

Impact of marine microseisms in the Mediterranean Sea on the performance of CUORE detectors

Simone Quitadamo

Supervisors: Carlo Bucci (LNGS) Andrei Puiu (LNGS)

24th October 2023

Introduction From CUORE to CUPID

- CUORE:
 - > search for $0\nu\beta\beta$ decay of ¹³⁰Te with 988 TeO₂ crystals operated at ~15 mK as low-temperature calorimeters;
 - > sensitivity to $0\nu\beta\beta$ decay:

Exposure = \beta\beta-isotope mass · measure time Background index in the ROI: $Q_{\beta\beta}(^{130}\text{Te}) = 2528 \text{ keV}$ Energy resolution in the ROI

- Improve *S*⁰ by reducing the background index:
 - > 90% of CUORE bkg in ROI is due to degraded- α

 \downarrow

CUPID: α -rejection with heat-light double read-out from scintillating crystals;

- new structure to reduce contaminated material near detectors;
- test performance of crystals and light detectors;
- > SURFACE: _____
 - novel bolometric detectors for surface *α*-contamination screening.

Introduction

Marine microseisms

- Can we improve $S^{0\nu}$ by improving the CUORE energy resolution?
- CUORE is enclosed in a complex suspension system to decouple detectors from external vibrations.
- Energy resolution can be affected by low-frequency noise (\$ 2 Hz).
- Marine microseisms (faint seisms caused by sea waves motion and marine storms) are a source of sub-Hz noise.
- Study the impact of marine microseisms-induced vibrations on CUORE:
 - 1) impact on the low-frequency noise;
 - 2) impact on the baseline resolution during storms;
 - **3)** correlation between CUORE energy resolution and seasonal modulation of Mediterranean Sea activity.

1) Study of low-frequency noise

Copernicus and Seismometers Data selection

- Multi-detector approach:
 - **Copernicus Marine Service:** E.U. program for marine monitoring (satellites + in-situ data)
 - seismometers: to detect and reject earthquakes;
 - **CUORE** low-temperature detectors.
- Copernicus Marine Service:
 - select data in two regions of Adriatic and Tyrrhenian Seas;
 - in each sea region evaluate the hourly average of VHM0: (average of the highest ¹/₃ of recorded wave heights);
 - identify storms from the time profile of VHM0.
- Seismometers:
 - seismometers detect vibrational noise from both earthquakes and marine microseisms;
 - identify earthquakes and reject them from the analysis.

Bolometric analysis Data selection and ANPS production

- CUORE:
 - increase events time window from (standard) 10 s to 60 s

 higher sensitivity to low-frequency noise components after FFT;
 - data selection:
 - select noise events (no signals);
 - reject time periods with earthquakes and detectors instabilities;
 - \succ for each detector, apply FFT to produce noise power spectra (ANPS) averaged on \sim 12 h of data;
 - > low-frequency noise ($\nu < 1.4$ Hz):
 - peaks position is stable over time;
 - peaks position is stable along CUORE columns;
 - peaks amplitude changes over time ψ

low-frequency noise is time-dependent.

3000

500

ΔΤ

Time evolution of low-frequency noise Analysis

- For each detector, integrate the ANPS in several frequency intervals ψ evaluate the power of the noise P_{ν} for each frequency component ν .
- How does the low-frequency noise change in time w.r.t. the marine conditions?
 - ➤ for each detector and for each frequency component *v*, evaluate $R_{\nu} = \frac{P_{i,\nu}}{P_{ref,\nu}}$ as the the noise power ratio between each 12 h-time period and a reference period with quiet marine condition;
 - define three geometric subsets of CUORE:
 - upper five floors; _____
 - central four floors;
 - lower four floors.

Time evolution of low-frequency noise Results

• Time evolution of R_{y} , averaged on each of the three CUORE geometric subsets:

Noise sensitivity to marine microseisms Analysis

- Goal: for each frequency component and geometric subset, evaluate the sensitivity of noise power P_y to marine microseisms.
- Sea waves intensity:
 - integral over each 12 h-time period of the VHM0 time profiles of Adriatic and Tyrrhenian Seas:
 $I_S = \int_{t_i}^{t_f} [VHM0_A(t) + VHM0_T(t)] dt$
- For each frequency geometric subset configuration, P_v and I_s are linearly correlated \downarrow
 - > the relative angular coefficient $m_v^{rel} = m_v / \min(\langle P_v \rangle)$ quantify the sensitivity of the noise power of a frequency component w.r.t. changes of sea wave intensity.

0.09

0.06

0.05

0.04

0.03

A 0.08

(m h)

upper five floors

central four floors

lower four floors

Noise sensitivity to marine microseisms Results

- For each geometric subset, compare the sensitivity m_v^{rel} for different frequency components of the noise:
 - the noise sensitivity to marine microseisms decreases along the CUORE towers from top floors to bottom floors;
 - > noise components above \sim 0.9 Hz are mostly unaffected;
 - ➤ the most sensitive noise components to marine microseisms-induced noise are at ~0.6 Hz

 \downarrow

hypothesis: marine microseisms-induced vibrations excite a resonance frequency of the CUORE suspension system at \sim 0.6 Hz, enhancing the corresponding frequency components in the detectors noise.

2) Study of baseline resolution during storms

Baseline resolution and marine microseisms Correlations

• Baseline resolution: contribution to the detector energy resolution due to noise-induced baseline fluctuations.

Is the baseline resolution of CUORE detectors affected by marine microseisms-induced noise?

- For each CUORE geometric subset, evaluate average baseline resolution <FWHM_{baseline}> over 12 h-time intervals for each stormy period.

<FWHM_{baseline} > and sea waves intensity *I_s* are linearly correlated.

Simone Quitadamo - Impact of marine microseisms in the Mediterranean Sea on the performance of CUORE detectors

Baseline resolution and marine microseisms Results

- The angular coefficient m_{baseline} quantify the <FWHM_{baseline} > sensitivity w.r.t changes of sea waves intensity:
 - the baseline resolution is affected by storms;
 - > within each geometric subset, the baseline sensitivity is stable over two years of data taking;
 - the baseline of detectors in the upper five floors is the most sensitive to marine microseisms-induced noise.

Geometric subset	<m> (keV/(m h))</m>
Upper 5 floors	0.026 ± 0.002
Central 4 floors	0.014 ± 0.001
Lower 4 floors	0.015 ± 0.001

3) Seasonal modulation of energy resolution

Seasonal modulation

Analysis

- The Mediterranean Sea shows a seasonal modulated activity, being more quiet during summer and more stormy during winter.
- CUORE is stably taking data since 2019
 ↓
 is the baseline/peaks energy resolution of CUORE affected by the marine seasonal modulation?
 - Analysis procedure:
 - ▶ 4 yr of CUORE data (2 t \cdot yr exposure): April 2019 → April 2023;
 - \succ evaluate baseline/peaks resolution for each dataset (\sim 2 months) and each geometric subset;
 - > perform sinusoidal fit of Copernicus data (<VHM0> over 2 months):

$$f(t) = A \sin(rac{2\pi}{T}t + \phi) + c$$

> perform simultaneous fit of CUORE data (T, ϕ in common):

$$\begin{cases} \mathcal{L} = \prod_{j,i} \frac{1}{\sqrt{2\pi\sigma_{j,i}}} \exp\left[-\frac{(y_{j,i}-\mu_{j,i})^2}{2\sigma_{j,i}^2}\right] \\ \mu_{j,i} = \frac{1}{\Delta t_{j,i}} \int_{t_{j,i}^{in}}^{t_{j,i}^{in}+\Delta t_{j,i}} \left[A_j \sin\left(\frac{2\pi}{T}+\phi\right)+c_j\right] dt \end{cases}$$

Seasonal modulation of baseline resolution

- Comments:
 - both Copernicus and CUORE data show seasonal modulation, in phase within each others: minimum in summer-time, maximum in winter-time;
 - \sim \sim 1 yr oscillation periods evaluated from Copernicus and CUORE data are consistent;
 - better FWHM_{baseline} w.r.t. sinusoidal modulation in Δt = 13 → 28 months (Febr. 2020→April 2021) (due to different suspension system configuration?)
 - > baseline in upper five floors is factor \sim 1.5-2 more sensitive w.r.t. central/lower floors.

Seasonal modulation of baseline resolution

- Comments:
 - both Copernicus and CUORE data show seasonal modulation, in phase within each others: minimum in summer-time, maximum in winter-time;
 - \sim \sim 1 yr oscillation periods evaluated from Copernicus and CUORE data are consistent;
 - FWHM(²⁰⁸Tl, 2615 keV):
 - average value ~7.6 keV;
 - seasonal oscillation ~3 keV (summer minumum ~6 keV, winter maximum ~9 keV)
 ↓

~50% FWHM summer-winter variation \rightarrow same effect at $0\nu\beta\beta$ decay ROI = 2528 keV.

Conclusions

- CUORE detectors are sensitive to the vibrational noise induced by marine microseisms in the Mediterranean Sea:
 - \succ excitation of a \sim 0.6 Hz resonance in the CUORE suspension system;
 - sensitive to both transient storms and seasonal modulation of sea activity;
 - > FWHM(²⁰⁸Tl, 2615 keV) varies by 50% from summer to winter \downarrow affect the sensitivity to $0\nu\beta\beta$ decay at $Q_{\beta\beta}$ (¹³⁰Te) = 2528 keV

$$S^{0
u} \propto \sqrt{rac{MT}{B}}$$
 Energy resolution in the ROI

improvements in decoupling/suspension systems for CUPID.

Thanks for your attention!

Backup slides

Low-frequency noise Shift of noise peaks

- By comparing ANPS of different datasets:
 - the 0.6 Hz-doublet shifts between different datasets; \succ
 - the shift of 0.6 Hz-doublet is consistent for all ds;
 - the position of the other peaks is not changed. >

Peak center (Hz) (ds3090-3096-3117) (ds3105-3120-3123)	Integration range (Hz) (ds3090-3096-3117) (ds3105-3120-3123)	
0.267	[0.22, 0.32]	
0.400	[0.35, 0.45]	
0.500	[0.47, 0.53]	
0.588 → 0.580	[0.550, 0.615] → [0.54, 0.60]	
0.650 → 0.630	[0.62, 0.68] → [0.60, 0.67]	
0.835	[0.80, 0.85]	
0.885	[0.85, 0.92]	
0.950	[0.935, 0.965]	
1.10 → 1.05	[1.07, 1.12] → [1.03, 1.09]	
1.17	[1.13, 1.19]	
1.40 (PT-induced)	[1.30, 1.50]	

Simone Quitadamo - Impact of marine microseisms in the Mediterranean Sea on the performance of CUORE detectors

0.9

Low-frequency noise Tests on minus-k

- Hypothesis: shift of 0.6 Hz-doublet due to change of minus-k suspension configuration.
- Compare selected data with reference runs of known minus-k config:
 - bkg run acquired after unlocking minus-k in August 2021;
 - test run with partially-locked minus-k (June 2022);
 - test run with all the three minus-k locked (June 2022).

- Results:
 - ds3090-3096-3117: minus-k partially-locked (1/3);
 - ds3105-3120-3123: all three minus-k unlocked;
 - starting from unlocked minus-k, locking one minus-k causes the 0.6 Hz-peak doublet to shift toward higher frequencies;
 - starting from unlocked minus-k, locking all minus-k causes the 0.6 Hz and 0.8 Hz-peak doublets to shift toward lower frequencies.

The comparison with reference runs allows to reconstruct the minus-k config along datasets.

Noise sensitivity to marine microseisms Compare different datasets

• Compare $m_v^{rel} = m_v / \min(\langle P_v \rangle)$ vs frequency for each ds - frequency - geometric subset

ds3123: Relative Average Noise Power Variation

- Partially-locked minus-k Unlocked minus-k.
 - Comments:
 - the sensitivity of noise power variations w.r.t. sea waves intensity decreases along the towers from top to bottom, and is strongly damped from upper five floors to central-lower floors;
 - the 0.6 Hz-doublet is the most sensitive to wave intensity variations: the first peak is more sensitive w.r.t. the second peak;
 - the two peaks of 0.8 Hz-doublet are mostly equally sensitive;
 - > peaks ≥ 0.935 Hz are mostly unaffected (including the 1.4 Hz peak);
 - hints for identifying the 0.6 Hz as the CUORE vibration mode.

Baseline resolution vs Sea waves intensity

ds3123

- Why is <FWHM_{baseline}> systematically higher in ds3123?
- Plot <FWHM_{baseline} > vs sea waves intensity:
 - include runs in ds3123 during earthquakes swarm;
 - for runs in ds3123, add time cuts to reject earthquakes.

Comments:

Second Structure Struc

➤ runs after earthquakes swarm still have a systematically higher <FWHM_{baseline}>
↓
additional source of noise not rejected with time cuts \rightarrow low-intensity seismic activity?

Seasonal modulation of the energy resolution Global fit of CUORE and Copernicus data

	Sea	upper 5 floors	central 4 floors	lower 4 floors	
A	(0.61 ± 0.06) m	(0.35 ± 0.06) keV	(0.17 ± 0.06) keV	(0.24 ± 0.06) keV	
т	(11.8 ± 0.1) months				
φ	1.2 ± 0.1				
с	(1.60 ± 0.03) m	(3.66 ± 0.04) keV	(2.33 ± 0.04) keV	(2.58 ± 0.04) keV	
X ² _{red}	1.05				
	Sea	²⁰⁸ TI (2615 keV)	⁴⁰ K (1460 keV)	⁶⁰ Co (1173 keV)	
A	(0.61 ± 0.03) m	(1.38 ± 0.09) keV	(0.51 ± 0.07) keV	(0.52 ± 0.14) keV	
т	(11.7 ± 0.1) months				
φ	1.1 ± 0.1				
С	(1.61 ± 0.03) m	(7.57 ± 0.14) keV	(6.88 ± 0.05) keV	(6.58 ± 0.09) keV	
X ² _{red}	1.94				

Amplitude of seasonal modulation

- The amplitude of the seasonal modulation appears to be energy-dependent.
 - plot the oscillation amplitude A, from the simultaneous fit of CUORE upper five floors data, as a function of the energy of baseline (0 keV) and physics peaks (⁶⁰Co, ⁴⁰K, ²⁰⁸Tl);
 - > perform linear and quadratic fit:

• Why the seasonal modulation amplitude is energy-dependent? Still unknown.

Seasonal variation of $0\nu\beta\beta$ decay sensitivity

CUORE $0\nu\beta\beta$ decay sensitivity can vary due to the seasonal modulation of the sea activity:

 $S^{0
u} \propto \sqrt{\frac{MT}{B\Delta}}$ Energy resolution in the ROI (affected by seasonal modulation of marine activity)

CUORE upper five floors are more sensitive to season modulation

 $S^{0\nu}$ can vary between two extreme cases:

- all the detectors are equally sensitive to sea activity \rightarrow same energy resolution modulation; 1)
- central-lower floors are unaffected by sea activity \rightarrow their resolution is constant over time; 2)
- **Case 1:** equally-sensitive detectors
 - 208 Tl resolution at summer minimum sea activity: FWHM_s(208 Tl) ${\sim}6$ keV; \succ
 - ²⁰⁸Tl resolution at winter maximum sea activity: FWHM_w(²⁰⁸Tl) \sim 9 keV;

Seasonal variation of $0\nu\beta\beta$ decay sensitivity

- Case 2: central-lower floors detectors unaffected
 - > perform 5000 MC to estimate ²⁰⁸Tl resolution in summer and winter:
 - for each detector, generate 1000 events at ²⁰⁸Tl peak with gaussian distribution;
 - for upper floors: $FWHM_s^{MC}(^{208}Tl) \sim 6 \text{ keV}$, $FWHM_w^{MC}(^{208}Tl) \sim 9 \text{ keV}$;
 - for central-lower floors: $FWHM_S^{MC}(^{208}Tl) = FWHM_W^{MC}(^{208}Tl) \sim 7.6 \text{ keV};$

• Scale the energy resolutions from $E(^{208}Tl)$ to $Q_{\beta\beta}(^{130}Te)$:

Case 1: FWHM_s($Q_{\beta\beta}$)~5.80 keV , FWHM_w($Q_{\beta\beta}$)~8.70 keV;

- **Case 2:** FWHM_S^{MC}(²⁰⁸Tl)~6.79 keV, FWHM_W^{MC}(²⁰⁸Tl)~7.90 keV.
- Summer-winter $0\nu\beta\beta$ decay sensitivity variation: $\sqrt{\frac{FWHM_W^{MC}(Q_{\beta\beta})}{FWHM_s^{MC}(Q_{\beta\beta})}} 1 < \frac{S_S^{0\nu} S_W^{0\nu}}{S_W^{0\nu}} < \sqrt{\frac{FWHM_W(Q_{\beta\beta})}{FWHM_s(Q_{\beta\beta})}} 1$

$$7.9\% < rac{S_S^{0
u} - S_W^{0
u}}{S_W^{0
u}} < 22.4\%$$

Mechanical fuses

- Mechanical fuses:
 - beam elements connecting CUORE concrete walls with ground, installed to block oscillation of the structure;
 - supposed to jump away from their housing in case of high-intensity earthquakes, isolating the structure of CUORE from the environment for structural safety;
 - ➤ they are probably the main mechanical link between the CUORE structure and the ground → → they can possibly be a major path for external vibrations to propagate to the CUORE structure and detectors.

Simone Quitadamo - Impact of the mechanical fuses removal on the performance of CUORE detectors