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Introduction
From CUORE to CUPID

● CUORE:
➢ search for 0νββ decay of 130Te with 988 TeO2 crystals 

operated at ～15 mK as low-temperature calorimeters;

➢ sensitivity to 0νββ decay:

● Improve S0ν by reducing the background index:
➢ 90% of CUORE bkg in ROI is due to degraded-α 

↓
CUPID: α-rejection with heat-light double read-out 

     from scintillating crystals;

➢ first CUPID full-tower:
■ new structure to reduce contaminated material near detectors; 
■ test performance of crystals and light detectors;

➢ SURFACE:
■ novel bolometric detectors for

surface α-contamination screening.

Exposure = ββ-isotope mass ⋅ measure time
Background index in the ROI: Qββ(130Te) = 2528 keV
Energy resolution in the ROI

Qββ

α events

β/γ events
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Introduction
Marine microseisms

Simone Quitadamo  -  Impact of marine microseisms in the Mediterranean Sea on the performance of CUORE detectors

● Can we improve S0ν by improving the CUORE energy resolution?

● CUORE is enclosed  in a complex suspension system 
to decouple detectors from external vibrations.

● Energy resolution can be affected by low-frequency noise (≲ 2 Hz).

● Marine microseisms (faint seisms caused by sea waves motion 
and marine storms) are a source of sub-Hz noise.

● Study the impact of marine microseisms-induced vibrations on CUORE:

1) impact on the low-frequency noise;

2) impact on the baseline resolution during storms;

3) correlation between CUORE energy resolution and 
seasonal modulation of Mediterranean Sea activity.

https://en.wikipedia.org/wiki/Earth_tremor


1) Study of low-frequency noise
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Copernicus and Seismometers
Data selection

● Multi-detector approach:
➢ Copernicus Marine Service: E.U. program for marine monitoring (satellites + in-situ data)

➢ seismometers: to detect and reject earthquakes;

➢ CUORE low-temperature detectors.

● Copernicus Marine Service:
➢ select data in two regions of Adriatic and Tyrrhenian Seas;

➢ in each sea region evaluate the hourly average of VHM0:
(average of the highest ⅓ of recorded wave heights);

➢ identify storms from the time profile of VHM0.

● Seismometers:
➢ seismometers detect vibrational noise from both 

earthquakes and marine microseisms; 

➢ identify earthquakes and reject them from the analysis.

Simone Quitadamo  -  Impact of marine microseisms in the Mediterranean Sea on the performance of CUORE detectors

～ 53 ✕ 222 km2

～ 108 ✕ 222 km2
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Bolometric analysis
Data selection and ANPS production

● CUORE:

➢ increase events time window from (standard) 10 s to 60 s 
↓

higher sensitivity to low-frequency noise components after FFT;

➢ data selection:
■ select noise events (no signals);
■ reject time periods with earthquakes and detectors instabilities;

➢ for each detector, apply FFT to produce noise power spectra (ANPS) averaged on ～12 h of data;

➢ low-frequency noise (ν < 1.4 Hz):
■ peaks position is stable over time;
■ peaks position is stable along CUORE columns;
■ peaks amplitude changes over time

↓
low-frequency noise is time-dependent.

Simone Quitadamo  -  Impact of marine microseisms in the Mediterranean Sea on the performance of CUORE detectors
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Time evolution of low-frequency noise
 Analysis

● For each detector, integrate the ANPS in several frequency intervals
↓

evaluate the power of the noise Pν for each frequency component ν.

● How does the low-frequency noise change in time w.r.t. the marine conditions?

➢ for each detector and for each frequency component ν, evaluate

as the the noise power ratio between each 12 h-time period and a reference period
with quiet marine condition;

➢ define three geometric subsets of CUORE:
■ upper five floors;
■ central four floors;
■ lower four floors.
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Time evolution of low-frequency noise
Results

● Time evolution of Rν, averaged on each of the three CUORE geometric subsets:

● Comments:
➢ CUORE low-frequency noise increases during a storm 

identified by Copernicus.
➢ noise components at ～0.6 Hz vary the most over time;
➢ noise components ≳ 0.9 Hz are mostly unaffected.
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Noise sensitivity to marine microseisms
Analysis

● Goal: for each frequency component and  geometric subset, evaluate the sensitivity of noise power 
Pν to marine microseisms.

● Sea waves intensity:
➢ integral over each 12 h-time period of the VHM0 time profiles of Adriatic and Tyrrhenian Seas:

● For each frequency - geometric subset configuration, <Pν> and IS are linearly correlated
↓

➢ the relative angular coefficient mν
rel = mν / min(<Pν>) quantify the sensitivity of the noise 

power of a frequency component w.r.t. changes of sea wave intensity.

Simone Quitadamo  -  Impact of marine microseisms in the Mediterranean Sea on the performance of CUORE detectors
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Noise sensitivity to marine microseisms
Results

● For each geometric subset, compare the sensitivity mν
rel 

for different frequency components of the noise:

➢ the noise sensitivity to marine microseisms decreases 
along the CUORE towers from top floors to bottom floors;

➢ noise components above ～0.9 Hz are mostly unaffected;

➢ the most sensitive noise components to marine 
microseisms-induced noise are at ～0.6 Hz

↓

hypothesis: marine microseisms-induced vibrations excite a resonance frequency of the
CUORE suspension system at ～0.6 Hz, enhancing the corresponding frequency components 
in the detectors noise.

Simone Quitadamo  -  Impact of marine microseisms in the Mediterranean Sea on the performance of CUORE detectors



2) Study of baseline resolution during storms
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Baseline resolution and marine microseisms 
Correlations

● Baseline resolution: contribution to the detector energy resolution due to noise-induced 
        baseline fluctuations.

↓
Is the baseline resolution of CUORE detectors affected by marine microseisms-induced noise?

● CUORE is stably taking data since 2019
↓

select six stormy time periods over two years (from September 2020 to November 2022).

● For each CUORE geometric subset, evaluate average baseline resolution <FWHMbaseline> 
over 12 h-time intervals for each stormy period.

↓
<FWHMbaseline> and sea waves intensity IS are linearly correlated.

Simone Quitadamo  -  Impact of marine microseisms in the Mediterranean Sea on the performance of CUORE detectors



Baseline resolution and marine microseisms 
Results
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● The angular coefficient mbaseline quantify the <FWHMbaseline> sensitivity w.r.t changes of 
sea waves intensity:

➢ the baseline resolution is affected by storms;

➢ within each geometric subset, the baseline sensitivity is stable over two years of data taking;

➢ the baseline of detectors in the upper five floors is the most sensitive to marine 
microseisms-induced noise.

Simone Quitadamo  -  Impact of marine microseisms in the Mediterranean Sea on the performance of CUORE detectors

Geometric 
subset

<m> (keV/(m h))

Upper 5 
floors 0.026 ± 0.002

Central 4 
floors 0.014 ± 0.001

Lower 4 
floors 0.015 ± 0.001



3) Seasonal modulation of energy resolution 
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Seasonal modulation
Analysis

● The Mediterranean Sea shows a seasonal modulated activity, being more quiet during summer 
and more stormy during winter.

● CUORE is stably taking data since 2019
↓

is the baseline/peaks energy resolution of CUORE affected by the marine seasonal modulation?

● Analysis procedure:

➢ 4 yr of CUORE data (2 t⋅yr exposure): April 2019 → April 2023;

➢ evaluate baseline/peaks resolution for each dataset (～2 months) and each geometric subset;

➢ perform sinusoidal fit of Copernicus data (<VHM0> over 2 months):

➢ perform simultaneous fit of CUORE data (T, φ in common): 
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Seasonal modulation of baseline resolution

● Comments:
➢ both Copernicus and CUORE data show seasonal modulation, in phase within each others: 

minimum in summer-time, maximum in winter-time;

➢ ～1 yr oscillation periods evaluated from Copernicus and CUORE data are consistent;

➢ better FWHMbaseline w.r.t. sinusoidal modulation in Δt = 13 → 28  months (Febr. 2020→April 2021)
(due to different suspension system configuration?)

➢ baseline in upper five floors is factor ～1.5-2 more sensitive w.r.t. central/lower floors.

Sea upper 5 
floors

central 4 
floors

lower 4 
floors

A (0.63 ± 0.05)
m 

(0.42 ± 0.06) 
keV

(0.20 ± 0.06) 
keV

(0.28 ± 0.06) 
keV

T (11.8 ± 0.2) 
months

(11.6 ± 0.2) months

 φ 1.2 ± 0.2 1.4 ± 0.2

c (1.65 ± 0.04) 
m

(3.67 ± 0.04) 
keV

(2.34 ± 0.04) 
keV

(2.59 ± 0.04) 
keV

χ2
red 0.73 1.16



Seasonal modulation of baseline resolution

● Comments:
➢ both Copernicus and CUORE data show seasonal modulation, in phase within each others: 

minimum in summer-time, maximum in winter-time;

➢ ～1 yr oscillation periods evaluated from Copernicus and CUORE data are consistent;

➢ FWHM(208Tl, 2615 keV): 
■ average value ～7.6 keV;
■ seasonal oscillation ～3 keV (summer minumum ～6 keV, winter maximum ～9 keV)

↓
  ～50% FWHM summer-winter variation  →  same effect at 0νββ decay ROI = 2528 keV.

Sea 208Tl      
(2615 keV)

40K         
(1460 keV)

60Co         
(1173 keV)

A (0.63 ± 0.05)
m 

(1.21 ± 0.23) 
keV

(0.66 ± 0.07) 
keV

(0.66 ± 0.14) 
keV

T (11.8 ± 0.2) 
months

(11.6 ± 0.1) months

 φ 1.2 ± 0.2 1.2 ± 0.1

c (1.65 ± 0.04) 
m

(7.58 ± 0.15) 
keV

(6.92 ± 0.05) 
keV

(6.60 ± 0.09) 
keV

χ2
red 0.73 1.97
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Conclusions

● CUORE detectors are sensitive to the vibrational noise induced by marine microseisms 
in the Mediterranean Sea:

➢ excitation of a ～0.6 Hz resonance in the CUORE suspension system;

➢ sensitive to both transient storms and seasonal modulation of sea activity;

➢ FWHM(208Tl, 2615 keV) varies by 50% from summer to winter
↓

affect the sensitivity to 0νββ decay at Qββ(130Te) = 2528 keV

↓
improvements in decoupling/suspension systems for CUPID.

Simone Quitadamo  -  Impact of marine microseisms in the Mediterranean Sea on the performance of CUORE detectors

Thanks for your attention!

Energy resolution
in the ROI



Backup slides
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Low-frequency noise
Shift of noise peaks

● By comparing ANPS of different datasets:
➢ the 0.6 Hz-doublet shifts between different datasets;
➢ the shift of 0.6 Hz-doublet is consistent for all ds;
➢ the position of the other peaks is not changed.

Peak center (Hz)
(ds3090-3096-3117)
(ds3105-3120-3123)

Integration range (Hz)
(ds3090-3096-3117)
(ds3105-3120-3123)

0.267 [0.22, 0.32]

0.400 [0.35, 0.45]

0.500 [0.47, 0.53]

0.588 → 0.580 [0.550, 0.615] → [0.54, 0.60]

0.650 → 0.630 [0.62, 0.68] → [0.60, 0.67]

0.835 [0.80, 0.85]

0.885 [0.85, 0.92]

0.950 [0.935, 0.965]

1.10 → 1.05 [1.07, 1.12] → [1.03, 1.09]

1.17 [1.13, 1.19]

1.40 (PT-induced) [1.30, 1.50]

Simone Quitadamo  -  Impact of marine microseisms in the Mediterranean Sea on the performance of CUORE detectors

zoom in

Peaks shift

ch 13
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Low-frequency noise
Tests on minus-k

● Hypothesis: shift of 0.6 Hz-doublet due to change of minus-k suspension configuration.

● Compare selected data with reference runs of known minus-k config:
➢ bkg run acquired after unlocking minus-k in August 2021;
➢ test run with partially-locked minus-k (June 2022);
➢ test run with all the three minus-k locked (June 2022).

● Results:

➢ ds3090-3096-3117: minus-k partially-locked (1/3);

➢ ds3105-3120-3123: all three minus-k unlocked;

➢ starting from unlocked minus-k, locking one 
minus-k causes the 0.6 Hz-peak doublet to shift 
toward higher frequencies;

➢ starting from unlocked minus-k, locking all 
minus-k causes the 0.6 Hz and 0.8 Hz-peak 
doublets to shift toward lower frequencies.

↓
The comparison with reference runs allows to 
reconstruct the minus-k config along datasets.

Simone Quitadamo  -  Impact of marine microseisms in the Mediterranean Sea on the performance of CUORE detectors

ch 13
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Noise sensitivity to marine microseisms
Compare different datasets

● Compare mν
rel = mν / min(<Pν>) vs frequency for each ds - frequency - geometric subset 

configuration: 

● Comments:
➢ the sensitivity of noise power variations w.r.t. sea waves intensity 

decreases along the towers from top to bottom, and is strongly 
damped from upper five floors to central-lower floors;

➢ the 0.6 Hz-doublet is the most sensitive to wave intensity
variations: the first peak is more sensitive w.r.t. the second peak;

➢ the two peaks of 0.8 Hz-doublet are mostly equally sensitive;

➢ peaks ≳ 0.935 Hz are mostly unaffected (including the 1.4 Hz peak);

➢ hints for identifying the 0.6 Hz as the CUORE vibration mode.

Partially-locked minus-k
Unlocked minus-k.

Simone Quitadamo  -  Impact of marine microseisms in the Mediterranean Sea on the performance of CUORE detectors
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Baseline resolution vs Sea waves intensity
ds3123

● Why is <FWHMbaseline> systematically higher in ds3123?

● Plot <FWHMbaseline> vs sea waves intensity:

➢ include runs in ds3123 during earthquakes swarm;
➢ for runs in ds3123, add time cuts to reject earthquakes.

● Comments:

➢ <FWHMbaseline> drops for runs during earthquakes swarm (at low IS)
↓

 compatible with  ds3105-3117-3120 (@ Tbase ～ 15 mK);

➢ runs after earthquakes swarm still have a systematically higher <FWHMbaseline>
↓

additional source of noise not rejected with time cuts  →  low-intensity seismic activity?

Earthquakes swarm 
in Pesaro-Urbino



Seasonal modulation of the energy resolution
Global fit of CUORE and Copernicus data

Sea 208Tl      
(2615 keV)

40K         
(1460 keV)

60Co         
(1173 keV)

A (0.61 ± 0.03)
m 

(1.38 ± 0.09) 
keV

(0.51 ± 0.07) 
keV

(0.52 ± 0.14) 
keV

T (11.7 ± 0.1) months

 φ 1.1 ± 0.1

c (1.61 ± 0.03) 
m

(7.57 ± 0.14) 
keV

(6.88 ± 0.05) 
keV

(6.58 ± 0.09) 
keV

χ2
red 1.94

Sea upper 5 
floors

central 4 
floors

lower 4 
floors

A (0.61 ± 0.06)
m 

(0.35 ± 0.06) 
keV

(0.17 ± 0.06) 
keV

(0.24 ± 0.06) 
keV

T (11.8 ± 0.1) months

 φ 1.2 ± 0.1

c (1.60 ± 0.03) 
m

(3.66 ± 0.04) 
keV

(2.33 ± 0.04) 
keV

(2.58 ± 0.04) 
keV

χ2
red 1.05
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Amplitude of seasonal modulation

● The amplitude of the seasonal modulation appears to be energy-dependent.

➢ plot the oscillation amplitude A, from the simultaneous fit of CUORE upper five floors data, 
as a function of the energy of baseline (0 keV) and physics peaks (60Co, 40K, 208Tl);

➢ perform linear and quadratic fit:

● Why the seasonal modulation amplitude is energy-dependent? Still unknown.

Simone Quitadamo  -  Impact of marine microseisms in the Mediterranean Sea on the performance of CUORE detectors



26

Seasonal variation of 0νββ decay sensitivity

● CUORE 0νββ decay sensitivity can vary due to the seasonal modulation of the sea activity:

● CUORE upper five floors are more sensitive to season modulation
↓

S0ν can vary between two extreme cases:
1) all the detectors are equally sensitive to sea activity → same energy resolution modulation;
2) central-lower floors are unaffected by sea activity → their resolution is constant over time;

● Case 1: equally-sensitive detectors

➢ 208Tl resolution at summer minimum sea activity: FWHMS(208Tl)～6 keV;
➢ 208Tl resolution at winter maximum sea activity: FWHMW(208Tl)～9 keV;

Simone Quitadamo  -  Impact of marine microseisms in the Mediterranean Sea on the performance of CUORE detectors

Energy resolution in the ROI (affected by 
seasonal modulation of marine activity)
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Seasonal variation of 0νββ decay sensitivity

● Case 2:  central-lower floors detectors unaffected

➢ perform 5000 MC to estimate 208Tl resolution in summer and winter:
■ for each detector, generate 1000 events at 208Tl peak with gaussian distribution;
■ for upper floors: FWHMS

MC(208Tl)～6 keV  ,  FWHMW
MC(208Tl)～9 keV;

■ for central-lower floors: FWHMS
MC(208Tl) = FWHMW

MC(208Tl) ～7.6 keV;

➢ for each MC, sum the summer/winter energy distributions
↓

evaluate the average all-floors energy resolution 
in summer/winter among all the MC:
FWHMS

MC(208Tl)～7.02 keV
FWHMW

MC(208Tl)～8.17 keV

● Scale the energy resolutions from E(208Tl) to Qββ(130Te):
➢ Case 1: FWHMS(Qββ)～5.80 keV ,   FWHMW(Qββ)～8.70 keV;
➢ Case 2: FWHMS

MC(208Tl)～6.79 keV ,   FWHMW
MC(208Tl)～7.90 keV.

● Summer-winter 0νββ decay sensitivity variation:

Simone Quitadamo  -  Impact of marine microseisms in the Mediterranean Sea on the performance of CUORE detectors
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Mechanical fuses

● Mechanical fuses:
➢ beam elements connecting CUORE concrete walls with ground, installed to block oscillation of 

the structure;
➢ supposed to jump away from their housing in case of high-intensity earthquakes, isolating the 

structure of CUORE from the environment for structural safety;
➢ they are probably the main mechanical link between the CUORE structure and the ground → 

 → they can possibly be a major path for external vibrations to propagate to the CUORE 
structure and detectors.

Simone Quitadamo  -  Impact of the mechanical fuses removal on the performance of CUORE detectors


