

GRAN SASSO SCIENCE INSTITUTE

 $^{14}N(p,\gamma)^{15}O$ reaction measurement at the LNGS Bellotti Ion Beam Facility

PhD project status report

Alessandro Compagnucci

Astrophysical motivation

- The Borexino collaboration has recently succeded in measuring the solar CNO neutrino flux from the β-decay of ¹⁵O, providing first direct probe of the solar chemical composition
- The ¹⁴N(p,γ)¹⁵O has been the subject of renewed interest → better extrapolation of its cross section at Solar energies is needed.
- It still remains after the CNO flux itself, the biggest contribution to the uncertainty budget in determining the Solar metallicity

Appel, S. et al. (2022) PRI

S

Frentz et al. (2022)

Open issues with ${}^{14}N(p,\gamma){}^{15}O$

 The transition to the 6.79 MeV excited state of ¹⁵O and to the ground state are fairly well know but effected to problems with their extrapolations at low energies

Frentz et al (2022)

Open issues with ${}^{14}N(p,\gamma){}^{15}O$

 The transition to the 6.79 MeV excited state of ¹⁵O and to the ground state are fairly well know but effected to problems with their extrapolations at low energies

TABLE I. A summary of zero energy S factors for the ${}^{14}N(p, \gamma){}^{15}O$ reaction.

Year	Reference	Astrophysical S factor $S(0)$ (keV b)					
		$R/DC \rightarrow 0.00$	$R/DC \rightarrow 6.792$	$R/DC \rightarrow 6.172$	Others ^d	Total	
1987	Schröder et al. [9]	1.55 ± 0.34	1.41 ± 0.02	0.14 ± 0.05	0.1	3.20 ± 0.54	
2001	Angulo <i>et al.</i> ^a [10]	$0.08^{+0.13}_{-0.06}$	1.63 ± 0.17	$0.06\substack{+0.01\\-0.02}$		1.77 ± 0.20	
2003	Mukhamedzhanov et al. [16]	0.15 ± 0.07	1.40 ± 0.20	0.133 ± 0.02	0.02	1.70 ± 0.22	
2004	Formicola <i>et al.</i> [17]	0.25 ± 0.06	1.35 ± 0.05 (stat)	$0.06^{+0.01b}_{-0.02}$	0.04	1.7 ± 0.1 (stat)	
			\pm 0.08 (sys)	0.02		\pm 0.02 (sys)	
2005	Imbriani <i>et al</i> . [11]	0.25 ± 0.06	1.21 ± 0.05	0.08 ± 0.03	0.07	1.61 ± 0.08	
2005	Runkle et al. [15]	0.49 ± 0.08	1.15 ± 0.05	0.04 ± 0.01		1.68 ± 0.09	
2005	Angulo <i>et al.</i> [18]	0.25 ± 0.08	1.35 ± 0.04	0.06 ± 0.02	0.04	1.70 ± 0.07 (stat)	
	-					± 0.10 (sys)	
2006	Bemmerer <i>et al.</i> [13]					1.74 ± 0.14 (stat)	
						$\pm 0.14 (\text{sys})^{\text{c}}$	
2008	Marta <i>et al</i> . [14]	0.20 ± 0.05		0.09 ± 0.07		1.57 ± 0.13	
2010	Azuma <i>et al.</i> [19]	0.28	1.3	0.12	0.11	1.81	
2011	Adelberger et al. [3]	0.27 ± 0.05	1.18 ± 0.05	0.13 ± 0.06	0.08	1.66 ± 0.08	
2016	Li <i>et al</i> . [20]	0.42 ± 0.04 (stat)	1.29 ± 0.06 (stat)				
		$^{+0.09}_{-0.19}(sys)$	\pm 0.06 (sys)				
2018	Wagner et al. [21]	0.19 ± 0.01 (stat)	1.24 ± 0.02 (stat)				
	2	± 0.05 (sys)	\pm 0.11 (sys)				
2022	This work	0.33+0.16	1.24 ± 0.09	0.12 ± 0.04		1.69 ± 0.13	

^a*R*-matrix analysis on available data, not a measurement.

^bAdopted from Angulo and Descouvemont [10].

^cMeasured *S* factor at 70 keV.

Frentz et al (2022)

Open issues with ${}^{14}N(p,\gamma){}^{15}O$

Lack of recent data for the other transitions $R/DC \rightarrow 6.17, 5.24, 5.18 \dots$

TABLE I. A summary of zero energy S factors for the ${}^{14}N(p, \gamma){}^{15}O$ reaction.

		Astrophysical S factor $S(0)$ (keV b)					
Year	Reference	$R/DC \rightarrow 0.00$	$R/DC \rightarrow 6.792$	$R/DC \rightarrow 6.172$	Others ^d	Total	
1987	Schröder et al. [9]	1.55 ± 0.34	1.41 ± 0.02	0.14 ± 0.05	0.1	3.20 ± 0.54	
2001	Angulo et al. ^a [10]	$0.08^{+0.13}_{-0.06}$	1.63 ± 0.17	$0.06^{+0.01}_{-0.02}$		1.77 ± 0.20	
2003	Mukhamedzhanov et al. [16]	0.15 ± 0.07	1.40 ± 0.20	0.133 ± 0.02	0.02	1.70 ± 0.22	
2004	Formicola et al. [17]	0.25 ± 0.06	1.35 ± 0.05 (stat)	$0.06^{+0.01b}_{-0.02}$	0.04	1.7 ± 0.1 (stat)	
			± 0.08 (sys)	0.02		\pm 0.02 (sys)	
2005	Imbriani <i>et al</i> . [11]	0.25 ± 0.06	1.21 ± 0.05	0.08 ± 0.03	0.07	1.61 ± 0.08	
2005	Runkle et al. [15]	0.49 ± 0.08	1.15 ± 0.05	0.04 ± 0.01		1.68 ± 0.09	
2005	Angulo <i>et al.</i> [18]	0.25 ± 0.08	1.35 ± 0.04	0.06 ± 0.02	0.04	1.70 ± 0.07 (stat)	
	-					\pm 0.10 (sys)	
2006	Bemmerer <i>et al.</i> [13]					1.74 ± 0.14 (stat)	
						$\pm 0.14 (\text{sys})^{\text{c}}$	
2008	Marta <i>et al.</i> [14]	0.20 ± 0.05		0.09 ± 0.07		1.57 ± 0.13	
2010	Azuma <i>et al.</i> [19]	0.28	1.3	0.12	0.11	1.81	
2011	Adelberger et al. [3]	0.27 ± 0.05	1.18 ± 0.05	0.13 ± 0.06	0.08	1.66 ± 0.08	
2016	Li et al. [20]	0.42 ± 0.04 (stat)	1.29 ± 0.06 (stat)				
		$^{+0.09}_{-0.19}(sys)$	± 0.06 (sys)				
2018	Wagner et al. [21]	0.19 ± 0.01 (stat)	1.24 ± 0.02 (stat)				
		± 0.05 (sys)	± 0.11 (sys)				
2022	This work	$0.33_{-0.08}^{+0.16}$	1.24 ± 0.09	0.12 ± 0.04		1.69 ± 0.13	

^a*R*-matrix analysis on available data, not a measurement.

^bAdopted from Angulo and Descouvemont [10].

^cMeasured S factor at 70 keV.

Frentz et al (2022)

7297

The LNGS Bellotti Ion Beam Facility

 Installation and acceptance of the high current, light ion new 3.5 MV accelerator was completed in February 2022

 My work: Development of a software interface for communication with the accelerator (Restful API, PyQT)

S

G

S

Goals of my PhD project

- Differential cross-section measurement and angular distributions, critical in order to fit the higher energy data.
- Provide high-quality data over a extensive energy range, including the often neglected weaker transitions, with the aim to bridge the gap between low energy data and the extrapolations for higher energy measurements.
- Assess the performance of 3.5 MV accelerator installed at the new LNGS facility.

Proposal to the PAC of the Bellotti IBF

- Requested for 7 weeks of beam time was issued to the PAC of the facility
- Assigned with high priority for the first available slot given the readiness demonstrated Counting rates expected for HPGe in close geometry

Target characterization performed at Atomki Tandetron in 2022

S G

The ${}^{14}N(p,\gamma){}^{15}O$ measurement at the Bellotti IBF

- Two phases:
 - Single HPGe detector in close geometry.
 Excitation function.
 (completed, June-July 2023)
 - Three HPGe detectors, angular distribution measurement. (Started in October 2023).

S

G

Setup

- The support structure for the beamline and the detectors has been
 designed and constructed in collaboration with Bari
 INFN Mechanical Workshop
- Moved to LNGS and installed on the beam line in March 2023.

S

Start of data taking

- Data taking started on June 19.
- First beam ever delivered to users of the Bellotti Ion Beam Facility.

Solid Targets

 Sputtered TaN targets: Produced at LNL, Italy by M. Campostrini and V. Rigato. Enriched (99.95%) nitrogen gas. Tested for stability up to 15 C. Characterization via RBS and on-site using 278 keV 14N+p resonance scans.

 Implanted targets: Produced at IST, Lisbon by J.Cruz. Tested for stability up to 15 C.

Solid Targets: Characterization of the contaminants

Significantly improved solid targets in terms of ¹⁵N and ¹⁹F contaminations!

Solid Targets: Stability monitoring

Resonance scan of 278 keV resonance for two TaN sputtered target with different thicknesses @ Bellotti IBF 3.5 MV accelerator

Efficiency characterization for the HPGe detector

- Efficiency calibration using ¹³⁷Cs, ⁶⁰Co and ¹⁴N+p reaction
- Reaction data have been corrected for summing effects

$$\begin{split} \ln\left(\varepsilon_{fe}\right) &= a + b \ln(E_{\gamma}) + c[\ln(E_{\gamma})]^{2} \,,\\ \varepsilon_{fe}(d) &= \frac{1 - e^{\frac{d+d_{0}}{1 + \beta\sqrt{E_{\gamma}}}}}{(d+d_{0})^{2}} \,.\\ Y_{gs} &= R\left(b_{gs}\varepsilon_{fe}(E_{gs}) + \sum_{i} b_{i}\varepsilon_{fe}(E_{i}^{sec})\varepsilon_{fe}(E_{i}^{pri})\right),\\ Y_{i_{pri}} &= Rb_{i}\varepsilon_{fe}(E_{i_{pri}})(1 - \varepsilon_{tot}(E_{i_{sec}}))\,,\\ Y_{i_{sec}} &= Rb_{i}\varepsilon_{fe}(E_{i_{sec}})(1 - \varepsilon_{tot}(E_{i_{pri}}))\,,\end{split}$$

Preliminary results

A typical gamma-ray spectrum.

- Data collected during the first beam time in June 2023
- Energy range covered: 0.25 1.3 MeV in 50 keV steps
- one HPGe detector at 55° and 5 cm from the target.
- Three sputtered target and one implanted target
- Total charge collected: 38 C (up to 300 uA of current on target)

First ever scientific results from the Bellotti IBF shown at NIC XVII in September 2023 (poster presentation)

Conclusion

- During my second year of activities I followed all the critical activities (e.g. characterization of solid target, setup design ...) that lead to the first ever scientific measurement at the new Bellotti IBF.
- A first campaign of measurements for the ¹⁴N+p (excitation function) was completed in July 2023. Preliminary results shown at international conference (NIC XVII).
- I am collaborating with the accelerator service of LNGS for the energy calibration of the machine and its software interface with the users.
- Second beam time (angular distribution measurement) started on October
 9, additional two weeks of beam time already assigned (early 2024).
- During the next year I expect to finalize the data taking and the analysis, providing an R-matrix fit (with international collaborators) and explore the astrophysical impact of the results.

S

G

Thank you for your attention!

