a(f) are densely defined unbounded operators whose
domain is equal to the domain of N 1/2. Moreover a∗(f) is the adjoint of a(f). Note
that a∗(f) is linear in f while a∗(f) is antilinear and they satisfy the canonical com-
mutation relations (CCR):

[a(f), a∗(g)] = ⟨f, g⟩, [a(f), a(g)] = [a∗(f), a∗(g)] = 0 (2.6)

where given two operators A,B the commutators is defined by [A,B] = AB −BA.

Exercise 3. Check the validity of the CCR for bosonic creation and annihilation
operators given in (??)

On the other hand for a fermionic wave function Ψ = {Ψ(n)}n≥0 such that Ψ(n) ∈
L2
a(Ω

n) we define

(a∗(f)Ψ)(n)(x1, . . . , xn) =
1√
n

n∑
i=1

(−1)i−1f(xi)Ψ
(n−1)(x1, . . . , �xi, . . . , xn+1),

(a(f)Ψ)(n)(x1, . . . , xn) =
√
n+ 1

∫
Ω

dxf(x)Ψ(n+1)(x1, . . . , xn, x).

(2.7)

These operators satisfy the canonical anticommutation relation (CAR), i.e.

{a(f), a∗(g)} = ⟨f, g⟩, {a(f), a(g)} = {a∗(f), a∗(g)} = 0 (2.8)

where we have introduced the anticommutator {A,B} = AB +BA.

Exercise 4. Check the validity of the CAR for fermionic creation and annihilation
operators given in (??).

Note that by the CAR it follows in particular a∗(f)2 = 0 for any f ∈ H1 im-
plementing Pauli’s exclusion principle. Moreover, unlike their bosonic counterpart in
the fermionic case creation and annihilation operators are bounded. Indeed, using the
CAR,

∥a(f)Ψ∥2F =⟨a(f)Ψ, a(f)Ψ⟩F = ⟨Ψ, a∗(f)a(f)Ψ⟩F
=∥f∥2∥Ψ∥2F − ⟨Ψ, a(f)a∗(f)Ψ⟩F = ∥f∥2∥Ψ∥2F − ∥a∗(f)Ψ∥2F
≤∥f∥2∥Ψ∥2F

(2.9)

which implies ∥a(f)∥, ∥a∗(f)∥ ≤ ∥f∥.
Remark. A product of creation and annihilation operators is called normal-ordered

if all creation operators are to the left of all annihilation operators.

Both in the fermionic and bosonic case, it is useful to introduce the operator-valued
distributions a∗x and ax which formally creates and annihilates a particle in position
x. More precisely we can define

(axΨ)(n)(x1, . . . , xn) =
√
n+ 1Ψ(n+1)(x, x1, . . . , xn) (2.10)

as a densely defined operator (since the expression makes sense on continuous func-
tions). It is easy to check that

a(f) =

∫
dx f(x)ax . (2.11)

On the other hand if we try to consider the adjoint of ax it is not a densely defined
operator; indeed it is formally given by

(a∗xΨ)(n)(x1, . . . , xn) =
1√
n

∑
n≥1

δ(x− xi)Ψ
(n−1)(x1, . . . ,��xi, . . . , xn) . (2.12)

Nevertheless we can make sense of it as a quadratic form through

⟨Φ, a∗xΨ⟩F = ⟨axΦ,Ψ⟩F (2.13)

11



2 Statistical Mechanics

or by considering it as a distribution, since by formally integrating against a text-
function f ∈ H1 we can take a∗x back to the well-defined operator∫

dxf(x)a∗x = a∗(f). (2.14)

In terms of these distributions the CCR on bosonic space reads

[ax, a
∗
y] = δ(x− y), [ax, ay] = [a∗x, a

∗
y] = 0 (2.15)

where δ denotes the Dirac delta distribution. The CAR on fermionic Fock space read

{ax, a∗y} = δ(x− y), {ax, ay} = {a∗x, a∗y} = 0 . (2.16)

Note that

⟨Ψ,
∫
dx a∗xaxΦ⟩F =

∫
dx ⟨Ψ, a∗xaxΦ⟩F =

∫
dx ⟨axΨ, axΦ⟩F = ⟨Ψ,NΦ⟩F . (2.17)

Given a one-particle operator O we introduce its second quantization dΓ(O) by

(dΓ(O)Ψ)(n) = O(n)Ψ(n), (2.18)

where

O(n) =

n∑
j=1

O
(n)
j =

n∑
j=1

I⊗ · · · ⊗ O
j−th position

⊗ · · · ⊗ I . (2.19)

The domain of dΓ(O) is given by

D(dΓ(O)) = {Ψ ∈ F : Ψ(n) ∈ D(O(n))∀n ∈ N and
∑
n≥0

∥O(n)Ψ(n)∥2Hn
<∞} . (2.20)

In particular if O has operator kernel O(x, y) then (again in the sense of quadratic
forms)

⟨Φ, dΓ(O)Ψ⟩F =
∑
n≥1

n∑
j=1

⟨Φ(n), O
(n)
j Ψ(n)⟩

=
∑
n≥1

n

∫
Ωn+2

dxdydx2 . . . dxnO(x, y)Φ(n)(x, x2, . . . , xn)Ψ
(n)(y, x2, . . . , xn)

=
∑
n≥1

∫
dxdydx2 . . . dxnO(x, y)(axΦ)(n−1)(x2, . . . , xn)(ayΨ)(n−1)(x2, . . . , xn)

=

∫
dxdy O(x, y)⟨axΦ, ayΨ⟩F .

(2.21)

Thus (in the sense of quadratic forms)

dΓ(O) =

∫
dxdy O(x, y)a∗xay . (2.22)

Remark. Note that if we consider a one particle operator defined as Oψ = O(x)ψ,
i.e. a multiplication operator then (??) is still formally correct setting O(x; y) =
O(x)δ(x− y).

Note that even if O is bounded its second quantization dΓ(O) doesn’t have to be
bounded. Nevertheless for bounded operators one can show

|⟨Φ, dΓ(O)Ψ⟩F | ≤ ∥O∥⟨Φ,NΨ⟩F (2.23)

12



2 Statistical Mechanics

as can be easily checked by definition (??). We can extend (??) to operators in-
volving more than one particle. Let O be a k-particle operator, we define its second
quantization dΓ(O) by

(dΓ(O)Ψ)(n) =
∑

{i1,...,ik}

O
(n)
i1,...,ik

Ψ(n) (2.24)

where the sum runs over all sets {i1, . . . , ik} of k different indices in {1, . . . , n} and

O
(n)
i1,...,ik

acts as O on the particles i1, . . . , ik and as the identity on the remaining n−k
particles. In particular if O has kernel O(x1, . . . , xk, y1, . . . , yk) then one can show,
proceeding similarly to the proof of (??),

dΓ(O) =

∫
dx1 . . . dxkdy1 . . . dykO(x1, . . . , xk, y1, . . . , yk)a

∗
x1
. . . a∗xk

ay1 . . . ayk .

(2.25)

Analogously to (??) we find for any bounded k-particle operator O that

|⟨Φ, dΓ(O)Ψ⟩F | ≤ ∥O∥⟨Φ,N (N − 1) · · · · · (N − k)Ψ⟩F . (2.26)

Let us now consider a many body Hamiltonian of the form

HN =

N∑
i=1

hi +
∑

1≤i<j≤N

V (xi − xj) (2.27)

with h a one-particle operator and V is a potential. Using creation and annihilation
operators, the Fock space Hamiltonian dΓ(H) =

⊕
n≥0Hn can be rewritten as

H := dΓ(H) =

∫
dxh(x, y)a∗xay +

1

2

∫
dxdy V (x− y)a∗xa

∗
yaxay (2.28)

where the equality has to be understood in the sense of quadratic forms.

Exercise 5. Check that the second quantization of the N particles free Hamiltonian
HN =

∑N
i=1 −∆xj is given by H =

∫
dx∇a∗x∇ax in the sense of quadratic forms.

(You can proceed similarly to Eq. (??))

Let us conclude this section by noting that if {uk}k≥0 are an ONB of H1 then the
second quantization of any one-particle operator O can be conveniently rewritten in
the sense of quadratic forms as

dΓ(O) =
∑
i,j≥0

⟨ui, Ouj⟩a∗i aj (2.29)

where we introduced the notations ak = a(uk), a
∗
k = a∗(uk). Analogously for a two

particle operator O we find

dΓ(O) =
∑

i,j,k,l≥0

⟨ui ⊗ uj , Ouk ⊗ ul⟩a∗i a∗jakal . (2.30)

Hence for the many body Hamiltonian in Fock space we have∑
i,j≥0

⟨ui, huj⟩a∗i aj +
1

2

∑
i,j,k,l≥0

⟨ui ⊗ uj , V uk ⊗ ul⟩a∗i a∗jakal . (2.31)

Moreover a basis of F can be obtained from {ui}i≥0 taking

{PNS (ui1 ⊗ · · · ⊗ uin)} n≥0
i1,...,iN≥0

(2.32)
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for bosons and

{PNA (ui1 ⊗ · · · ⊗ uin)} n≥0
i1,...,iN≥0

(2.33)

for fermions where PNS and PNA denote the projection on the N -particle symmet-
ric/antisymmetric subspace defined in Eq. (??) and Eq. (??) respectively. Equiva-
lently the generic element in the basis can be rewritten as

1√
ni1 ! . . . niM !

a∗(uiM )niM . . . a∗(ui1)
ni1Ω (2.34)

where M = 1, 2, . . . , and 1 ≤ i1 < i2 · · · < iM . Note that ni1 , . . . , niM run over
positive integers for bosons and are just 1 for fermions. The basis element defined
in (??) is often denoted by |ni1 , . . . , niM ⟩. The basis we just constructed is usually
referred to as occupation number basis.

2.B Statistical Ensembles

Aim of this section is to provide a brief description of statistical ensembles in quantum
mechanics. For a more detailed discussion we refer the reader to [?]. Throughout the
whole section we restrict ourselves to the three dimensional box Λ = [0, L]3. We
consider the Hamiltonian HN acting on L2(ΛN ) and such that it has purely discrete
spectrum.

As we have discussed in Sec.1 epistemic probability enters in quantum mechanics
through the concept of density matrix (see Sect. ??). Hence, quantum statistical
mechanics postulates the form of the density matrix at equilibrium, when a given set
of macroscopic parameters has been fixed.

Microcanonical Ensemble

The microcanonical ensemble describes an isolated quantum system with volume Λ,
energy E and a fixed number of particle N , and is characterized by a uniform prob-
ability distribution (analogously to the classical case). Namely the equilibrium state
of a quantum system whose energy lies in the interval [E,E + ∆] for 0 < ∆ ≪ E is
given by

ρMC =

∑
j:λj∈[E,E+∆] |ΨN,j⟩⟨ΨN,j |

Tr(
∑
j:λj∈[E,E+∆] |ΨN,j⟩⟨ΨN,j |)

=

∑
j:λj∈[E,E+∆] |ΨN,j⟩⟨ΨN,j |
#{λj ∈ [E,E +∆]}

. (2.35)

known as microcanonical density matrix. Indeed ρMC describes a situation where all
the energy eigenstates whose energy lies in [E,E +∆] contribute with equal weights.
The entropy is defined in analogy to the classical case to be

S(ρMC) =− Tr(ρMC log ρMC)

=
∑

j:λj∈[E,E+∆]

1

#{λj ∈ [E,E +∆]}
log(#{λj ∈ [E,E +∆])|ΨN,j⟩⟨ΨN,j |

= log(#{λj ∈ [E,E +∆])

(2.36)

where in the second line we used functional calculus to write the operator ρMC log ρMC.

Remark. Note that for a pure state ρ = |Ψ⟩⟨Ψ| we get S(ρ) = Tr(ρ log ρ) = 0.
Moreover, of all the ensembles whose energy lies in the interval [E,E+∆], the entropy
of the microcanonical ensemble is the greatest.

The temperature T in the microcanonical ensemble is defined by the thermody-
namic relation T−1 = ∂S

∂E .

14



2 Statistical Mechanics

Canonical Ensemble

The canonical ensemble describes the set of equilibrium states corresponding to the
physical situation where the macroscopic quantities which are fixed are the volume,
the number of particles and the temperature of the system. In this situation one
postulates that the equilibrium state is given by the so called canonical density matrix
defined by

ρ βN =
e−βHN

ZC(β)
, ZC(β) = Tr(e−βHN ) (2.37)

where β = T−1 denotes the inverse temperature and the normalization factor ZC(β)

is called canonical partition function. The state ρ βN is known as the N particle Gibbs
state at inverse temperature β.

Remark. Ideally, one expects the canonical density matrix to be obtainable from
a micro-canonical density matrix describing a system composed by a subsystem in
contact with a heath bath, by taking the trace over the degrees of freedom of the bath
(see [?, Sec. 2.6.1] for details).

The entropy of the canonical ensemble is

S(ρ βN ) =− Tr(ρ βN log ρ βN )

=β Tr(ρ βNHN ) + log(ZC(β))
(2.38)

One can check that the canonical ensemble has the greatest entropy of all ensembles
with the same average energy (see [?, Sect. 2.6.3] for a proof).

Let the free energy at temperature T in the N particle state ρN be defined by

F (T ; ρN ) = Tr(HNρN )− TS(ρN ) (2.39)

We notice that at zero temperature minimizing the free energy is equivalent to min-
imize the energy, and indeed in this case a minimizer of F (T ; ρN ) is the pure state
corresponding to the ground state vector of HN . On the other hand, as more the tem-
perature increases, as the entropy plays a more important role, and minimizing the
free energy requires a balance among minimization of the energy and maximization of
the entropy. One can check that the minimizer of F (T ; ρN ) is the canonical density

matrix ρ βN and

F βN := F (T ; ρ βN ) = −T log(ZC(β)) . (2.40)

Grand Canonical Ensemble

We now wish to allow in addition the exchange of matter between the subsystem on
the one hand and the heat bath on the other; this will be a consistent generalization
of the canonical ensemble.

This idea leads to consider the situation where the number of particles in the
system is not fixed, but one rather fixes the chemical potential (or equivalently the
expectation of the number of particles). Rigorously this reflects in the fact that the
proper Hilbert space for our equilibrium states is the Fock space

F(Λ) =

+∞⊕
n=0

Hn (2.41)

where Hn = L2
s(Λ

n) (bosonic case) or Hn = L2
a(Λ

n) (fermionic case) and the Hamil-
tonian acting on F(Λ) is

H :=

+∞⊕
n=0

Hn. (2.42)
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Let N be the particle number operator defined in (??). Then the equilibrium state
in the grand canonical ensemble is postulated to be the density matrix in Fock space

ρ βµ =
e−β(H−µN )

ZGC(β, µ)
, ZGC(β, µ) = Tr(e−β(H−µN )) (2.43)

known as grand canonical density matrix. The entropy in the grand canonical ensemble
is equal to

S(ρ βµ ) = −Tr(ρ βµ log ρ βµ ) = β Tr(ρ βµ (H − µN )) + log(ZGC(β, µ)) . (2.44)

The grand potential is given by

Ω(β, µ) = − 1

β
log(ZGC(β, µ)) . (2.45)

Using the Baker-Hausdorff-Campbell formula (N commutes with H) we find

N = ⟨N ⟩ = Tr(N e−β(H−µN ))

ZGC(β, µ)
=

Tr(N e−βHeβµN )

Tr(e−β(H−µN ))
= −

(∂Ω(β, µ)
∂µ

)
. (2.46)

Analogously, the expectation value of the energy can be found to be

E =
Tr(He−β(H−µN ))

Ω(β, µ)
=

(∂(βΩ)
∂β

)
βµ
. (2.47)

where, in taking the derivative, the product βµ is held constant.
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3 Non-Interacting Particles

In this section we apply the formalism developed in the previous sections to analyze
the simplest possible case of a many body quantum system, corresponding to N non
interacting identical particles. In particular we are going to see how the bosonic and
fermionic nature of quantum particles lead to very different physical behaviors, still
in this very simple situation. We will start our analysis with a discussion about the
unitary evolution and the spectral properties of non interacting quantum systems at
zero temperature, and then analyze the role of the temperature in determining the
equilibrium properties of the same systems.

3.A Unitary evolution and spectral properties

The simplest case where we can study the time evolution and spectral properties of a
many body system is the case of N non interacting identical particles:

HN =

N∑
j=1

hj (3.1)

with hj defined as in (??) for some one-particle operator h. Since for any i ̸= j
the one particle hamiltonians hi, hj act on different coordinates we immediately get
[hi, hj ] = 0. Hence, using the Baker-Campbell- Hausdorff formula we find

e−itHN =

N∏
j=1

e−ithj = e−ith ⊗ · · · ⊗ e−ith. (3.2)

This in particular implies that, if ψ0 = φi1 ⊗ · · · ⊗ φiN then

e−iHN tψ0 = e−ithφi1 ⊗ · · · ⊗ e−ithφiN (3.3)

(if ψ0 is the symmetrization or antisymmetrization of φi1 ⊗ · · · ⊗ φiN , then e−iHN tψ0

is the symmetrization or antisymmetrization of e−ithφi1 ⊗· · ·⊗e−ithφiN ). Computing
the evolution generated by HN reduces therefore to solve the one particle problem
described by h.

Also the spectrum of the many body Hamiltonian can be easily characterized
starting from the spectrum of the one particle operator h. Let us consider the case
where h has purely discrete spectrum, namely h has eigenvalues e1, e2, e3, . . . with a
complete set of eigenvectors φ1, φ2, φ3, . . .. Then, it’s easy to check that every product
vector φi1 ⊗ · · · ⊗ φiN is an eigenvector of HN with eigenvalue (e1 + . . .+ eN ).

This in particular implies that PSN (φi1 ⊗ · · · ⊗ φiN ) and PAN (φi1 ⊗ · · · ⊗ φiN ) are
eigenvectors respectively in L2

s(Ω
N ) and L2

a(Ω
N ). Let us stress that since, as we

already discussed, PAN (φi1 ⊗ · · · ⊗ φiN ) = 0 if there are two indices j ̸= k such that
φij=φk

we conclude that PAN (φi1 ⊗ · · · ⊗φiN ) = 0 gives a fermionic eigenvector only if
φij ̸= φik for all j ̸= k due to the Pauli Exclusion Principle.

To compute the ground state of HN we use the fact that by assumption if {φi}
are an ONB of L2(ΩN ) then the symmetrization of {P sN (φi1 ⊗ φiN )} constitute an
OBN of L2

s(Ω
N ). Hence we deduce that the ground state of the many-body bosonic

Hamiltonian is given by

ΨN = φ1 ⊗ · · · ⊗ φ1 (3.4)

with φ1 the ground state of h. Indeed

HNΨN = Ne1ΨN (3.5)

and ΨN has the right symmetry.
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On the contrary, as an effect of the Pauli Principle the ground state of the fermionic
system is given by the Slater determinant

ΨN = det

∣∣∣∣∣∣
φ1(x1) . . . φN (x1)
. . . . . . . . .

φ1(xN ) . . . φN (xN )

∣∣∣∣∣∣ . (3.6)

Then the ground state energy of a fermionic system is much larger than the ground
state energy of bosonic systems. This difference among the bosonic and fermionic case
has an important effect: the Stability of Matter (see [?]).

Remak. In general the spectrum ofH =
∑
hj as an operator on the full space is the

set sum of the N copies of the spectrum of h. These eigenvalues are also eigenvalues
of H in the symmetric subspace. However, not all eigenvalues are eigenvalues of H on
the fermionic sector.

Free particles

We now consider as an example of special interest for us, that is the case in which the
Hamiltonian of the system is

HN =
N∑
i=1

hi, h = −∆ (3.7)

acting on L2
s(Λ

N ) or L2
a(Λ

N ) depending on whether we are considering bosons or
fermions. Here Λ = [0, L]3 denotes the three dimensional rectangular box and we
are putting periodic boundary conditions. Recall that in this case the single particle
eigenvalues are given by

ep = p2, p ∈ Λ∗ =
2π

L
Z3 (3.8)

and the associated eigenfunctions are

up(x) =
1

L3/2
eipx. (3.9)

Applying what we discussed above we immediately get that in the bosonic case the
ground state of the system is the constant function

u⊗N0 (x1, . . . , xN ) =
1√
L3N

(3.10)

and the ground state energy is zero.
On the other hand, in the fermionic case the ground state energy is obtained filling
the first N energy levels of the one-particle Hamiltonian, namely one can introduce
Fermi energy εF which is the energy below which there are exactly N eigenstates,
i.e. εF is defined by the equation

N =
∑
p∈Λ∗:
p2≤εF

1 =
∑
p∈Λ∗

n(εp) (3.11)

where

n(εp) =

{
1 εp ≤ εF

0 εp > εF .
(3.12)

Then the ground state energy of the fermionic system is

E0 =
∑
p∈Λ∗

epn(ep) (3.13)
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Note that in the thermodynamic limit L → +∞ we get that the particle density
satisfies

n := lim
L→+∞

N

L3
=

1

(2π)3

∫
R3

n(εp)dp =
1

(2π)3
4

3
πε

3/2
F (3.14)

where we noted that 1
L3

∑
p∈Λ∗ −→ 1

(2π)3

∫
R3 for L→ ∞. Thus we get

εF = (6π2n)2/3. (3.15)

Electrons in atoms.

A classical example of a fermionic non interacting system is an atom with N electrons
and Z protons (typically atoms are neutral, that is Z = N), when we neglect the
interaction among the electrons. In such a case the N -electron Hamiltonian (in the
reference frame centered in the nucleus) is given by

HN =

N∑
j=1

hj :=

N∑
j=1

(
−∆xj −

Zα
|xj |

)
(3.16)

where we set ℏ = 2µj = 1 (here µj is the reduced mass of the electron and the
nucleous). We know that hj has eigenvalues

En = −C/n2 (3.17)

with 2n2 eigenvectors ψn,ℓ,m,ms
characterized by the following quantum numbers

ℓ = 0, 1, . . . , n− 1 (total angular momentum)

m = −ℓ, . . . , ℓ (z-component of the angular momentum)

ms = ±1 (spin)

Note that h has continuous spectrum [0,+∞). On the other hand, since we are inter-
ested in the bottom of the spectrum we will focus only on its (negative) eigenvalues.
(see [?] for a detailed study of the spectrum of h).

According to what we discussed above in the general case the ground state of HN

is given by a Slater determinant built starting from φ1, . . . , φN , being the first N non
degenerate eigenvectors of hj corresponding to the lowest energies. Hence for N > 2
we have

φ1 := ψ0,0,0,1 φ2 := ψ0,0,0,−1 (3.18)

which are the two fermionic wave functions corresponding to n = 0, which are identified
by the quantum numbers ℓ = m = 0 and ms = ±1. Then φ3, . . . , φ10 are identified
by the eight eigenvectors corresponding to n = 1, two of them having ℓ = 0 (with
m = 0 and ms = ±1) and the remaining with ℓ = 1 (with corresponding values of
m = −1, 0, 1 and ms = ±1). And so on. For example the electron configuration of an
atom with 14 electrons is given by

C14 1s2 2s2 2p6 3s2 3p2 (3.19)

where the first number correspond to the value of n, the notation s and p is used to
denote the orbitals with ℓ = 0 and ℓ = 1 respectively and the number in the apex is
the number of electron which are placed in each orbital.
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3 Non-Interacting Particles

3.B Ideal Quantum Gases

In this section, we want to derive the thermodynamic properties of ideal quantum
gases, i.e. non-interacting particles, on the basis of quantum statistics. The calculation
of the grand potential is found to be the most expedient way to proceed.

In order to have a concrete system in mind, we consider N non-interacting, nonrel-
ativistic particles in the three dimensional box Λ3N = [0, L]3N , with periodic boundary
conditions. The Hamiltonian is simply

HN =

N∑
i=1

hi, h = −∆ . (3.20)

The Hamiltonian in Fock space is given by

H =
∑
p∈Λ∗

epa
∗
pap (3.21)

where we are using the notation ap = a(up), a
∗
p = a∗(up) with up the one-particle

eigenfunctions defined in (??). Analogously

exp(−β(H − µN )) = e
∑

p∈Λ∗ εpa
∗
pap (3.22)

where εp = −β(ep − µ) with ep = p2 the eigenvalues of the one-particle opera-
tor. One can easily check that the eigenvalues of the operator defined in (??) are∑
np,p∈Λ∗

∏
p∈Λ∗ eεpnp where np ∈ {0, 1} for fermions and np ∈ {0, 1, 2, . . . } for bosons.

Exercise 6. Using CCR or CAR in the bosonic and fermionic case respectively, check
that the eigenvectors of the operator defined in Eq. (??) are given by the occupation
number basis defined at the end of Sec. ?? associated to the one particle basis {up}p∈Λ∗ .

We are ready to compute the grand partition function ZGC defined in Eq. (??).
We find

ZGC(β, µ) = Tr(e−β(H−µN )) =
∏
p∈Λ∗

∑
np

eεpnp (3.23)

where np, p ∈ Λ∗ takes on the allowed value depending on the symmetry. In particular
in (??) we recognize in the bosonic case a product of geometric series (note that we
have to ask εp > 0 ∀p, i.e. µ < ep ∀p to have convergence) while in the fermionic case
the sum over np simply reduces to 1 + eεp . Summarizing we found

ZGC(β, µ) = Tr(e−β(H−µN )) =
∏
p∈Λ∗


1

1− eεp
for bosons

1 + eεp for fermions .
(3.24)

Thus, the grand canonical potential is

Ω(β, µ) = − 1

β
logZGC(β, µ) =


1

β

∑
p∈Λ∗

log(1− eεp) for bosons

− 1

β

∑
p∈Λ∗

log(1 + eεp) for fermions

(3.25)

and from it we can derive all the thermodynamic quantities of interest. In particular,
by (??), the expected number of particle is

N = ⟨N ⟩ = −∂Ω(β, µ)
∂µ

=
∑
p∈Λ∗

n(εp) (3.26)

where

n(εp) =


1

e−εp − 1
for bosons

1

e−εp + 1
for fermions .

(3.27)
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Note that n(εp) is the expected value of the operator Np = a∗pap. Indeed,

⟨Np⟩ =

∑
np
npe

εpnp
∏
q∈Λ∗

q ̸=p

∑
nq
eεqnq∏

q∈Λ∗
∑
nq
eεqnq

=

∑
np
npe

εpnp∑
np
eεpnp

= − ∂

∂x
log

∑
n

e−nx
∣∣∣∣
x=β(ep−µ)

= n(εp)

(3.28)

Note that to have n(εp) > 0 we have to assume µ < ep for any p ∈ Λ∗ which implies
µ < 0. This is not really a restriction, however, since as µ varies within (−∞, 0) for
bosons, and (−∞,∞) for fermions, clearly N varies between 0 and +∞.
As for the energy, from (??) we find

E =
(∂(β Ω(β, µ))

∂β

)
βµ

=
∑
p∈Λ∗

εpn(εp) . (3.29)

We consider the particle density in the thermodynamic limit L → ∞. Using (??)
and (??) we get

n = lim
L→+∞

⟨N ⟩
L3

=


1

(2π)3

∫
R3

1

eβ(p2−µ) − 1
dp for bosons

1

(2π)3

∫
R3

1

eβ(p2−µ) + 1
dp for fermions

(3.30)

Setting x = βp2 we can rewrite

n =


1

λ3
2√
π

∫ +∞

0

√
x

z−1ex − 1
dx for bosons

1

λ3
2√
π

∫ +∞

0

√
x

z−1ex + 1
dx for fermions

(3.31)

where z = eβµ and we introduced the Thermal wavelength

λ =

√
4π

T
. (3.32)

Note that n is increasing in z. Thus, in the fermionic case all densities are allowed
since z ∈ (0,+∞). On the contrary, in the bosonic case where z < 1, i.e. µ < 0 the
achievable densities are n ∈ (0, nc(β)) where

nc(β) = lim
µ→0

n =
1

(2π)3

∫
R3

1

eβp2 − 1
dp <∞ (3.33)

since the integrand behaves like |p|−2 for small p, which is integrable in 3 dimensions.
Thus, it seems that densities n > nc(β) are not admissible. Note in particular that
limβ→∞ nc(β) = 0, hence the admissible densities, according to (??), would be ex-
tremely small at low temperature. The point is that if we go back to the original sum
we had in (??) we see that the term corresponding to p = 0 diverges when µ → 0.
Hence, we have to be more careful and the limit L→ +∞ and µ→ 0 has to be taken
simultaneously. More precisely, we set

µ = − 1

βL3(n− nc(β))
as L→ +∞ . (3.34)

With this choice of µ we get

lim
L→+∞

⟨a∗0a0⟩
L3

= lim
L→+∞

1

L3

1

eL−3(n−nc(β))−1 − 1
= n− nc(β) (3.35)
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Figure 1: Particle den-
sity of an ideal quantum
gas at infinite volume, as
a function of the chemi-
cal potential µ.

that is, the zero momentum state is occupied by a macroscopic fraction of all the
particles1. This phenomenon is called Bose-Einstein Condensation (often denoted
BEC). As we discussed in the previous section at T = 0 the N -particle state has all
particles placed in single-particle groundstate u0(x) = L−3/2 for all x ∈ Λ, hence the
zero particle state is macroscopically occupied. Condensation is about that property
being stable at T > 0. Note that the only momentum which might be macroscopically
occupied is p = 0. Indeed, the smallest positive eigenvalue of the Laplacian equals(
2π
L

)2
, thus the corresponding averaged occupation number per unit volume in the

limit L→ +∞ behaves as

1

L3

1

eL−3(ρ−ρc(β))−1eβ(2π)2L−2 − 1
∼ C

L
→ 0 as L→ +∞ . (3.36)

Summarizing we proved the occurrence of BEC at inverse temperature β−1 above the
critical density nc(β) given by

nc(β) =
1

(2π)3
4π

∫ ∞

0

dp
p2

eβp2 − 1

=
1

λ3
1

Γ(3/2)

∫ ∞

0

dt

√
t

et−1
=

1

λ3ζ(3/2)

(3.37)

where Γ denotes the gamma function, ζ the Riemann zeta function and we used the
relation

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx. (3.38)

Equivalently, recalling the definition of λ given in Eq. (??) we have that for a system
at density n we have condensation in the zero momentum mode for T < Tc(n) defined
by

Tc(n) =
4π

ζ(3/2)2/3
n2/3 . (3.39)

Remark. BEC represents a phase transition in the usual sense, namely that the ther-

modynamic functions exhibit a non-analytic behavior (see [?] for details).

We have shown that bosons undergo Bose Einstein Condensation. Now, we want
to consider fermions and discuss the form of n(εp) in the limit z = eβµ → +∞. To

1One says that there is a macroscopic occupation of a single one particle state, if the ratio among the
expected number of particles in that state and the total expectation of the number of particles N goes to
a constant in the limit N → ∞.
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Figure 2: Fermi distribution func-
tion n(ε) for low temperatures
compared with the step function
corresponding to T = 0.

better understand the interest in considering this limit let us note that it corresponds
to a situation in which nλ3 ≫ 1 (cf. Eq.(??)). Equivalently introducing the v = 1/n

the average volume per particle we have for z → +∞ that λ3

v ≫ 1 hence the quantum

length scale λ is much larger than the mean inter-particle distance v1/3 (classical
length scale) and we expect quantum effects to be predominant. Note that, recalling
the definition of λ this regime can be obtained by sending T → +∞. We rewrite

n =
1

λ3
2√
π

∫ +∞

− log z

(y + log z)3/2

ey + 1
dy

=
1

λ3
4

3
√
π

∫ +∞

− log z

(y + log z)3/2
d

dy

( −1

ey + 1

)
dy

(3.40)

where in the first line we changed variable introducing y = x− log z and in the second
line we integrated by parts. Thus for large z we get

n ∼ 1

λ3
4

3
√
π
(log z)3/2

∫ +∞

−∞

d

dy

( −1

ey + 1

)
dy =

1

λ3
4

3
√
π
(log z)3/2 . (3.41)

We conclude therefore

(log z)3/2 ∼ 3
√
π

4

λ3

v
= 6π2 β

3/2

v
(3.42)

which using Eq. (??) gives

log z = βµ = βεF =⇒ µ = εF . (3.43)

Thus, we have shown that in the limit of small temperatures T → 0 the chemical
potential converges to εF and then n(ε) = 1

eβ(p2−µ)+1
approaches the shape of the step

function we found in the zero temperature case (see (??)). The situation is shown in
Fig. ??.

Remark. We discussed the regimes in which quantum effects are most apparent for
bosons and fermions corresponding respectively to z = eβµ → 1 and z = eβµ → +∞.
Let us now comment what happens in the opposite regime z → 0 which corresponds
to the classical limit λ3/v ≪ 1. In that case one finds (see [?, sec. 4.2] for details):

pv ∼


T
(
1− 1

25/2
λ3

v

)
for bosons

T
(
1 +

1

25/2
λ3

v

)
for fermions

(3.44)

where p denotes the pressure in the thermodynamic limit obtained as

p = lim
L→+∞

−Ω(β, µ)

L3
. (3.45)

Hence, at the first order Eq. (??) reduces to the equation of states of the classical
ideal gas. Moreover the first correction is positive for fermions (recall Pauli principle!)
and negative for bosons.

23



3 Non-Interacting Particles

3.C Black body radiation

What we discussed so far also allows us to discuss the thermal properties of the
radiation field, described as a collection of bosonic particles (known as photons) and
to obtain the Planck law for the blackbody radiation within the statistical mechanics
approach just introduced. In the following we will consider photons in a cavity Λ =
[0, L]3 with Neumann boundary conditions and we will use that

i) Photons obey the dispersion relation ep = c|p| = hν, with p ∈ 2π/LZ3 \ {0}
and ν the frequency. Moreover they are bosons with a spin s = 1. Since they
are completely relativistic particles (i.e. their mass is zero and their velocity is
c), their spins have only two possible orientations, i.e. parallel or antiparallel
to p, corresponding to right-hand or left-hand circularly polarized light. The
degeneracy factor for photons is therefore equal to 2. Note that the relation
among p and ν above corresponds to De-Broglie hypothesis, namely to associate
to a particle of momentum p a wavelength λ = h/|p|; with λν = c we conclude
ν = c|p|/h.

ii) Since photons are emitted and absorbed by the material of the cavity walls,
the number of photons is not conserved. Hence we need to work in the grand
canonical ensemble with µ = 0 (indeed the role of the chemical potential is to
fix the average particle density in the system).

Remark. Note that differently from previous sections here we are writing explicitly
the dependence on the Plank constant h to make apparent that what we find is exactly
Plank formula for radiant energy.

If we assume the mutual interactions of photons to be zero, we find that the
photonic grand canonical Hamiltonian has the form

Hph =
∑
λ=±1

∑
p ̸=0

epa
∗
p,λap,λ (3.46)

where ap,λ := a(up,λ), a
∗
p,λ := a∗(up,λ) and up,λ are the eigenfunctions associated to

momentum p and polarization λ = ±1.
Our aim is to compute the energy density of the black body radiation, in order to

compare it with the formula obtained by Planck at the dawn of the quantum theory.
Hence the photonic grand canonical partition function is given by an expression similar
to (??), with ep = c|p|, µ = 0 and a power 2 taking into account for the two possible
polarizations λ.

Zph(β, µ = 0) =
∏
p ̸=0

∑
np,λ

e−βepnp,λ =

[∏
p̸=0

1

1− e−βep

]2
(3.47)

Proceeding as in the derivation of (??) and (??) and rewriting the energy ep in terms
of the light frequency ν = cp/h, thus getting ep = hν, we obtain that the average
energy per mode ν of the system described by Hph is given by

⟨Eν⟩ =
hν

eβhν − 1
(3.48)

which was indeed Planck assumption. Note that the number of ways of choosing
ν ∈ 2π(hL/c)−1Z3 (recalling ν = cp/h and p ∈ 2π/LZ3) in the thin spherical shell
|ν| ∈ [ν, ν + δ] is twice 4π(hL/c)3ν2δ(1 + o(δ/ν)) with the factor two coming from
the fact that the light has two different polarizations. Thus, we get that the expected
energy density of the black body at inverse temperature β is given by

eβ = lim
L→+∞

Tr(ρ βµ=0Hph)

L3
=

8π

c3

∫ +∞

0

ν2⟨Eν⟩dν =
8π

c3

∫ +∞

0

hν3

eβhν − 1
dν (3.49)

that is we recover Planck formula for radiant energy.
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Notice that if βhν ≪ 1 we have

⟨Eν⟩ =
1

β

(
1 +O(βhν)

)
(3.50)

which is indeed the classical prediction (note that at the classical level the energy
is independent on the frequency), while for βhν ≫ 1 we find ⟨Eν⟩ = hνe−βν

(
1 +

O(e−βhν)
)
which is going to zero as ν → ∞, as observed in experiments.

4 Conclusions

So far, we just considered examples of non interacting many-body Hamiltonians. Still,
the very simple models we considered have given us the opportunity to discuss several
intriguing aspects entering in the description of many-particles quantum systems, as
the very different physical behaviors induced by the statistics, and identify the condi-
tions where the quantum effects are predominant with respect to the classical ones or
viceversa.

If we now aim to describe real physical systems we need to take into account for the
interactions among the particles, and to consider systems made up by a large number
of microscopic particles. From our previous discussions it should be clear that in
presence of interactions the analysis of the unitary evolution and of the thermodynamic
properties of the N - particle Hamiltonian is far more involved and this is indeed the
source of several research lines. Let us emphasize that, in typical situations it would
be fair enough to obtain an effective description of the many-body system,providing
an approximation to the evolution of the system or to its equilibrium properties in
certain regimes, and/or up to certain time scales. The research line focusing on the
derivation of the macroscopic properties of many body systems include the derivation
of effective equations for the dynamics of many body systems, and the emergence of
collective phenomena in those systems (the phenomenon of BEC discussed above is a
typical example of collective phenomena arising in a many body quantum systems).
In particular, the role of mathematics appears to be crucial to establish the range
of validities of effective theories which are often introduced on the basis of heuristic
approaches, or to provide precise error bounds on macroscopic approximations, in
terms of number of particles, temperature and so on. But this indeed, would be
another (very challenging) story largely still to be written.

References

[1] E.H. Lieb and R. Seiringer. The Stability of Matter in Quantum Mechanics.
Cambridge, 2009.

[2] R. Seiringer. Cold Quantum Gases and Bose-Einstein Condensation. Lec-
ture notes from the school “Quantum Theory from Small to Large Scales”,
August 2-27, 2010. Available for download at: https://www.thphys.uni-
heidelberg.de/ salmhofer/leshouches2010/page.php?page=lectures

[3] F. Schwabl. Statistical Mechanics. Springer, 2006.

[4] A. Teta. A Mathematical Primer on Quantum Mechanics. Springer, 2018.

25

https://www.thphys.uni-heidelberg.de/~salmhofer/leshouches2010/page.php?page=lectures
https://www.thphys.uni-heidelberg.de/~salmhofer/leshouches2010/page.php?page=lectures

