Status Report of the Research Project

Model of the CUORE data and background shape studies

Candidate: Stefano GHISLANDI

G S S I Advisors: Lorenzo PAGNANINI

Stefano POZZI

Ph.D. Program in Astroparticle Physics - XXXVI cycle

The CUORE experiment

Cryogenic Underground Observatory for Rare Events

- Searching from neutrinoless double beta decay $(0\nu\beta\beta)$ in ¹³⁰Te
- Running since 2017 in the Gran Sasso underground
 laboratories in Italy (~ 3600 m.w.e.)
- 988 TeO₂ crystals operated at ~ 15 mK with natural ¹³⁰Te abundance
- □ No evidence for neutrinoless double beta decay in ¹³⁰Te
 - only background

G S

The CUORE experiment

Cryogenic Underground Observatory for Rare Events

- Searching from neutrinoless double beta decay $(0\nu\beta\beta)$ in ¹³⁰Te
- Running since 2017 in the Gran Sasso underground
 laboratories in Italy (~ 3600 m.w.e.)
- 988 TeO₂ crystals operated at ~ 15 mK with natural ¹³⁰Te abundance
- No evidence for neutrinoless double beta decay in ¹³⁰Te

only background

Studying the remaining background is essential to:

1. <u>understand the data</u>

G S

2. plan a future generation experiment, CUPID in this case

Cryogenic Underground Observatory for Rare Events

- Searching from neutrinoless double beta decay $(0\nu\beta\beta)$ in ¹³⁰Te
- Running since 2017 in the Gran Sasso underground

Iabor1. Extract background components activity988
abun2. Evaluate reliable systematic errors \mathbb{N} No e3. Measure half-lifes ($2\nu\beta\beta$ - 130 Te)

Studying the remaining background is essential to:

1. <u>understand the data</u>

GS

2. plan a future generation experiment, CUPID in this case

Data

RAW DATA

4

Model of the CUORE data and background shape studies - Stefano Ghislandi

RAW DATA

15 datasets

• Total exposure of 1123 kg yr

RAW DATA

- 15 datasets
- Total exposure of 1123 kg yr

LOW LEVEL ANALYSIS

- Exclude noisy periods
 - \rightarrow Analyzed exposure of 1038 kg $\cdot\,\text{yr}$
- Quality cuts

G S

• Pulse shape analysis cuts

* Sample topologies

RAW DATA

- 15 datasets
- Total exposure of 1123 kg yr

LOW LEVEL ANALYSIS

- Exclude noisy periods
 - \rightarrow Analyzed exposure of 1038 kg $\cdot\,\text{yr}$
- Quality cuts

G S

• Pulse shape analysis cuts

 $\begin{array}{l} \textbf{COINCIDENCES} \rightarrow \textbf{space-time cut,} \\ \textbf{optimized for the background model studies} \end{array}$

RAW DATA

- 15 datasets
- Total exposure of 1123 kg yr

LOW LEVEL ANALYSIS

- Exclude noisy periods
 - \rightarrow Analyzed exposure of 1038 kg $\cdot\,\text{yr}$
- Quality cuts

G S

• Pulse shape analysis cuts

 $\begin{array}{l} \textbf{COINCIDENCES} \rightarrow \textbf{space-time cut,} \\ \textbf{optimized for the background model studies} \end{array}$

DATA (almost) READY FOR THE FIT

3000

5000

6000

4000

Energy [keV]

MULTIPLICITY 1 (M1) DATA

7000

 10^{-1}

1000

2000

Counts / keV

S

MODEL OF THE BACKGROUND

1. Data 🗸

2. Monte Carlo simulations

The MC templates describe combinations of contaminants and detector components

The MC templates describe combinations of contaminants and detector components

Bulk contaminations:

G S S I

- Main decay chains: ²³²Th, ²³⁸U, ²³⁵U
- Ubiquitous contaminants: ⁴⁰K, ⁶⁰Co
- Fallout: ¹³⁷Cs, ⁹⁰Sr, ²⁰⁷Bi
- Activation: ¹²⁵Sb, ⁵⁴Mn, ^{110m}Ag, ^{108m}Ag
- Others: ¹⁴⁷Sm, ¹⁹⁰Pt (crystal growing)

The MC templates describe **combinations of contaminants and detector components**

Bulk contaminations:

- Main decay chains: ²³²Th, ²³⁸U, ²³⁵U
- Ubiquitous contaminants: ⁴⁰K, ⁶⁰Co
- Fallout: ¹³⁷Cs, ⁹⁰Sr, ²⁰⁷Bi
- Activation: ¹²⁵Sb, ⁵⁴Mn, ^{110m}Ag, ^{108m}Ag
- Others: ¹⁴⁷Sm, ¹⁹⁰Pt (crystal growing)

Surface contaminations:

G S

- Simulation at different depths
- Assumed exponential profile

The MC templates describe combinations of contaminants and detector components

Bulk contaminations:

- Main decay chains: ²³²Th, ²³⁸U, ²³⁵U
- Ubiquitous contaminants: ⁴⁰K, ⁶⁰Co
- Fallout: ¹³⁷Cs, ⁹⁰Sr, ²⁰⁷Bi
- Activation: ¹²⁵Sb, ⁵⁴Mn, ^{110m}Ag, ^{108m}Ag
- Others: ¹⁴⁷Sm, ¹⁹⁰Pt (crystal growing)

Surface contaminations:

- Simulation at different depths
- Assumed exponential profile

Muons:

G S

- MACRO flux distribution
- Gran Sasso overburden map

Simulation tool: *qshields (Geant4 application)*, the CUORE Monte Carlo framework

OTHER EFFECTS

Data taking

G S

- Dead channels
- Lifetime

Analysis efficiencies

- Base cuts
- Coincidences
- Pulse shape
- Pile-up

Detector effects

- Finite energy resolution
- Lineshape
- Quenching

MODEL OF THE BACKGROUND

1. Data 🗸

2. Monte Carlo simulations 🗸

3. Fit model

Binned template fit \rightarrow MC simulations of contaminants in different detector components

Bayesian \rightarrow Prior to be updated during the regression

With MCMC \rightarrow *Gibbs sampling algorithm (JAGS software)*

Model:
$$u_{lpha,i} = \sum_j N_j (
u_{lpha,i})_j$$

G S

n = observed number of counts

- \boldsymbol{v} = expected number of counts
- N = normalization factor
 - = bin
- α = input energy spectrum
- = background component

Likelihood:
$$\mathcal{L}(\{N_j\} \mid \text{data}) = \prod_{\alpha} \prod_i Pois(n_{\alpha,i}, \nu_{\alpha,i})$$

Simultaneous fit of 39 energy spectra with ~70 background components

MULTIPLICITY 1

1 SINGLE SPECTRUM

G S

Input energy spectra

MULTIPLICITY 1

MULTIPLICITY 2

38 DIFFERENT

1 SINGLE SPECTRUM

CUORE

Input energy spectra

Energy [keV]

G S S I

MULTIPLICITY 2

CUORE

MODEL OF THE BACKGROUND

1. Data 🗸

2. Monte Carlo simulations 🗸

3. Fit model 🗸

Binning

G S

A rebinning procedure has been implemented:

- Around characteristic γ lines the bin size corresponds to $5\sigma(E)$
- Wide bins around characteristic M1 α lines the binning has been fixed by hand (no knowledge about peak models there)

Please Note: Minimum bin size fixed to 15 (40) keV for γ (α) regions

A minimum of 50 events is required in each bin, otherwise merge

The prior distributions summarize the *a priori* knowledge we have about a certain background components.

Counts / 30 keV

10

Data - Multiplicity in [12,20]

2000

1000

MC - Best fit - Multiplicity in [12-20]

3000

The prior distribution can be originated through different measurements:

- *Previous experiments:*
 - CUORE-0 provides many information about components used also for CUORE
- Radioactive assays:
 - Neutron Activation Analysis
 - HPGe measurements
- Muons:

G S

High multiplicity data

Please Note: In case a contamination doesn't have any dedicated measurement we fix a default uniform prior between 0 and the maximum normalization factor (not to surpass data + fluctuations)

6000

CUORE Preliminary

Analyzed exposure: 1038 kg yr

4000

5000

Energy [keV]

Results: M1 data reconstruction

G S

CUORE

Visual check with thinner binning

G S

Model of the CUORE data and background shape studies – Stefano Ghislandi

Assumptions (possible source of systematics)

- Contaminations equal on all the crystals
- Contaminations are simulated uniformly on the shieldings and copper components
- □ The background is *stable with time*

G S S I Repeat the fit to characterize and extract reliable systematic errors

17

Assumptions (possible source of systematics)

- Contaminations equal on all the crystals
- Contaminations are simulated uniformly on the shieldings and copper components
- The background is stable with time
 - Repeat the fit to characterize and extract reliable systematic errors

INCLUDED SYSTEMATICS

 \rightarrow Binning

G S S I

20 keV UNIFORM BINNING

Model of the CUORE data and background shape studies - Stefano Ghislandi

CUORE

Assumptions (possible source of systematics)

- Contaminations equal on all the crystals
- Contaminations are simulated uniformly on the shieldings and copper components
- □ The background is *stable with time*

G S S I Repeat the fit to characterize and extract reliable systematic errors

INCLUDED SYSTEMATICS

- \rightarrow Binning
- \rightarrow Low Energy threshold

LOW ENERGY THRESHOLD

Assumptions (possible source of systematics)

- Contaminations equal on all the crystals
- Contaminations are simulated uniformly on the shieldings and copper components
- □ The background is *stable with time*

Repeat the fit to characterize and extract reliable systematic errors

INCLUDED SYSTEMATICS

- \rightarrow Binning
- \rightarrow Low Energy threshold
- \rightarrow Time

G S S I

Assumptions (possible source of systematics)

- Contaminations equal on all the crystals
- Contaminations are simulated uniformly on the shieldings and copper components
- The background is stable with time

G S

Repeat the fit to characterize and extract reliable systematic errors

INCLUDED SYSTEMATICS

- \rightarrow Binning
- \rightarrow Low Energy threshold
- \rightarrow Time
- \rightarrow Geometry (Floors, Towers)

GEOMETRY

Assumptions (possible source of systematics)

- Contaminations equal on all the crystals
- Contaminations are simulated uniformly on the shieldings and copper components
- The background is stable with time

Repeat the fit to characterize and extract reliable systematic errors

INCLUDED SYSTEMATICS

- \rightarrow Binning
- \rightarrow Low Energy threshold
- \rightarrow Time

G S S I

- \rightarrow Geometry (Floors, Towers)
- \rightarrow ⁹⁰Sr contamination

⁹⁰Sr CONTAMINATION

Fit on the entire energy region

- Better constraints on contaminations
- Lower correlation between background components

Input to CUPID background (data driven) budget

Track time varying activities

Reconstruct initial activity

G S

• Study chain breaking (contamination history)

²¹⁰Po surface contamination in CuNOSV (10 nm)

Non uniformities

- Point-like or localized sources (⁴⁰K TeO₂ bulk)
- Recontaminations (²¹⁰Po TeO₂ surface)

G S S I

G S

In the case of the CUORE BM, many background contributions are forbidden beta decays (i.e. ²¹⁰Bi, ²¹⁰Pb, ⁴⁰K, ⁹⁰Sr)

Measure with precision their shape is essential to:

- Test theoretical models checking which one is applying the correct approximation to 1. reproduce experimental data
- 2. *Measure the axial-coupling* g_{A} (primary importance in case of 0v discovery) in different momentum regions
- 3. Lower uncertainties in precision measurement of the shape of $\beta\beta$ decays

The Array of Cryogenic		Physics Case Crystal ready	Isotope	\mathbf{Q}_{eta} [keV]	Half-life [yr]	Natural Abundance or Target Doping		
Calorimeters to Evaluate Spectral		Nuclear Physics	⁹⁹ Tc ¹¹³ Cd ¹¹⁵ L	293.8 316	$\frac{2.11 \times 10^5}{7.70 \times 10^{15}}$	0.25 ppb 13.47 %		
Shapes (ACCESS) will do this	Foreseen	First results Background in ν-physics and Dark Matter search	¹¹¹ ⁹⁰ Sr ³⁹ Ar ⁴² Ar	$\frac{111}{^{0}} \frac{490}{4.41 \times 10} \frac{4.41 \times 10}{2}$ $\frac{10}{^{0}} \frac{1}{^{0}} 1$		95.7 % 30 ppq 0.15 ppt 20 ppq		
ACCESS Beta decay Access Beta decay Access Beta decay Beta decay Access Beta decay Beta decay Beta decay Beta decay		Cosmic Neutrino background detection	²¹⁰ Bi ¹⁵¹ Sm ²¹⁰ Pb	$ \begin{array}{r} 1161.2 \\ 76.4 \\ 63.5 \\ \end{array} $	0.014 94.7 22.2	$\frac{2^{38}\text{U decay chain}}{0.20 \text{ ppt}}$ $\frac{2^{38}\text{U decay chain}}{2^{38}\text{U decay chain}}$		
Astronomic Large Astroparticle Physics Beta decay. Spectral Shape Made Physics Rectaral Shape Access Actions Access Actions Nuclear Physics Access Nuclear Physics Access		<i>Eur. Phys. J. Plus</i> 138 , 445 (2023)						

Eur. Phys. J. Plus **138**, 445 (2023)

First measurement of the ACCESS project with Indium Iodine crystal (¹¹⁵In 96% abundance)

Effective lifetime of ~ 129 hours

The analysis

GS

- 1. Performed *low level analysis* optimizing cuts and performance
 - From triggering to calibration of collected data
- 2. Careful efficiency evaluation not to distort the energy spectrum shape
 - Rectangular cuts to avoid pile-up and bad pulses
 - More complex cuts on pulse shape
- **3.** Built a *background model* of the setup by means of Geant4 Monte Carlo simulations
 - Convolution with energy and timing response of the detector
 - Introduced unresolvable pile-up
- 4. Developed Bayesian fitting framework (BAT)
 - Extracts half-life and background contributions
 - Possibility to determine parameters using simultaneously multiple theoretical templates

Model of the CUORE data and background shape studies - Stefano Ghislandi

CUORF

Preliminary results

G S

We are going to present the results in 2 ways:

- 1. Overall best fit (sampling over all the model parameters)
- 2. Fix parameters (sNME) and perform a match of the half-life coming from experimental data and theory

Precise determination of physical parameters

Test model predictions

CUORE

- Developed and concluded the first comprehensive model of the CUORE data
- ✓ The fit is stable and gives satisfying data reconstruction
- The BM Internal note passes internal review and collaboration review → writing collaboration technical paper
- ... Ready to optimize few aspects to come out with the $2\nu\beta\beta$ half-life measurement and shape studies on that \rightarrow collaboration paper after the current one

ACCESS

GS

- Project presented and first detector design study concluded \rightarrow paper out
- First measurement with ¹¹⁵In concluded
- ~ Analysis of the measurement gave very exciting outcome \rightarrow writing paper
- .. Other measurements are planned

BACKUP SLIDES

Model of the CUORE data and background shape studies - Stefano Ghislandi

G S S I

Neutrinoless Double Beta Decay $(0\nu\beta\beta)$

PARAMETER OF INTEREST

 $0\nu\beta\beta$

CUORE

G S

28

G S

EXTERNAL SHIELDING

- Gran Sasso mountain, 3600 m.w.e
- Lead shield: > 25 cm thick
- Neutrons shield: 18 cm PE + 2 cm H_3BO_3 powder

INTERNAL SHIELDING

G S S I

- 6 nested copper shields (thermal)
- 6 cm thick Roman lead shield around
- Innermost copper shield made of CuNOSV
- 30 cm thick top lead shield + 6.4 cm CuNOSV

Monte Carlo processing

MULTIPLICITY 1 LINES

MULTIPLICITY 2 LINES

Energy [keV]	Isotope	Energy [keV]	Isotope	Energy [keV]	Isotope	Energy [keV]	Isotope	Energy [keV]	Isotope
238.6	²¹² Pb	768.4	²¹⁴ Bi	1377.7	^{214}Bi	328	^{228}Ac	821.5	^{60}Co (SE)
295.2	²¹⁴ Pb	794.9	²²⁸ Ac	1460.5	$^{40}\mathrm{K}$	351.9	$^{214}\mathrm{Pb}$	835.7	$^{228}\mathrm{Ac}$
338.3	^{228}Ac	803	²¹⁰ Po	1588.2	^{228}Ac	409.5	$^{228}\mathrm{Ac}$	911.2	^{228}Ac
351.9	²¹⁴ Pb	834.8	⁵⁴ Mn	1620.5	^{212}Bi	427.9	^{125}Sb	950	^{40}K (SE)
427.8	^{125}Sb	860.6	²⁰⁸ Tl	1630.6	^{228}Ac	434.2	$^{108\mathrm{m}}\mathrm{Ag}$	969	$^{228}\mathrm{Ac}$
433.9	$^{108\mathrm{m}}\mathrm{Ag}$	911.2	²²⁸ Ac	1729.6	^{214}Bi	511	e+e- annihilation	1120.3	214 Bi
463	²²⁸ Ac	934.1	²¹⁴ Bi	1764.5	^{214}Bi	583.2	208 Tl	1173.2	⁶⁰ Co
511	e+e- annihilation	964	²²⁸ Ac	1847.4	^{214}Bi	609.3	$^{214}\mathrm{Bi}$	1332.5	⁶⁰ Co
583.2	208 Tl	969	²²⁸ Ac	2103.5	208 Tl (SE)	722.9	^{110m} Ag	1592.5	208 Tl (DE)
609.3	$^{214}\mathrm{Bi}$	1001	^{234m} Pa	2118.5	^{214}Bi	768 4	^{214}Bi	1764 5	^{214}Bi
614.3	$^{108\mathrm{m}}\mathrm{Ag}$	1063.6	²⁰⁷ Bi	2204.1	^{214}Bi	794 9	228 Ac	2103.5	208TI (SE)
657.7	$^{110\mathrm{m}}\mathrm{Ag}$	1120.3	²¹⁴ Bi	2316.5	^{147}Sm	151.5		2100.0	
665.4	^{214}Bi	1173.2	⁶⁰ Co	2447.9	^{214}Bi				
722.9	$^{108\mathrm{m}}\mathrm{Ag}$	1238.1	²¹⁴ Bi	2505.6	60 Co				
727.3	²¹² Bi	1332.5	⁶⁰ Co	2614.5	208 Tl				

Results: contamination table example

Component	Contaminant	Best fit [Bq/kg]	Binning	Threshold	Single Dataset	with90Sr	SingleFloor	SingleTower
Crystals	$^{110m}\mathrm{Ag}$	$(3.74\pm0.48)\times10^{-7}$	+1.35		$^{+1.55}_{-1.89}$	-1.39	$^{+1.22}_{-0.86}$	+1.12 (*)
	¹²⁵ Sb	$(2.98 \pm 0.11) \times 10^{-6}$	+0.34	+0.17	+0.34		$^{+0.44}_{-0.54}$	$^{+2.15}_{-1.41}$
	$^{147}\mathrm{Sm}$	$(9.47 \pm 1.18) \times 10^{-9}$			+6.84 -2.60		$^{+2.76}_{-2.53}$	$^{+5.42}_{-6.06}$
	¹⁹⁰ Pt	$(1.94 \pm 0.01) \times 10^{-6}$	-0.02		$^{+0.03}_{-0.04}$		$^{+0.15}_{-0.13}$	$^{+0.24}_{-0.26}$
	²¹⁰ Pb	$(1.55\pm 0.02)\times 10^{-6}$	-0.42		+0.26		+0.24 -0.41	$^{+0.53}_{-1.55}$
	$^{226}Ra - ^{210}Pb$	$<4.87\times10^{-10}$						
	$^{228}{ m Ra}-^{208}{ m Pb}$	$(1.28\pm 0.04)\times 10^{-7}$	-0.10		-0.23		$^{+0.18}_{-0.46}$	$^{+0.16}_{-1.27}$ (*)
	²³⁰ Th only	$(4.17 \pm 0.07) \times 10^{-7}$	-1.15		-0.53		$+0.27 \\ -0.65$	-1.51
	$^{231}{\rm Pa} - ^{207}{\rm Pb}$	$<1.36\times10^{-9}$						
	²³² Th only	$(2.79 \pm 0.05) \times 10^{-7}$	-0.12		-0.20		$^{+0.87}_{-0.44}$	$^{+0.49}_{-1.45}$ (*)
	$^{235}\mathrm{U}-^{231}\mathrm{Pa}$	$(5.54 \pm 0.43) \times 10^{-8}$	-0.84		$^{+1.12}_{-1.75}$		$^{+1.26}_{-0.81}$	$^{+0.87}_{-2.62}$
	$^{238}\mathrm{U}-^{230}\mathrm{Th}$	$< 9.31 imes 10^{-10}$						
	$^{130}\text{Te} - 2\nu\beta\beta$	$(2.97 \pm 0.01) \times 10^{-5}$	-0.02		$^{+0.09}_{-0.07}$	-0.08	$+0.03 \\ -0.05$	+0.05
	⁴⁰ K	$(4.39 \pm 0.12) \times 10^{-6}$	+0.32	$^{+0.16}_{-0.32}$	$^{+0.67}_{-0.96}$	+0.26	+0.22 -1.07	+2.43
	⁶⁰ Co	$(3.25 \pm 1.51) \times 10^{-8}$	+3.92		+3.10 (*)		+10.73	+21.45

Big Collaboration effort

28 LMOs crystal

- Testing different producers
- Testing different growing techniques (Bridgman, Czochralski)
- Testing different thermistor glues (Araldite, UV, ...)

30 Ge LDs

G S

- Testing different *coatings* (sputtering, evaporation)
- Characterization and validation of a new DAQ

CUPID R&D: tower construction

CUPID R&D: results

ACCESS white paper

G

Abstract The ACCESS (Array of Cryogenic Calorimeters to Evaluate Spectral Shapes) project aims to establish a novel technique to perform precision measurements of forbidden β -decays, which can serve as an important benchmark for nuclear physics calculations and represent a significant background in astroparticle physics experiments. ACCESS will operate a pilot array of cryogenic calorimeters based on natural and doped crystals containing β -emitting radionuclides. In this way, natural (e.g. ¹¹³Cd and ¹¹⁵In) and synthetic isotopes (e.g. ⁹⁹Tc) will be simultaneously measured with a common experimental technique. The array will also include further crystals optimised to disentangle the different background sources, thus reducing the systematic uncertainty. In this paper, we give an overview of the ACCESS research program, discussing a detector design study and promising results of ¹¹⁵In.

CUORE

Model of the CUORE data and background shape studies - Stefano Ghislandi

ACCESS¹¹⁵In results

Param.	shell	тqрт	ibfm	6.0 1 114
gA (best)	0.96	0.96	1.17	1σ band + ibfm2 + shell + mqpm
gA (matched)	0.97	0.99	1.16	5.0
sNME (best)	1.65	5 (limit)	0.95	
sNME (matched)	1.10	1.45	1.10	
T (best)	[5.18,5.30]	[5.42,5.57]	[5.22,5.35]	5.2 Previous measurement
T (matched)	[5.09,5.20]	[5.49,5.60]	[5.23,5.34]	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

1.8

rements

S

^{180m}Ta search

Study of the longest-live metastable state presently known with ULB-HPGe detectors @ LNGS

- Low level analysis, optimizations
- Simultaneous fit of different expected features → no decay found, limit 90% C.I.

RES-NOVA

Background characterization and shielding design for the future RES-NOVA experiment

CUORE

39

Model of the CUORE data and background shape studies - Stefano Ghislandi