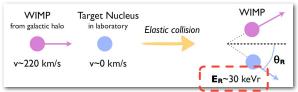
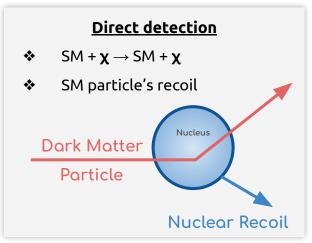

WIMPs - How to see them?


DM forms a halo within our galaxy. +

Solar system rotates around galaxy / towards Cygnus constellation

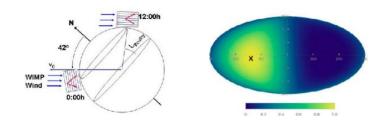
> <u>Earth susceptible to an</u> <u>apparent WIMP wind from</u> <u>Cygnus direction!</u>



...from WIMP scattering kinematics...

...the nuclear recoil is **non-relativistic**, of energies in the range 1 - 100 keV

WIMPs - Directionality and beyond the neutrino floor

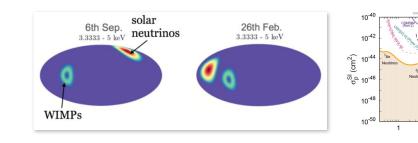

MSSMp19

10

10² m., (GeV) CHICCH

 10^{3}

Exploring the DIRECTION dependency results in a characteristic effect - <u>anisotropy in the</u> <u>angular distribution of nuclear recoils</u> No background can mimic

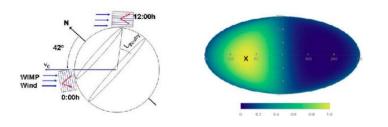

The **CEVNS** produces NRs identical to the DM-induced ones.

To *search DM at smaller cross-sections*, experiments need to

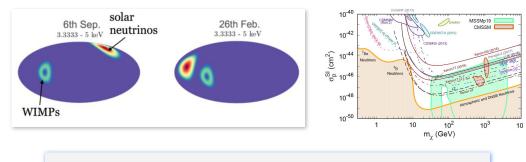
somehow venture into the neutrino fog

↓ Below 10 GeV/c² → Mostly **solar neutrinos**

In galactic coords., the <u>Sun and Cygnus are never superimposed!*</u>



WIMPs - Directionality and beyond the neutrino floor



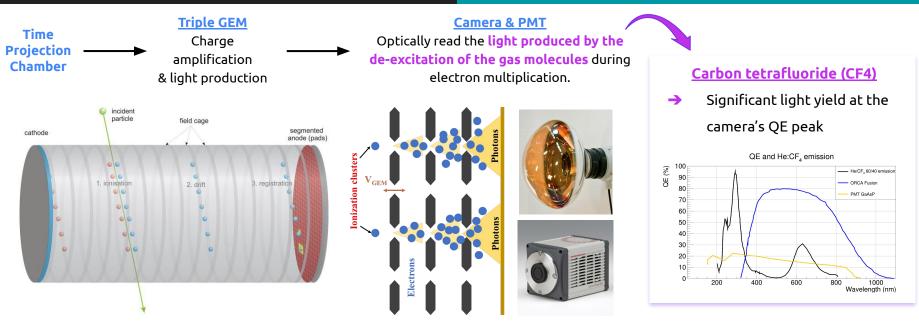
Exploring the **DIRECTION dependency** results in a characteristic effect - <u>anisotropy in the</u> <u>angular distribution of nuclear recoils</u>

No background can mimic

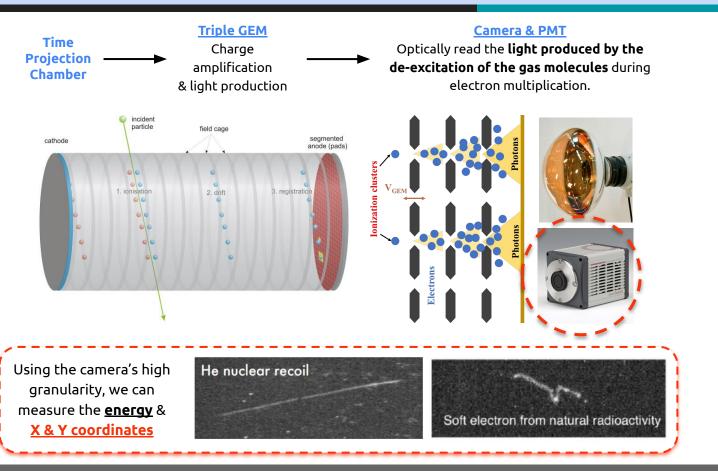
Where other experiments struggle to **prove /** disprove DM, directional discrimination strikes as the only way to *positively prove the existence* of Dark Matter! The **CEvNS** produces NRs identical to the DM-induced ones. To *search DM at smaller cross-sections*, experiments need to *somehow venture into the neutrino fog* ↓ Below 10 GeV/c² → Mostly **solar neutrinos** ↓ In galactic coords., the *Sun and Cygnus are never superimposed!**

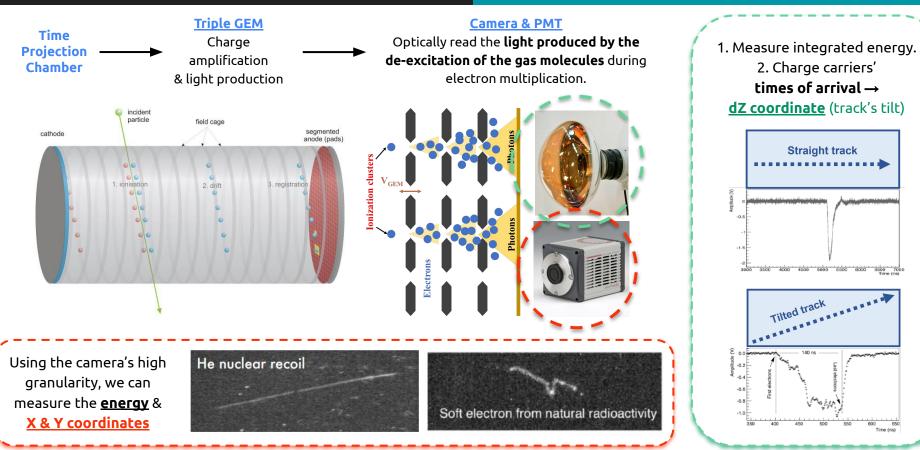
- → Searching **beyond** the <u>neutrino floor</u>
- → Properties of the solar neutrino flux and DM halo

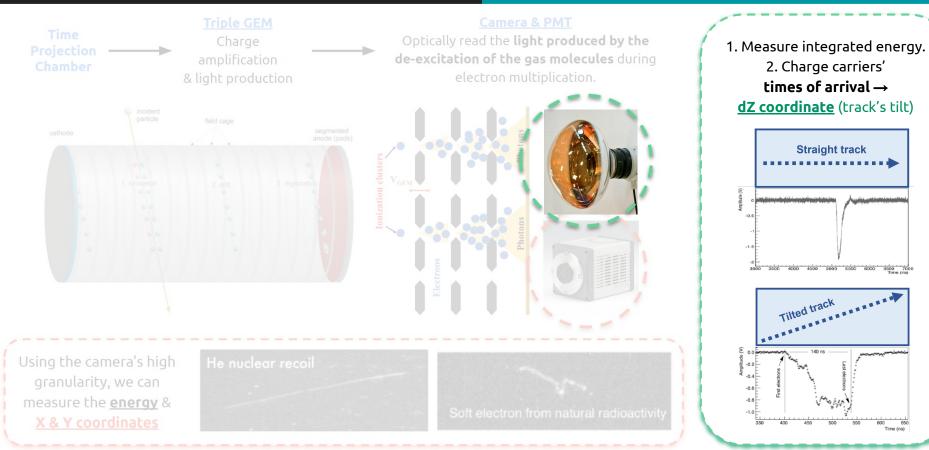
The CYGNO project



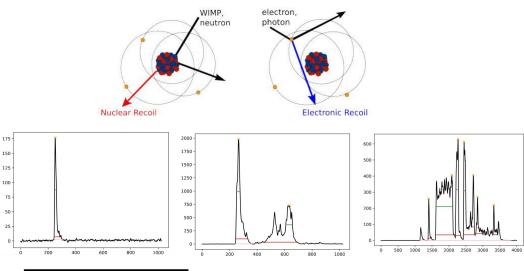
A <u>CYGN</u>us tpc module with <u>O</u>ptical readout

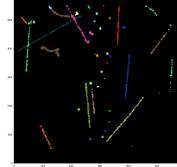

CYGNO - What's the setup?

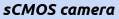

CYGNO - What's the setup?



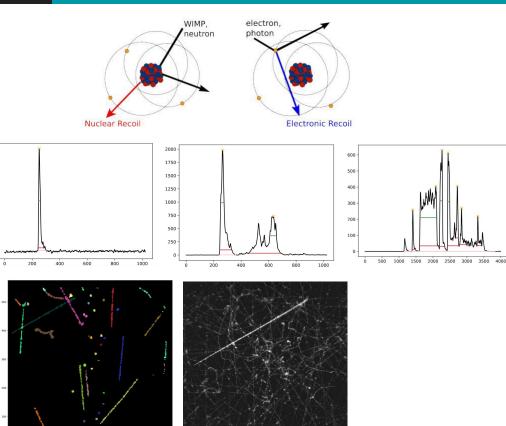
CYGNO - What's the setup?






A particle interacts inside our gas, He:CF4 ➡ We look for the **ionization signal** ➡ Camera pictures and <u>PMT waveforms</u> are recorded.

Reconstruction of variables of interest from PMT waveforms.


Merging with variables obtained with the

A particle interacts inside our gas, He:CF4 ➡ We look for the **ionization signal** ➡ Camera pictures and <u>PMT waveforms</u> are recorded.

Reconstruction of variables of interest from PMT waveforms.

Merging with variables obtained with the sCMOS camera

175

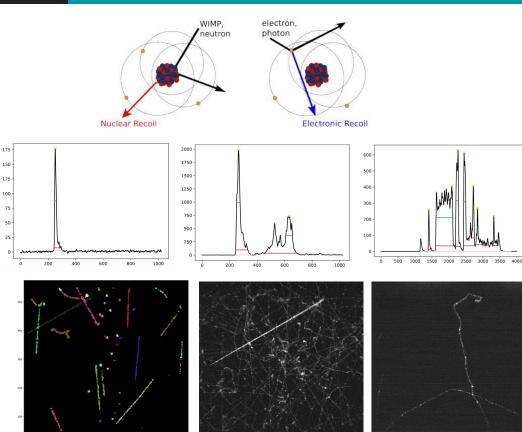
150

125

100

75 -

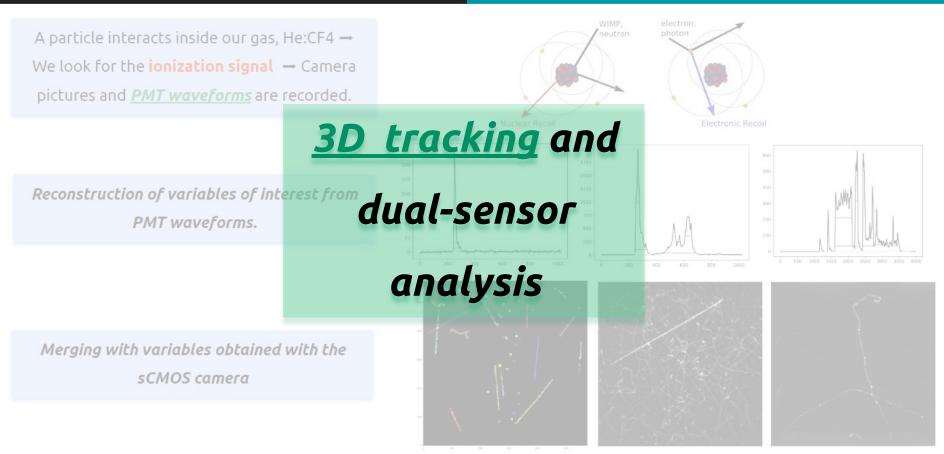
50


25

A particle interacts inside our gas, He:CF4 ➡ We look for the **ionization signal**

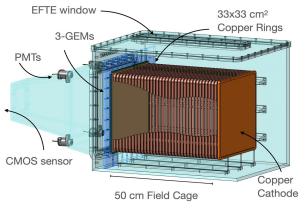
Camera pictures and *PMT waveforms* are recorded.

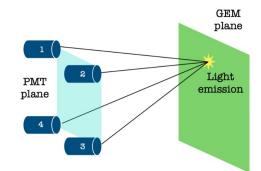
Reconstruction of variables of interest from PMT waveforms.

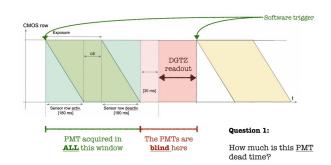

Merging with variables obtained with the sCMOS camera

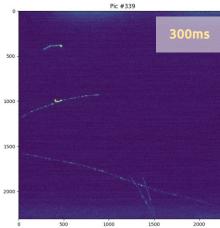
175

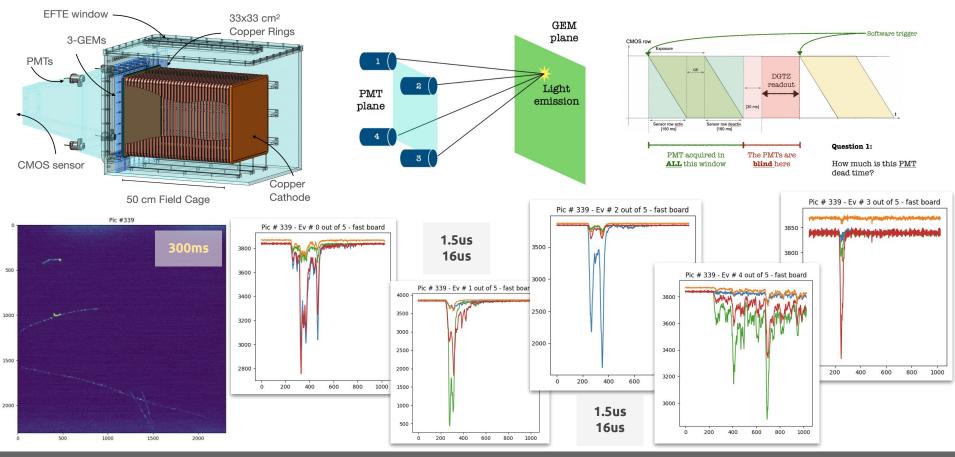
150


25






Ph.D. with CYGNO - How does LIME work?



Ph.D. with CYGNO - How does LIME work?

David Marques

Ph. D. 3rd year report - 3D tracking with the CYGNO experiment

1. <u>PMT reconstruction</u>

a. Full integration of **waveforms information** within CYGNO's data framework

2. (L,x,y) Bayesian fit

- a. Simultaneously fits ionization X Y and Light
 - i. This because the light seen by each PMT changes with distance ($L \propto 1/R^{\alpha})$

3. Association of PMT & camera events

- a. A picture might contain **many events**. These must be **disentangled** for connection with PMT.
 - i. Closest neighbour approach under study with comparison with camera variables

4. <u>3D reconstruction</u>

- a. Compute track angle / ΔZ
 - i. Single peaks vs. Time over Threshold (ToT)
- 5. Cross-analysis with camera's info.
 - dE/dx NR vs ER PID
- 6. Longitudinal diffusion from ⁵⁵Fe spots (+ NID)
- 7. Fully or partial **integration of (x,y,L) fit** in PMT reconstruction.

- 8. **PMT Simulation**
- 9. Study of the α parameter in L $\propto 1/R^{\alpha}$

1. <u>PMT reconstruction</u>

a. Full integration of **waveforms information** within CYGNO's data framework

2. <u>(L,x,y) Bayesian fit</u>

- a. Simultaneously fits **ionization X Y and Light**
 - i. This because the light seen by each PMT changes with distance ($L \propto 1/R^{\alpha})$

3. Association of PMT & camera events

- A picture might contain **many events**. These must be **disentangled** for connection with PMT.
 - i. Closest neighbour approach under study with comparison with camera variables

4. <u>3D reconstruction</u>

- a. Compute track angle / ΔZ
 - i. Single peaks vs. Time over Threshold (ToT)
- 5. Cross-analysis with camera's info.
 - dE/dx NR vs ER PID
- 6. Longitudinal diffusion from ⁵⁵Fe spots (+ NID)
- 7. Fully or partial **integration of (x,y,L) fit** in PMT reconstruction.

- B. **PMT Simulation**
- 9. Study of the α parameter in L $\propto 1/R^{\alpha}$

PMT Working Group - Activities Rundown

1. <u>PMT reconstruction</u>

- a. Full integration of **waveforms information** within CYGNO's data framework
- 2. <u>(L.x.y) Bayesian fit</u>
 - a. Simultaneously fits **ionization X Y and Light**
 - i. This because the light seen by each PMT changes with distance ($L \propto 1/R^{\alpha})$

3. Association of PMT & camera events

- a. A picture might contain **many events**. These must be
 - i. Closest neighbour approach under study with

4. <u>3D reconstruction</u>

David Marques

- a. Compute track angle / ΔZ
 - i. Single peaks vs. Time over Threshold (ToT)
- 5. <u>Cross-analysis with camera's info.</u>
 - dE/dx NR vs ER PID
- 6. Longitudinal diffusion from ⁵⁵Fe spots (+ NID)
- 7. Fully or partial **integration of (x,y,L) fit** in PMT reconstruction.

- These are the *points of interest for my work*
- I have also <u>actively participated and chaired PMT</u> <u>meetings</u> where these topics are discussed.
- I have also met my co-workers in Rome Sapienza many times and well as <u>cross-checked and gave suggestions</u> in the results of other students

8. **PMT Simulation**

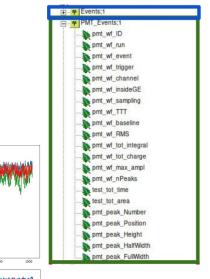
9. Study of the α parameter in L $\propto 1/R^{\alpha}$

First CYGNO PMT analysis

1. <u>PMT reconstruction</u> → Full integration of **waveforms information** within CYGNO's data framework

→ <u>Goal:</u>

- Create a TTree with the <u>PMT reconstructed variables</u>.
- Run <u>PMT reconstruction together with Camera</u> reconstruction on the cloud.
- Create a **framework** that allows the *analysis of PMT events stand-alone*


and together with camera.

• (L,x,y), Z coordinate, Z diffusion, 3D reco, NR vs ER, PID, etc.

First CYGNO PMT analysis

- 1. <u>PMT reconstruction</u> → Full integration of **waveforms information** within CYGNO's data framework
 - → <u>Goal</u>:
 - Create a TTree with the <u>PMT reconstructed variables</u>.
 - Run <u>PMT reconstruction together with Camera</u> reconstruction on the cloud.
 - Create a framework that allows the analysis of PMT events stand-alone and together with camera.
 - (L,x,y), Z coordinate, Z diffusion, 3D reco, NR vs ER, PID, etc.
 - Steps already taken:
 - Retrieve data from DAQ through cygno_libs
 - All four PMTs and all triggers associated with a given picture.
 - Waveforms **automatically corrected**.
 - Tree created with basic variables.
 - pmt_wf_[run/event/trigger/channel/sampling]
 - pmt_peak_[Position/Height/HalfWidth/FullWidth]
 - pmt_tot_[integral/charge]

- pmt_max_ampl
- pmt_nPeaks
- pmt_[baseline/RMS]

-0.025

-0.050

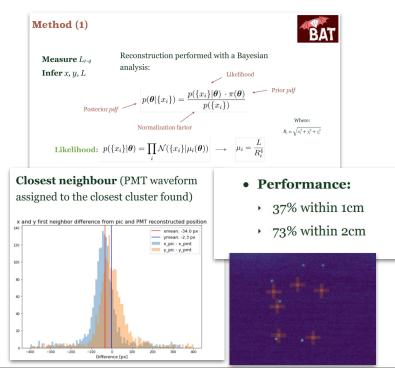
-0.075

-0.100

-0.125

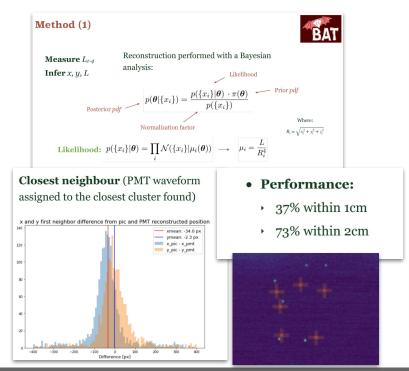
-0.02

-0.04

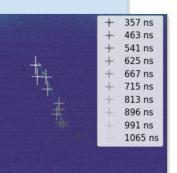

-0.08

-0.14 dn=3

dh=3 dh=4

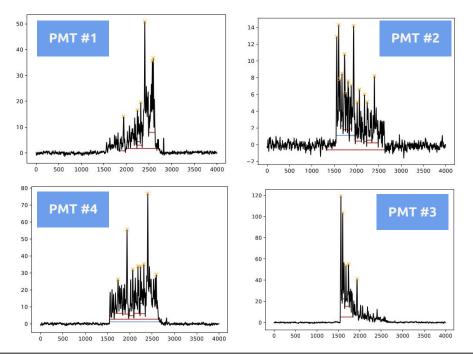

PMT Work - PMT Reconstruction

- 2. (L,x,y) Bayesian fit → Simultaneously fits ionization X Y and Light
- 3. Association of PMT & camera events
- 7. Fully or partial **integration of (x,y,L) fit** in PMT reconstruction.

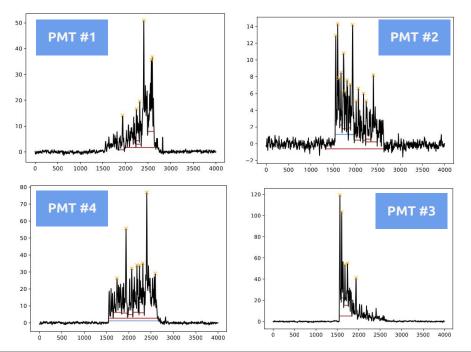


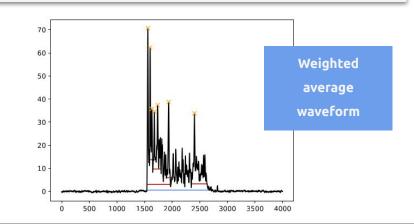
PMT Work - PMT Reconstruction

- 2. (L,x,y) Bayesian fit → Simultaneously fits ionization X Y and Light
- 3. Association of PMT & camera events
- 7. Fully or partial **integration of (x,y,L) fit** in PMT reconstruction.



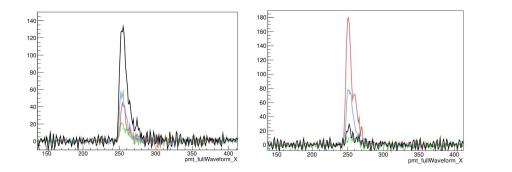
- → Fit allows to retrieve event's **energy**
 - I used it to calculate dE/dx by merging it with it
 Time-over-Threshold
- \rightarrow Fit allows position comparison with camera picture
 - I'm working on a process to do the 1-to-1 coincidence
 between ionization cluster and PMT waveform
 - Closest position neighbour
 - Closest energy neighbour
- → Given it's importance I'm currently
 integrating of the fit in the overall
 CYGNO analysis framework.

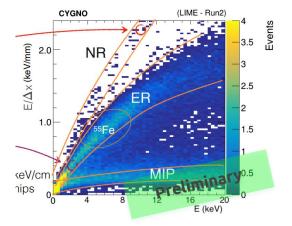

- 4. <u>3D reconstruction</u>
- 9. <u>Cross-analysis with camera's info</u>
- ⇒ <u>Time over threshold (TOT)</u>


- → Measurement of the <u>time length</u> of the signal which is <u>above a given threshold</u>.
 - Not trivial when each PMT sees a different signal intensity and tracks can have very complicated paths
 - ♦ I do a weighted average based on waveform's
 SNR ⇒ Only correct for timing purposes

- 4. <u>3D reconstruction</u>
- 9. <u>Cross-analysis with camera's info</u>
- ⇒ <u>Time over threshold (TOT)</u>

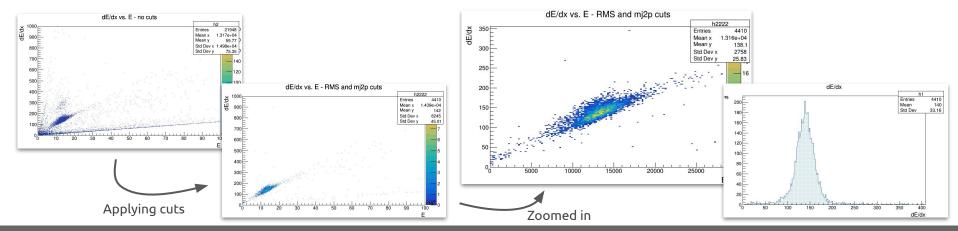
- → Measurement of the <u>time length</u> of the signal which is <u>above a given threshold</u>.
 - Not trivial when each PMT sees a different signal intensity and tracks can have very complicated paths
 - I do a weighted average based on waveform's
 SNR ⇒ Only correct for timing purposes




- 4. <u>3D reconstruction</u>
- 9. <u>Cross-analysis with camera's info</u>

⇒ <u>Time over threshold (TOT)</u>

- 1. I tried to replicate sCMOS sensor <u>dE/dx vs. E</u> plot
 - Each PMT sees a different intensity but approximately the same time extension ⇒ Results in a different dE/dx.
 - i. Solved by using Bayesian fit <u>L (fitted luminosity)</u> of a



- 4. <u>3D reconstruction</u>
- 9. <u>Cross-analysis with camera's info</u>

⇒ <u>Time over threshold (TOT)</u>

- 1. I calculated the dE/dx of calibration runs with ⁵⁵Fe
- This is calculated using the the <u>fitted L</u> and <u>time</u>
 <u>over threshold</u>
- 3. Different <u>cuts</u> were studies: RMS and mj2p

S G

3D reconstruction 4.

dE/dx vs. E - no cuts

Applying cuts

Cross-analysis with camera's info 9

⇒ <u>Time over threshold (TOT)</u>

- I calculated the dE/dx of calibration runs with ⁵⁵Fe 1.
- 2. This is calculated using the the **<u>fitted L</u>** and <u>**time**</u> over threshold
- Different cuts were studies: RMS and mj2p 3.

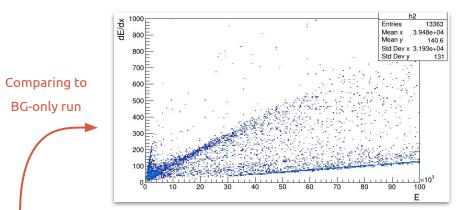
59 77

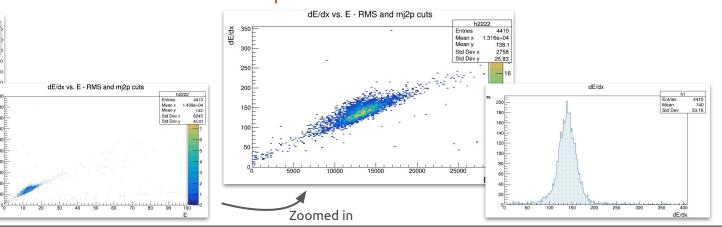
75 35

120

900

800


400


300

Mean x 1.317e+04

Std Dev v

Std Dev y 1 498e+04

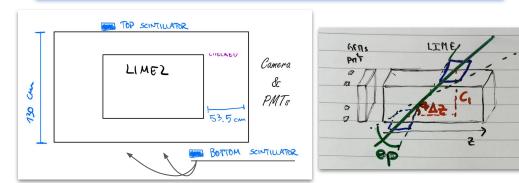
E/dx

900 F

500

400E

300È


200F

- 4. <u>3D reconstruction</u>
- 9. <u>Cross-analysis with camera's info</u>

⇒ <u>Next studies</u> ⇒ <u>Tilted cosmic rays analysis</u>

Setup:

- → Two scintillator bars are placed on top and bottom of LIME
- → LIME DAQ triggered by coincidence of two scintillators
 - Only certains angles (by geometry) are possible
 - 3 different scintillator position were used


Experiment S

- 4. <u>3D reconstruction</u>
- 9. <u>Cross-analysis with camera's info</u>

⇒ Next studies ⇒ Tilted cosmic rays analysis

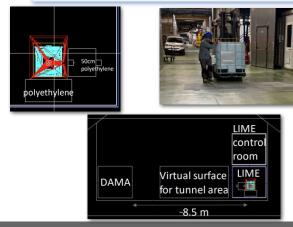
Setup:

- ightarrow Two scintillator bars are placed on top and bottom of LIME
- → LIME DAQ triggered by coincidence of two scintillators
 - Only certains angles (by geometry) are possible
 - 3 different scintillator position were used

Motivation & Math:

• This measurement presents a clear dataset with track with

well-defined orientation and energy deposit (MIP)

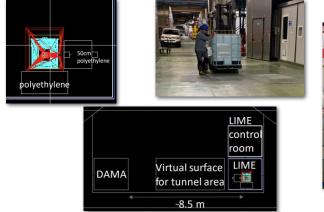

- We have a given <u>range of possible angles</u> of entering
 LIME (given by geometry of LIME + scintillators)
- We can superimpose it with the cosmic muons angle distribution at ground (∝ cos²(Θ)*) to get the theoretical angle distribution (Θ_{teo}).
- PMT measures the Time over Threshold
 - Multiplied by v_{drift e-} gives the ∆z
- \circ Height of LIME (c1) is known (33 cm)
 - The tracks inclination (α) will be **tan⁻¹ (c1/\Delta z)**
- We can compare Θ_{teo} with α .
 - First CYGNO 3D analysis (on a distribution)
 - Gives us a measurement of PMT Reco / ToT efficiency *https://dx.doi.org/10.1088/1475-7516/2023/04/025

- 4. <u>3D reconstruction</u>
- 9. <u>Cross-analysis with camera's info</u>

⇒ <u>Next studies</u> ⇒ <u>Nuclear recoil data set</u>

Setup:

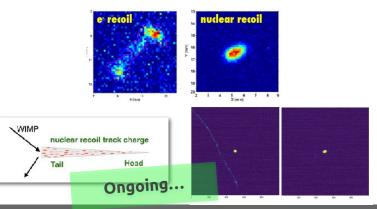
- → AmBe source placed near LIME
- → LIME was shielded with Polyethylene, water and copper to block external radiation, thus creating a clean dataset



- 4. <u>3D reconstruction</u>
- 9. <u>Cross-analysis with camera's info</u>

⇒ <u>Next studies</u> ⇒ <u>Nuclear recoil data set</u>

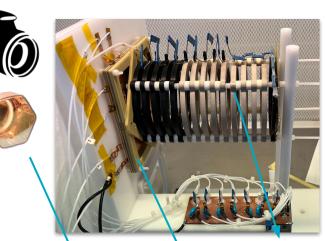
Setup:


- → AmBe source placed near LIME
- → LIME was shielded with Polyethylene, water and copper to block external radiation, thus creating a clean dataset

Motivation & Expectations:

- Clean dataset of NR obtained with a AmBe source ⇒
 WIMP-like signals
 - 3D from ToT since they're straight tracks
 - Dual-sensor analysis (sCMOS + PMT)
 - \circ dE/dx analysis \Rightarrow PID for NR vs. ER
 - Track sense/direction from head-tail asymmetry
 - Paramount for CYGNO directional searches!

a Multipurpose Apparatus for Negative ion studies with GEM Optical readout


Parallel work with MANGO

a Multipurpose Apparatus for Negative ion studies with GEM Optical readout

- → Enhancement of light yield
 - Different types/configuration of **GEMs** ITO vs. Mesh
- → <u>Negative Ion Drift</u>
 - Optimal gas pressure, composition & amplification config.
 - Transverse & Longitudinal Diffusion
- Ion mobility

3 GEM stack: 50 μm thick 140 μm pitch Ø70 μm holes

GEMs facing sCMOS and PMT

David Marques

Ph. D. 3rd year report - 3D tracking with the CYGNO experiment

Parallel work with MANGO

a Multipurpose Apparatus for Negative ion studies with GEM Optical readout

Enhancement of light yield

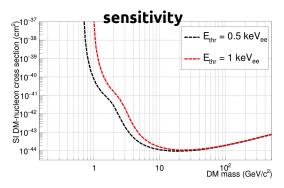
- Different types/configuration of **GEMs** • ITO vs. Mesh •
- \rightarrow

 - Ion mobility

15 cm drift field cage

3 GEM stack: 50 µm thick 140 µm pitch ø70 µm holes

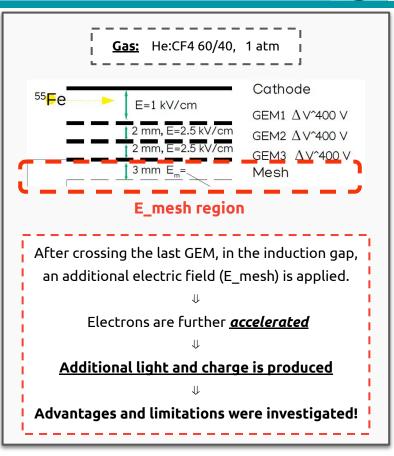
GEMs facing sCMOS and **PMT**


Enhance. of light yield - Motivation & Setup

C/GNO G S Experiment S I

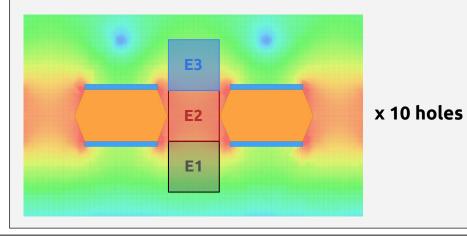
In CYGNO, the energy threshold is proportional to

the amount of photons collected.

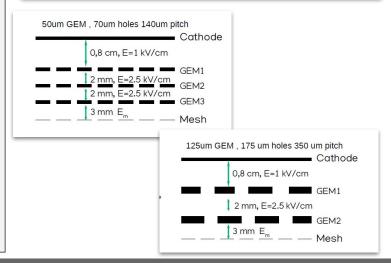

 \Box Light \Rightarrow \Box Energy Threshold \Rightarrow \Box DM

Options:

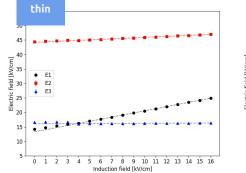
- → Increase V_GEM \Rightarrow \Box Sparks X
- → Increase #GEMs \Rightarrow \Box Diffusion/saturation X
- → Applying a stronger electric field after the

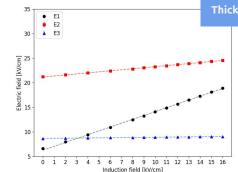

last GEM ⇒ 🗆 Light + ~ spatial/energy res. 🔽

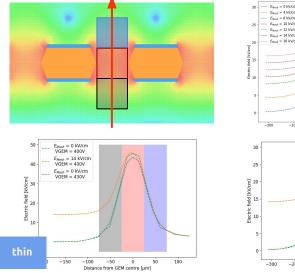
Simulation - Model

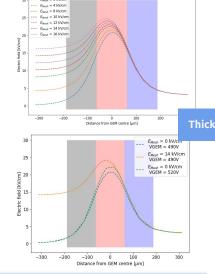


- To better quantify these effects, we used the 3 <u>contiguous</u> regions were the electric field profile was studied:
 - Below (E1), inside (E2) and above (E3) GEM.
- Box length = length of internal hole diameter, for *thin* and *Thick*.
- Obtain the electric field in matrix in these squares (1 um res).
- Average over all points.
- Average over 10 holes.


Tests performed:


- → Scan V_mesh, with fixed V_GEMs
- → Scan on V_GEMs, with a fixed V_mesh
- → 2 different configurations:
 - thin (t t t)
 - **Thick** (T T)


Simulation - Average field - Expectations



- ★ E_mesh <u>doesn't</u> change field <u>above GEM</u>.
- ★ E_mesh increases field inside GEM.
 - o 🔰 Linear increase of the electric field. 🔽
- ★ E_mesh **greatly** affects field **below GEM**.
 - Reaches values enough to produce amplification. V
 - TT configuration works with lower fields thus we expected the light yield increase to be more notorious with the thick GEMs.

The addition of the **induction field** changes the shape of the profile:

- ★ The field's maximum increases in amplitude and shifts towards the bottom part of the GEM hole.
- ★ Generates a large region below the GEM where amplification and/or light production can happen.
- ★ For Thick GEMs, the influence is *relatively* much larger.

David Marques + G. Dho (Ph.D. thesis)

Ph. D. 3rd year report - 3D tracking with the CYGNO experiment

Enhance. of light yield - Final conclusions

Scenario	GEM conf.	E_mesh [kV/cm]	Light integral	ΔE [%]	Diffusion [µm]
Maximizing	ttt	15 ± 0.3	33500 ± 140	13.8 ± 0.3	388 ± 5
induction	TT	14 ± 0.3	58800 ± 300	25.7 ± 0.5	356 ± 5
(E_mesh) field	Tt	12.8 ± 0.2	11830 ± 50	26.8 ± 0.5	280 ± 4

- When maximizing E_mesh, the **<u>ttt maintains a good ΔE</u>** when compared with the other configurations.
- For the <u>TT case</u>, maximizing E_mesh allows for a <u>very high increase of light yield</u>, with similar intrinsic diffusion to the ttt (but losing on ΔE).
- Finally, the <u>**Tt configuration excelled in intrinsic diffusion</u> in all the tests performed (check back-up), but with an overall worse ΔE.
 </u>**

★ In sum, the choice boils down to the experiment's requirements:

ttt ⇒ Energy resolution

• TT \Rightarrow Light yield

• Tt ⇒ Intrinsic diffusion

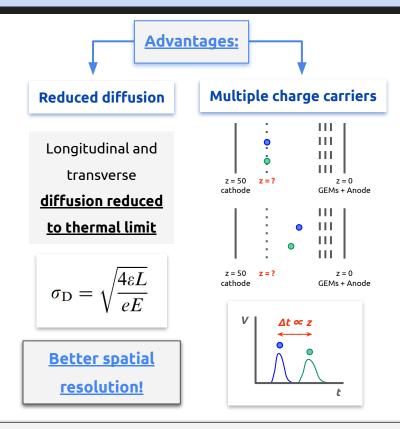
David Marques + G. Dho (Ph.D. thesis)

Parallel work with MANGO

a Multipurpose Apparatus for Negative ion studies with GEM Optical readout

- ITO vs. Mesh
- **Negative Ion Drift** \rightarrow
 - Optimal gas pressure, composition & amplification config. •
 - **Transverse & Longitudinal Diffusion** •
- Ion mobility

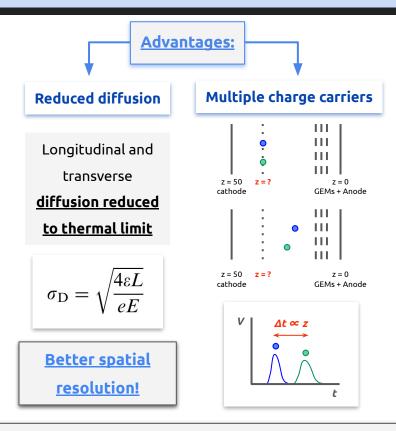
S ÷.


David Marques

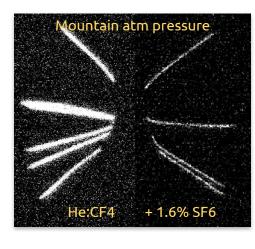
Ph. D. 3rd year report - 3D tracking with the CYGNO experiment

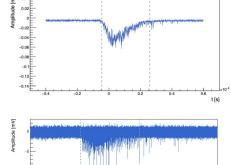
Negative Ion Drift - INITIUM concept

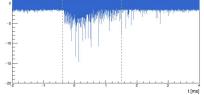
an Innovative Negative Ion Time projection chamber for Underground dark Matter searches | INITIUM | Project | Fact sheet | H2020 | CORDIS | European Commission



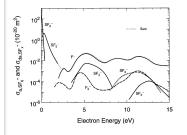
Absolute Z from Δt between minority charge carriers

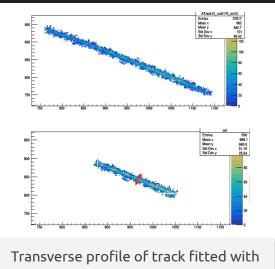

Negative Ion Drift - INITIUM concept

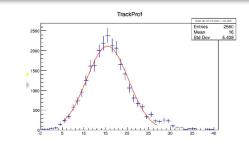

an Innovative Negative Ion Time projection chamber for Underground dark Matter searches | INITIUM | Project | Fact sheet | H2020 | CORDIS | European Commission

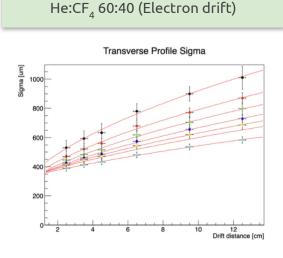


Absolute Z from Δt between minority charge carriers

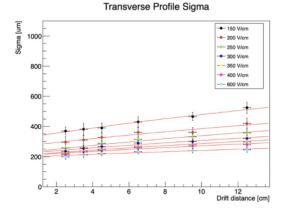



		00
$e^- + SF_6 \rightarrow SF_6^{-*}$	Electron attachment	<1 meV
$SF_6^{-*} \rightarrow SF_6 + e^-$	Autodetachment	(Metastable: > 1 µs)
${\rm SF_6^{-*}+SF_6\rightarrowSF_6^-+SF_6}$	Collisional stabilization	
e^- + SF ₆ \rightarrow SF ₅ ⁻ + F		0-2 eV
e^- + $SF_6 \rightarrow SF_4^-$ + $2F$	Dissociative electron attachment	3-8 eV
$e^- \ + \ SF_6 \ \rightarrow \ F^- \ + \ SF_5$	Dissociative electron attachment	1-14 eV
$e^-+SF_6\rightarrowF_2^-+SF_4$		1–14 eV
$SF_{5/6}^- + SF_6 \rightarrow SF_{5/6} + SF_6 + e^-$	Collisional detachment	>90 eV
$SF_6^- + SF_6 \rightarrow SF_6 + SF_6^-$	Charge transfer	
$\mathrm{SF}_6^-+\mathrm{SF}_6\rightarrow\mathrm{SF}_5^-+\mathrm{F}+\mathrm{SF}_6$	Dissociative charge transfer	>1 eV


https://doi.org/10.1016/j.nima.2022.1661416


David Marques

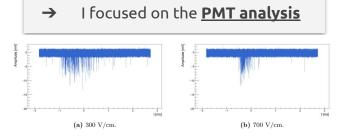
Gaussian to estimate diffusion



 $\sigma_{meas} = \sqrt{\sigma_0^2 + \sigma_T^2 L}$

Drift field [V/cm]	σ_0^{ED}	σ_T^{ED}	σ_0^{NID}	σ_T^{NID}
150	300 ± 100	280 ± 20	320 ± 30	110 ± 10
200	290 ± 60	230 ± 10	260 ± 30	88 ± 20
250	284 ± 60	210 ± 10	220 ± 20	81 ± 10
300	300 ± 40	190 ± 10	220 ± 20	68 ± 10
350	300 ± 40	170 ± 10	210 ± 20	62 ± 10
400	310 ± 30	160 ± 10	210 ± 20	56 ± 9
600	320 ± 22	140 ± 10	200 ± 20	45 ± 10

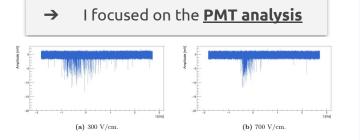
He:CF₄:SF₆ 59:39.6:1.6 (Negative ion drift)



- Negative Ion Drift operation!
- <u>Transverse diffusion</u> reduced

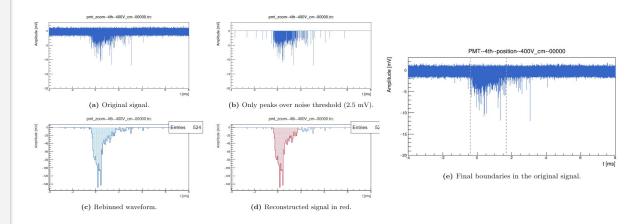
by 3 times!

• What about the PMT signals?



Peculiar signal:

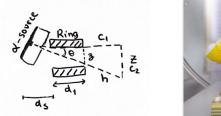
- → Thousands of small peaks (~ns width)
 over large time span (~ few ms) ⇒
 primary ionization cluster counting?
 ~> Perfect resolution
- → Features visible → Note the enlargement of signal with lower drift field.
- → First optical observation of NID →
 - ➡ Few or none literature on this



Peculiar signal:

- → Thousands of small peaks (~ns width)
 over large time span (~ few ms) ⇒
 primary ionization cluster counting?
 ~> Perfect resolution
- → Features visible → Note the enlargement of signal with lower drift field.
- → First optical observation of NID →
 - ➡ Few or none literature on this

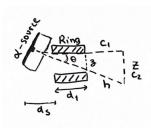
□ □ First ever PMT analysis for optical NID signals □ □


- Initial approach ⇒ <u>Time rebinning</u>
 - a. Threshold ➡ Only peaks above 6*RMS are taken into account
 - b. Rebin → Selected points are put into histogram
 - c. Delimitation ⇒ Start (end) when 2 bins are above(below) 10 mV
 - d. Systematics => Varying #bins & threshold voltage (reworked analysis)

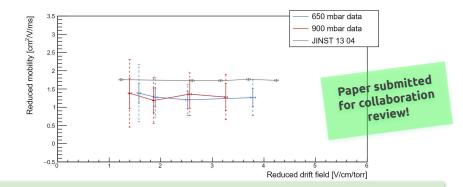
CZGNO G S Experiment S I

Final measurement: <u>Ion Mobility</u> = <u>Updated version!</u>

- 1. Tilted <u>ED</u> alpha tracks
 - a. Distribution \Rightarrow Get mean value (Δt)
 - b. Knowing electrons' velocity in gas (v)
 - i. <u>Z travelled by track ⇒ 1.5 cm</u>

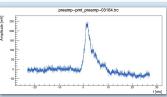


- 2. Tilted <u>NID</u> alpha tracks
 - a. Average time window (<u>(\L)</u>
 - i. Z / Δt = v_ion


Final measurement: <u>Ion Mobility</u> = <u>Updated version!</u>

- 1. Tilted <u>ED</u> alpha tracks
 - a. Distribution \Rightarrow Get mean value (Δ t)
 - b. Knowing electrons' velocity in gas (v)
 - i. <u>Z travelled by track ⇒ 1.5 cm</u>

- 2. Tilted <u>NID</u> alpha tracks
 - a. Average time window (<u>\(t</u>)
 - i. Z / Δt = v_ion



- Data *self-consistent* with previous year's data (900 mbar)
- Charge carriers' *mobility* consistent with *SF6-* in literature
- <u>PMT signal undoubtedly proved NID with optical readout!</u>

Future:

→ New data with pre-amp

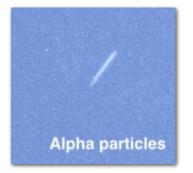
to be analyzed.

- Could help understanding the signal's structure
- Diffusion measurement to complement sCMOS analysis

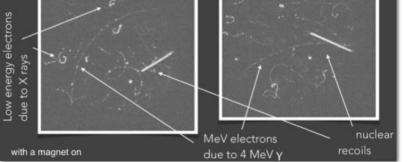
Thank you for your attention!

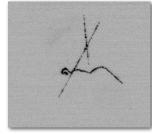
Scientific Communications (November 2022 - October 2023):

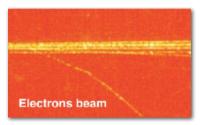
1.	Papers:	
	1.1.	LIME — A gas TPC prototype for directional Dark Matter search for the CYGNO experiment
		Amaro, F. D.; Baracchini, E.; Benussi, L. et al
		NIM A, Mar. 2023
	1.2.	50 litres TPC with sCMOS-based optical readout for the CYGNO project
		Mazzitelli, G.; Amaro, F. D.; Baracchini, E. et al
		NIM A, Jan. 2023
	1.3.	Noise assessment of CMOS Active Pixel sensors for the CYGNO Experiment
		Almeida, B. D.; Amaro, F. D.; Antonietti, R. et al
		Meas. Sci. Technol., Sep. 2023 (accepted)
	1.4.	Dual-Polarity Ion Drift Chamber: Experimental results with Xe–SF6 mixtures
		Marques, A.P.; Marques, D.J.G.; Duarte, N.G.S. et al
		NIM A, Jan. 2023
	1.5.	Directional iDBSCAN to detect cosmic-ray tracks for the CYGNO experiment
		Amaro, F. D.; Antonietti, R.; Baracchini, E. et al
		Meas. Sci. Technol., Sep. 2023
	1.6.	A 50 liter CYGNO prototype overground characterization
		Amaro, F. D.; Baracchini, E.; Benussi, L. et al
		EPJ C (submitted)
	1.7.	Secondary scintillation yield from GEM electron avalanches in He-CF4 and He-CF4-isobutane for CYGNO
		– Directional Dark Matter search with an optical TPC
		Amaro, F. D.; Baracchini, E.; Benussi, L. et al
		Phys. Letter B (submitted)
2.		e Communications:
	2.1.	The CYGNO experiment, a directional optically readout detector for Dark Matter searches
		Oral presentation
		CPAD 2022, the Coordinating Panel for Advanced Detectors, 29/11 - 2/12, 2022, Stony Brook, US
	2.2.	CYGNO, a directional Dark Matter TPC optically readout
		Oral presentation
		LIDINE 2023, Light Detection in Noble Elements, 20 - 22 Sep, 2023, Madrid, Spain



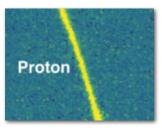
Backup & more details

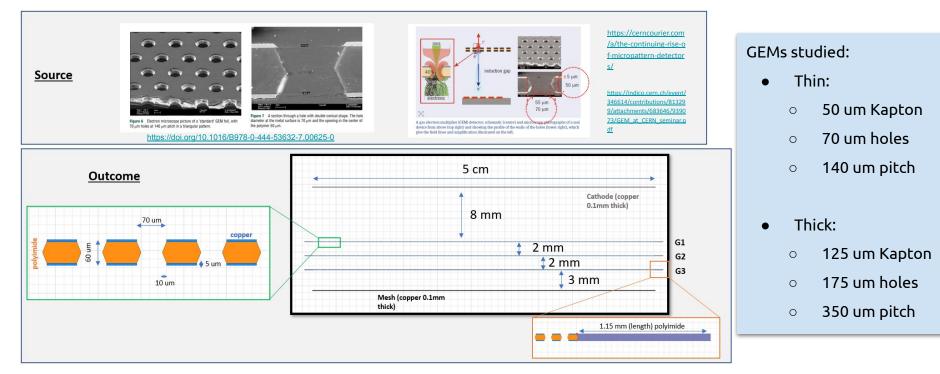

CYGNO - Some pictures!





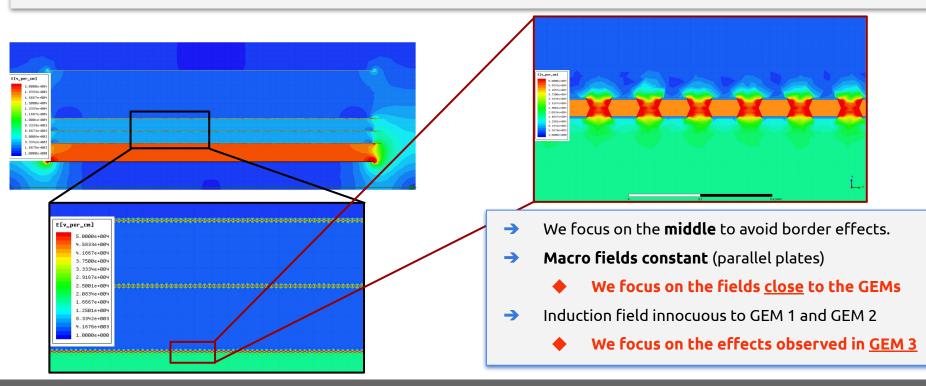
450 MeV electron with its δ ray





Enhance. of light yield - Simulation with Maxwell

→ Given a setup with different materials and voltages applied, Maxwell calculates the electric field within a defined region. Different GEM configurations were designed and studied.



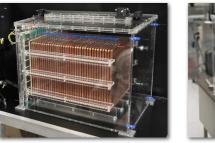
GS

Maxwell - A visual example

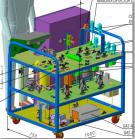
- **Example** of the calculated electric field in the <u>t-t-t configuration</u>.
- V_GEMs : 400V
 TFs: 2.5 kV/cm, in 2 mm
 DF: 1kV/cm, in 8mm
 Induc
 - Induction field: 18.3 kV/cm, in 3 mm

CYGNO - The roadmap

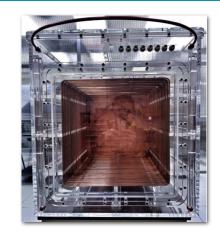
CZGNO G S Experiment S I

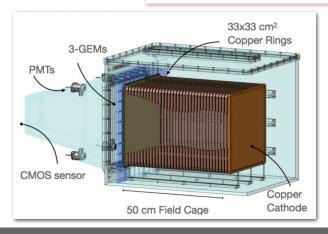

Several ongoing efforts in different fronts:

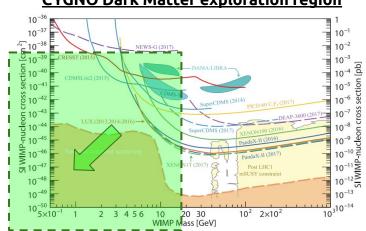
- Sensitivity
- 3D reconstruction
- Directionality
- ER vs. NR discrimination (ML)
- Shielding optimization
- Data vs. MC



Funded &

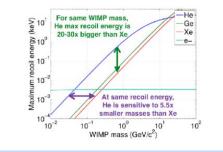



CYGNO - LIME


- → Single-sided cathode, <u>50 L</u> gaseous TPC
- At atm pressure, room temperature and He:CF4
- → Triple 33x33 cm² GEM stack for amplification
- → Optical readout
 - 4 PMTs
 - 1 sCMOS camera (ORCA Fusion)
- Copper ring field cage, 50 cm drift

CYGNO Dark Matter exploration region

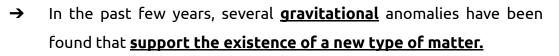
Low Density @ atm pressure

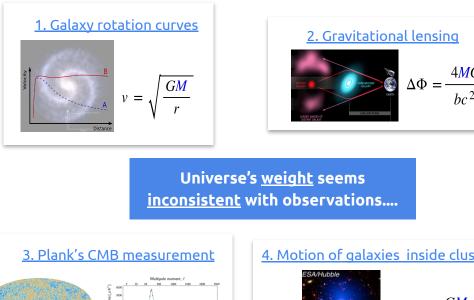

 \rightarrow Allows tracks of several millimeters at few keV without compromising exposure.

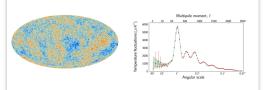
< 10 GeV/c²

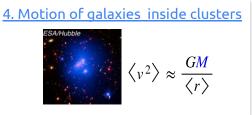
- To observe lower WIMP masses: \rightarrow
 - Lower thresholds are necessary since lower $m_{\mathbf{X}}$ originate lower energy recoils.
 - Light nuclei used to maximize energy transfer.

Helium (He)


Light target for SI in \rightarrow low mass range.



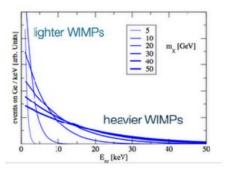

Fluorine (F)


- Heavier target to \rightarrow intermediate WIMP masses.
- Also Sensitive to SD \rightarrow coupling since A = 19 (odd).

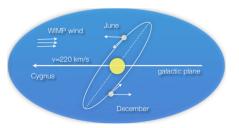
Dark Matter - What, why and where?

This "matter" dominates the universe and only interacts gravitationally... Commonly called **<u>Dark Matter</u> Best explanation (?) WIMPs** $(m\chi \sim GeV to TeV)$ Highly justified theory independently predicted by **extensions** of the **Standard Model** at the weak-scale and

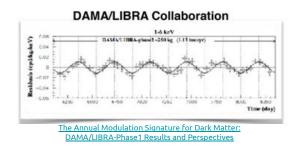
Cosmology!

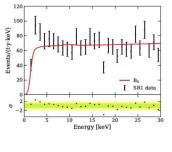

GS

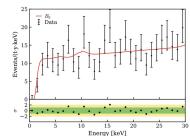
WIMPs - What dependency to explore?


Increasing <u>reliability</u> but increasing <u>difficulty</u> in the experimental technique.

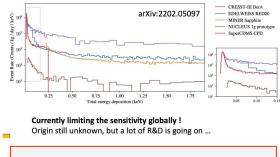
1. Exploring the ENERGY dependency


Results in a <u>falling</u> <u>exponential</u> with no peculiar features. The <u>background</u> has a similar spectrum.


2. Exploring the **TIME dependency**



Results in a **few % annual**


modulation.

Exponentially rising background towards lower energies

In all of these, it's hard to <u>prove / disprove DM</u>.

The CYGNO project

<u>CYGNO</u> is part of a proto-collaboration, <u>CYGNUS</u>, focused on establishing a Galactic **Directional Recoil Observatory** that could test and study DM hypothesis beyond the erc neutrino floor. 10 m³, He:SF4 CYGNO thick GEM @ Boulby, GEMs + sC CYGNUS-China scoposel submitted @ Jinping, under discussion 1 m³ demonstrator funded towards 30 m³ detector CYGNUS-HD 10 10 m³, He:SFs, Micromegos + strips m³, He:CFa **CYGNUS-Kamiok** proposal submitted GEMs + PMT + CMOS @ LNGS 1 m³.He:SF₄(:CF₄) er submission INFN CSN2 out text @ Kamioka CYGNUS-Australia 1 m² @ Stawell, under discussion **(berimen** https://inspirehep.net/literature/1813839

Within the CYGNUS collaboration, several approaches are being studied.

The italian group, <u>CYGNO</u>, is developing a **gaseous TPC** based on the setup:

GEMs + sCMOS + PMT to test Optical Readout