# Data Quality and **Cosmogenic Background Studies** for the *EGEND*, experiment

PhD Student: Michele Morella Supervisor: prof. Natalia Di Marco

AstroParticle Physics – XXXVI Cycle

3<sup>rd</sup> Year PhD Research Activities Report – 24/10/2023



# LEGEND Phases

LEGEND Mission: "The collaboration aims to develop a phased, <sup>76</sup>Ge based double beta decay experimental program with **discovery potential** at a halflife beyond 10<sup>28</sup> years, using existing resources as appropriate to expedite physics results."



## LEGEND-200

200 kg using GERDA infrastructure at LNGS Background Index\* Goal:  $< 2.5 \times 10^{-4}$  counts/(keV kg yr)  $T_{1/2}^{0\nu} > 10^{27}$  yr after 5 years of data

\*Background Index: number of counts around  $Q_{\beta\beta}$  divided by M, t and energy window

MAJORANA Demonstrator



completed in ~2020







# **Research Activities – Overview**

My research activities are divided between background analysis for LEGEND-200 and  $\mu$  related simulations for LEGEND-1000

## LEGEND-200:

- selection and validation of physics dataset (used for TAUP analysis)
- analysis of gamma lines rate in High Purity Ge (HPGe) detectors

## LEGEND-1000 @LNGS:

- study and design of instrumentation for Atmospheric Ar volume
- study of cosmogenically produced neutrons and their interactions
- study of radiogenic background and possibility of vetoing it

this talk

backup







# LEGEND-200: Event rates from $\gamma$ lines



# LEGEND-200: Design





# LEGEND-200: Design













# LEGEND-200: Status of the experiment

- October 2022: 142 kg of HPGe detectors installed (101 detectors)
- 130 kg usable for analysis (12 detectors off due to hardwares failures)

Dataset selected:

- data from March to May 2023
- first <u>LEGEND background results</u> presented
   @ the TAUP conference in Vienna
- next data release 90 kg·yr @Neutrino24

May/June 2024: hardware upgrade and installation of new HPGe detectors





BEGe







Coax

| osure<br>yr) | ICPC | BEGe | COAX | PPC |
|--------------|------|------|------|-----|
| .8           | 9.4  | 2.1  | 1.9  | 1.4 |



# LEGEND-200: Status of the experiment

- October 2022: 142 kg of HPGe detectors installed (101 detectors)
- 130 kg usable for analysis (12 detectors off due to hardwares failures)

Dataset selected:

- data from March to M
- first <u>LEGEND backgro</u> @ the TAUP conferen



next data release 90 kg·yr @Neutrino24

May/June 2024: hardware upgrade and installation of new HPGe detectors







## LEGEND

## My contribution: selection and validation of the dataset for physics analysis (+ python package for HPGe stability monitoring)

| osure<br>yr) | ICPC | BEGe | COAX | PPC |
|--------------|------|------|------|-----|
| 8.8          | 9.4  | 2.1  | 1.9  | 1.4 |



# Energy spectrum & features







# Energy spectrum & features



Question: "What about <sup>208</sup>TL and <sup>214</sup>Bi? Have you tried comparing with GERDA" Answers in the <u>BACKUP!</u>!









# Event rate by channel



# Event rate by channel



# Event rate by channel



# Event rate by string



# Event rate by string



# Event rate by position in string





# Event rate by position in string





# Plans for next (and last) year

## LEGEND-200:

- K results compatible with expectations
- no new  $\gamma$  lines wrt GERDA
- not enough statistics for clear conclusions on other gamma lines (yet)
  - rerun same analysis with ~90 kg·yr (as GERDA Phase II)
  - compare with GERDA (very preliminary in the backup)



 $\Rightarrow$  use LEGEND-200 as prototype to study  $\mu$ -induced bkg for LEGEND-1000 @LNGS

# LEGEND-1000\*: Atmospheric Ar Instrumentation

\*discussion valid for the LNGS design

# LEGEND-1000: *µ*-induced background





# LEGEND-1000: $\mu$ -induced background





# LEGEND-1000: $\mu$ -induced background





# LEGEND-1000: $\mu$ -induced background







# LEGEND-1000: LNGS Design



counts/(keV·kg·yr)



# LEGEND-1000: Atmospheric Argon Instrumentation

Install (cost-effective) instrumentation on neutron moderator to further improve tagging of  $\mu$ -induced background

Options considered:

Baseline. Light guides on moderator panel & SiPM readout on left/right sides

- 1. Entire PMMA panel as single light guide
- 2.Optical fibers inside PMMA panel to improve light collection
- 3.SiPM tiles on the PMMA panel surface



Neutron Veto Instrumentation for LEGEND-1000 at LNGS



Michele Morella on behalf of the LEGEND collaboration Gran Sasso Science Institute, INFN LNGS

See also my poster <u>@TAUP23</u>



Question: "Why inst. on the moderator? Why not also around the Reentrant Tube, for example?" <u>Answer in the BACKUP!!</u>



# Instrumentation Simulation

Knowing the physics process releasing energy in argon, how many scintillation photons are actually detected by the different instrumentation designs?

## Physics

which physics process to detect? how much energy and where is releasing energy in argon?





# Instrumentation Simulation: Physics





# **Instrumentation Simulation: Physics**

# neutron multiplicity events









# Instrumentation Simulation: Physics

What?  $\Rightarrow$  neutron capture on Ar

## Why? $\Rightarrow$ <sup>77(m)</sup>Ge produced in high neutron multiplicity events









x [m]







# Instrumentation Simulation

Knowing the physics process releasing energy in argon, how many scintillation photons are actually detected by the different instrumentation designs?

## Physics

which physics process to detect? how much energy and where is releasing energy in argon?

# Photons' Transport

probability of optical photons produced at (x,y,z) in Ar arriving at point (x', y', z') at instrumentation location









# Instrumentation Simulation: Photons Transport

Normalized hit detection probability (R,z)







# Instrumentation Simulation

Knowing the physics process releasing energy in argon, how many scintillation photons are actually detected by the different instrumentation designs?

## Physics

which physics process to detect? how much energy and where is releasing energy in argon?

# Photons' Transport

probability of optical photons produced at (x,y,z) in Ar arriving at point (x', y', z') at instrumentation location







## Instrumentation

probability to generate a Photoelectron (once an optical  $\gamma$  reaches inst. location)









# Instrumentation Simulation: Instrumentation

simulate propagation of optical photons in light guide to estimate trapping efficiency & estimate the others from literature

 $\varepsilon_{active surface} \times \varepsilon_{WLS} \times \varepsilon_{trapping} \times \varepsilon_{coupling} \times \varepsilon_{quantum}$ 

| $\epsilon_{TOT}$                      | 2.4E-3   | 7.5E-4                 |
|---------------------------------------|----------|------------------------|
| $\epsilon_{quantum}$                  | 0.3      | 0.3                    |
| $\epsilon_{coupling}$                 | 0.4      | 0.05                   |
| $\boldsymbol{\varepsilon}_{trapping}$ | 0.05     | 0.05                   |
| $\epsilon_{WLS}$                      | 1        | 1                      |
| $\epsilon_{active \ surface}$         | 0.4      | 1                      |
| N SiPM                                | 1778     | 1778                   |
|                                       | baseline | panel as<br>light guio |

s panel SiPM de with fibers tiles
936
0(30k)
1
0.08
1
1
1
1
1
1
1
1
0.3
0.3
2E-2



# Instrumentation Simulation

Knowing the physics process releasing energy in argon, how many scintillation photons are actually detected by the different instrumentation designs?

## **Physics**

which physics process to detect? how much energy and where is releasing energy in argon?

# Photons' Transport

probability of optical photons produced at (x,y,z) in Ar arriving at point (x', y', z') at instrumentation location



## Instrumentation

probability to generate a Photoelectron (once an optical  $\gamma$  reaches inst. location)

## Multiply all factors and use # of PE as figure of merit




#### Plans for next (and last) year

#### LEGEND-200:

- K results compatible with expectations
- no new  $\gamma$  lines wrt GERDA
- not enough statistics for clear conclusions on other gamma lines (yet)
  - rerun same analysis with ~90 kg·yr (as GERDA Phase II)
  - compare with GERDA (very preliminary in the backup)
- $\Rightarrow$  use LEGEND-200 as prototype to study  $\mu$ -induced bkg for LEGEND-1000 @LNGS

#### LEGEND-1000 @LNGS:

#### Atmospheric Argon instrumentation physics

- get more accurate model for gamma cascade after neutron capture
- extend to also radiogenic background (see backup)

#### photons transport

#### • implement probability map instrumentation

Preliminary instrumentation choice will be shown at the next collaboration meeting in Vancouver (December 2023)

 $\Rightarrow$  Next year final design choice and hardware testing







#### **Double Beta Decay**



 $2\nu\beta\beta$ : N(A,Z)  $\rightarrow$  N(A,Z+2) + 2e<sup>-</sup> + 2 $\overline{\nu}_{\rho}$ 

Already observed in about 10 isotopes:

- Allowed in the Standard Model (SM)
- if single  $\beta$ -decay final state is energetically not accessible
- $T_{1/2} \sim 10^{18} \div 10^{22} \text{ yr}$



 $E_{electrons}/Q_{\beta\beta}$ 

 $0\nu\beta\beta$ : N(A,Z)  $\rightarrow$  N(A,Z+2) + 2e<sup>-</sup> + 2t/

Never observed so far, not allowed in SM:

- L and B–L violation:  $\Delta L = 2$
- $\nu = \overline{\nu}$  (Majorana particle)
- hint on matter/antimatter asymmetry lacksquare
- information about  $\nu$  mass scale and ordering







### **Energy Resolution & Stability**

#### from M. Willers <u>@TAUP2023</u>

Weekly energy calibration between physics runs using <sup>228</sup>Th sources

- Overall improvement in energy resolution @  $Q_{\beta\beta}$
- Energy scale very stable between calibrations



#### LEGEND











# LAr Instrumentation

- With improved p.e. yield comes improved background suppression
- We can use time information from LAr signal for particle identification:
- → application e.g. BiPo tagging

LAr instrumentation now acts as a full-fledged detector



#### from M. Willers <u>@TAUP2023</u>







#### **Background Index**

#### from K. von Sturm <u>@TAUP2023</u>









```
kgrour
```

```
t bac
```

```
) firs
```

```
L-20(
```



13

#### LEGEND-1000 Timeline & Outlook from V. Guiseppe <u>@TAUP2023</u>

2025 2026 2027 2028 2023 2024 2029 **Design & Reviews Construction, Detector Production & Installation** 

- LEGEND-1000 is optimized for a quasi-background-free 0vββ search
  - It builds on breakthrough developments by GERDA, MAJORANA, and LEGEND-200
  - LEGEND has a low-risk path to meeting its background goal of 10<sup>-5</sup> counts/(keV kg yr)
  - Low backgrounds, excellent resolution, and event topology discrimination allow for an unambiguous discovery of  $0\nu\beta\beta$  decay at  $T_{1/2} = 10^{28}$  years
- The reference design accommodates siting in SNOLAB Cryopit or LNGS Hall C























13

#### Gamma lines analysis

### Fit Procedure

#### Fit the intensity of known gamma lines with BAT v1.0.0:

- binned spectra bin size of 0.25 keV 0
- window of ±20 keV around the peak Ο
- gaussian signal + background [quadratic(<500 keV), linear(500-2000 keV), flat(>2000 keV), Ο step(for K40)]
- strong (0.2 or 0.5 keV) priors on peak position and FWHM Ο
- fit is performed in steps Ο
  - 1) fit only the background range with the background model
  - 2) fit the full model with fixed position/resolution these ROOT fits are used to define the parameter ranges for the BAT fit
  - 3) only then the bayesian BAT fit is performed
- results quoted as global mode + smallest 68.3% interval (or 90% upper C.I. limit)

#### K40 – electron capture

Line: K40\_1461



No Energy release in Ar expected



### K42 – $\beta$ decay, Q=3.5 MeV



### TI208 – $\beta$ decay, Q=5 MeV, many $\gamma$

Line: TI208\_2614





### Bi214 – $\beta$ decay, Q=3.2 MeV

Line: Bi214\_2204



### Other gamma lines + GERDA comparison results

Take away message:

- background before cuts higher than GERDA • expected, more material and more channels
  - detector with bigger volumes

- need more exposure to evaluate also LAr veto big statistical uncertainty propagating on Survival Fraction
  - calculation

#### Instrumentation

# Design comparison – Trapping efficiency estimate



- between WLS and PMMA

• Counting how many photons arrive at **SiPM** if they are already inside light guide

• simulating PEN 430nm photons already inside light guide (light guide bar, moderator panel, etc.)

 both panel and light guide made of PMMA (PMMA attenuation Length [1, 5]m @430nm)

• Considered also 2 layers of cladding material

Baseline

design



12

### Design comparison – Cladding layers effect

thickness of single cladding layer total cladding thickness is 2x as reported



#### trapping efficiency constant up to 100 $\mu$ m

cladding layers improve trapping efficiency by a few %

increasing cladding thickness also worsen CE





### Design comparison – Instrumentation





3 m



0.05









0.05

**1E-4** 



### Design comparison – Instrumentation



3 m

| N SiPM                                | 1778 |
|---------------------------------------|------|
| $\mathcal{E}_{active\ surface}$       | 0.4  |
| $oldsymbol{arepsilon}_{WLS}$          | 1    |
| $\boldsymbol{\varepsilon}_{trapping}$ | 0.05 |
| $\mathcal{E}_{coupling}$              | 0.4  |
| $\epsilon_{quantum}$                  | 0.3  |
|                                       |      |

 $\varepsilon_{TOT}$ 

2.4E-3





#### Radiogenic from copper Reentrant Tube

### Goal of these simulations







### Simulations: Details

- simulations done using warwick-legend
- <sup>208</sup>TI and <sup>214</sup>Bi decays simulated homogeneously inside RT volume
- RT thickness: 3 mm
- RT radius: 0.95 m
- RT radius: 4 m inside cryostat
- copper activity assumed: 0.3  $\mu$ Bq (from pCDR)





### TI208 – HPGe vs AtmAr





Events selection:

- energy release in single HPGe
- energy release in AtmAr
- <u>NO</u> energy release in UgAr
- **NO** PSD or LAr veto applied

Events in ROI [1900, 2200] keV:

- 10 events surviving
- AtmAr energy <1200 keV</li>
- BI  $3.10 \times 10^{-7}$  cts/keV/kg/yr









#### Bi214 – HPGe vs AtmAr













#### Energy release – Position





# Preliminary

- radius from RT in which 90% of energy is released
- 34cm for <sup>214</sup>Bi
- 41cm for <sup>208</sup>Tl





#### Neutron interactions with moderator inside LEGEND















E<sub>final</sub> / E<sub>initial</sub>






E<sub>final</sub> / E<sub>initial</sub>

## Conclusions



i.e., higher population of neutrons at those energies





what happens when these neutrons enter the moderator?

## Conclusions



looking at the energy lost inside the moderator, the same "spiky" feature at the same energy of neutrons scattering off Ar40 is visible!!



# Conclusions

looking at the energy lost inside the moderator, the same "spiky" feature at the same energy of neutrons scattering off Ar40 is visible!!



