Galactic CRs spectra with DAMPE and R&D activities for HERD

Candidate: Irene Cagnoli

Advisor: Ivan De Mitri

Second year activity report 20/10/2023

Overview

Measurements of CRs spectra with DAMPE:

- The DAMPE space mission
- The all-particle spectrum
- Preliminary analysis for the all-particle spectrum
- Next steps

Hardware R&D of the HERD PSD:

- the HERD future space mission
- Activities focused on the PSD hardware development and test

The DAMPE space mission

- Collaboration of Chinese, Italian and Swiss scientific institutions
- Launched in December 2015
 - Sun-synchronous orbit
 - At 500 km altitude
 - Payload of 1400 kg
- The primary scientific goals:
 - Study of cosmic ($e^+ + e^-$) spectrum
 - Study of CR protons and heavier nuclei
 - $\circ \qquad \text{High energy } \gamma\text{-ray astronomy}$
 - Indirect search for Dark Matter signatures
- The main features

es	Acceptance	~0.3 m ² sr				
	Energy resolution	1.2% at 100 GeV (e/γ) < 40% at 800 GeV (nuclei)				
	e/γ angular resolution	0.2° at 100 GeV				
	Detection	10 GeV - 10 TeV (e/γ) 50 GeV - 200 TeV (nuclei)				

- Charge measurement + anti-coincidence for γ ID
 2 planes (X/Y) of plastic scintillator bars
- **Track** reconstruction + additional **charge** measurement
- 6 planes of Si microstrip detectors + 3 W layers

- Energy measurement + em/had showers discrimination
- 14 layers of BGO crystal bars
- 32 X_0 and 1.6 λ_1

- Further em/had showers separation
- 4 boron-doped scintillator tiles

All-particle spectrum

Direct CRs experiments

- Precise measurement of CRs spectra
- Difficulty in measuring CRs spectra > hundreds TeV
 - Limited acceptance
 - Rapidly falling CRs flux with energy

Indirect CRs experiments

- Measurements above the 'knee'
- More model dependent
- Have larger uncertainties

The measure of the all-particle spectrum between 100 GeV -1 PeV would provide a link between direct and indirect CRs detectors

Use loose charge cut selection to increase the statistics (and the energy reach)

First investigation

- No charge selection
- No composition model
 assumption
- Need to assume the same acceptance and response matrix for all Z
- Study for dedicated analysis cuts to limit the systematics

Current investigation

Use loose charge cut selection to increase the statistics (and the energy reach)

First investigation

- No charge selection
- No composition model assumption
- **Problem**: p and Fe acceptances remain very different
 - the uncertainty in the unfolded flux would be teo large

Current investigation

- Assume a mass composition model
- Evaluate the systematics due to the assumption of a composition model
- Method typically used by ground-based experiments

•

MC data

- Proton, He: [100 GeV 1 PeV] energy range
- C, N, O, Mg, Fe: [100 GeV 500 TeV] energy range •

- Rejection of SAA flight data
- No side-in events
- Good shower containment in the BGO

Analysis selection

pre-selection

- BGO E_{DEPO} > 100 GeV
- High Energy Trigger activated

Composition model

- Use the same elements considered for MC dataset
- First attempt with Hoerandel poly-gonato model

Table 7: Absolute flux Φ_Z^0 [(m² sr s TeV)⁻¹] at $E_0 = 1$ TeV/nucleus and spectral index γ_Z of cosmic-ray elements.

	Z		Φ_Z^0	$-\gamma_Z$	Z		Φ_Z^0	$-\gamma_Z$	Z		Φ_Z^0	$-\gamma_Z$	
-	1^{2}	Η	$8.73\cdot 10^{-2}$	2.71	32^{4}	Ge	$4.02\cdot 10^{-6}$	2.54	63^{4}	Eu	$1.58\cdot10^{-7}$	2.27	-
	2^{2}	He	$5.71\cdot 10^{-2}$	2.64	33^{4}	As	$9.99\cdot 10^{-7}$	2.54	64^{4}	Gd	$6.99\cdot 10^{-7}$	2.25	
	3^3	Li	$2.08\cdot 10^{-3}$	2.54	34^4	Se	$2.11\cdot 10^{-6}$	2.53	65^{4}	$^{\mathrm{Tb}}$	$1.48\cdot 10^{-7}$	2.24	
	4^{3}	Be	$4.74\cdot 10^{-4}$	2.75	35^4	\mathbf{Br}	$1.34\cdot 10^{-6}$	2.52	66^{4}	Dy	$6.27\cdot 10^{-7}$	2.23	
	5^3	в	$8.95\cdot 10^{-4}$	2.95	36^{4}	\mathbf{Kr}	$1.30\cdot 10^{-6}$	2.51	67^{4}	Ho	$8.36\cdot 10^{-8}$	2.22	
	6^{3}	С	$1.06\cdot 10^{-2}$	2.66	37^{4}	Rb	$6.93\cdot 10^{-7}$	2.51	68^{4}	\mathbf{Er}	$3.52\cdot 10^{-7}$	2.21	
	7^{3}	Ν	$2.35\cdot 10^{-3}$	2.72	38^{4}	\mathbf{Sr}	$2.11\cdot 10^{-6}$	2.50	69^{4}	Tm	$1.02\cdot 10^{-7}$	2.20	
	8^3	0	$1.57\cdot 10^{-2}$	2.68	39^{4}	Y	$7.82\cdot 10^{-7}$	2.49	70^{4}	$\mathbf{Y}\mathbf{b}$	$4.15\cdot 10^{-7}$	2.19	
	9^3	\mathbf{F}	$3.28\cdot 10^{-4}$	2.69	40^{4}	\mathbf{Zr}	$8.42\cdot 10^{-7}$	2.48	71^{4}	Lu	$1.72\cdot 10^{-7}$	2.18	
	10^{3}	Ne	$4.60\cdot 10^{-3}$	2.64	41^{4}	Nb	$5.05\cdot 10^{-7}$	2.47	72^{4}	Hf	$3.57\cdot 10^{-7}$	2.17	
	11^{3}	Na	$7.54\cdot10^{-4}$	2.66	42^{4}	Mo	$7.79\cdot 10^{-7}$	2.46	73^{4}	Ta	$2.16\cdot 10^{-7}$	2.16	
	12^{3}	Mg	$8.01\cdot 10^{-3}$	2.64	43^{4}	Tc	$6.98\cdot 10^{-8}$	2.46	74^{4}	W	$4.16\cdot 10^{-7}$	2.15	
	13^3	Al	$1.15\cdot 10^{-3}$	2.66	44^{4}	\mathbf{Ru}	$3.01\cdot 10^{-7}$	2.45	75^{4}	Re	$3.35\cdot 10^{-7}$	2.13	
	14^{3}	Si	$7.96\cdot 10^{-3}$	2.75	45^{4}	$\mathbf{R}\mathbf{h}$	$3.77\cdot 10^{-7}$	2.44	76^{4}	Os	$6.42\cdot 10^{-7}$	2.12	
	15^{3}	\mathbf{P}	$2.70 \cdot 10^{-4}$	2.69	46^{4}	\mathbf{Pd}	$5.10\cdot 10^{-7}$	2.43	77^{4}	\mathbf{Ir}	$6.63\cdot10^{-7}$	2.11	
	16^{3}	\mathbf{S}	$2.29\cdot 10^{-3}$	2.55	47^{4}	Ag	$4.54\cdot 10^{-7}$	2.42	78^{4}	\mathbf{Pt}	$1.03\cdot 10^{-6}$	2.10	
	17^{3}	Cl	$2.94\cdot 10^{-4}$	2.68	48^{4}	Cd	$6.30\cdot 10^{-7}$	2.41	79^{4}	Au	$7.70\cdot 10^{-7}$	2.09	•
	18^{3}	Ar	$8.36\cdot10^{-4}$	2.64	49^{4}	In	$1.61\cdot 10^{-7}$	2.40	80^{4}	$_{\rm Hg}$	$7.43 \cdot 10^{-7}$	2.08	хĩ
	19^{3}	K	$5.36\cdot 10^{-4}$	2.65	50^{4}	\mathbf{Sn}	$7.15\cdot10^{-7}$	2.39	81^{4}	Ti	$4.28\cdot 10^{-7}$	2.06	i vi
	20^3	Ca	$1.47\cdot 10^{-3}$	2.70	51^{4}	\mathbf{Sb}	$2.03\cdot 10^{-7}$	2.38	82^{4}	\mathbf{Pb}	$8.06\cdot 10^{-7}$	2.05	lstr
	21^{3}	Sc	$3.04\cdot10^{-4}$	2.64	52^{4}	Te	$9.10\cdot 10^{-7}$	2.37	83^{4}	Bi	$3.25\cdot10^{-7}$	2.04	0 O
	22^{3}	Ti	$1.14\cdot 10^{-3}$	2.61	53^{4}	I	$1.34\cdot 10^{-7}$	2.37	84^{4}	Po	$3.99\cdot 10^{-7}$	2.03	h/
	23^{3}	V	$6.31\cdot 10^{-4}$	2.63	54^{4}	Xe	$5.74\cdot10^{-7}$	2.36	85^{4}	At	$4.08\cdot 10^{-8}$	2.02	221
	24^3	\mathbf{Cr}	$1.36\cdot 10^{-3}$	2.67	55^4	\mathbf{Cs}	$2.79\cdot 10^{-7}$	2.35	86^{4}	\mathbf{Rn}	$1.74\cdot 10^{-7}$	2.00	24
	25^{3}	Mn	$1.35\cdot 10^{-3}$	2.46	56^{4}	\mathbf{Ba}	$1.23\cdot 10^{-6}$	2.34	87^{4}	\mathbf{Fr}	$1.78\cdot 10^{-8}$	1.99	53
	26^{2}	Fe	$2.04\cdot 10^{-2}$	2.59	57^{4}	La	$1.23\cdot 10^{-7}$	2.33	88^{4}	Ra	$7.54\cdot 10^{-8}$	1.98	2
	27^{3}	Co	$7.51\cdot 10^{-5}$	2.72	58^{4}	Ce	$5.10\cdot 10^{-7}$	2.32	89^{4}	\mathbf{Ac}	$1.97\cdot 10^{-8}$	1.97	
	28^{3}	Ni	$9.96\cdot 10^{-4}$	2.51	59^{4}	\mathbf{Pr}	$9.52\cdot 10^{-8}$	2.31	90^{4}	Th	$8.87\cdot 10^{-8}$	1.96	
	29^4	$\mathbf{C}\mathbf{u}$	$2.18\cdot 10^{-5}$	2.57	60^{4}	Nd	$4.05\cdot 10^{-7}$	2.30	91^4	\mathbf{Pa}	$1.71\cdot 10^{-8}$	1.94	
	30^4	Zn	$1.66\cdot 10^{-5}$	2.56	61^{4}	\mathbf{Pm}	$8.30\cdot 10^{-8}$	2.29	92^{4}	U	$3.54\cdot 10^{-7}$	1.93	
	31^4	Ga	$2.75\cdot 10^{-6}$	2.55	62^{4}	Sm	$3.68\cdot 10^{-7}$	2.28					

Fit parameters (for H-Ni) derived as the best fit to the spectra of different direct and indirect experiments according to a single power law (SPL)

Using

the Single Power Law fit function $\Phi(E) = \Phi^0 \left(\frac{E}{1 T_{eV}}\right)^{\gamma}$

the Hoerandel parameters (Φ^0 , y) (table) The SPL for each element has been reproduced

Composition model - Hoerandel poly-gonato model

11

MC data - using weights from Hoerandel model

Total acceptance (response matrix) obt. as the weighted sum of all the elements histograms (matrices) using weights derived from the Hoerandel model

Output flux - first attempt with Hoerandel model

For the all-particle analysis

- Use other composition models to evaluate the systematics due to the composition model assumption
- Derive a composition model by fitting data from direct experiments
- Study better the possible systematics that could affect the flux at low (<1 TeV) and high energies (>200 TeV)

Perform other spectral analyses with DAMPE

- p/He flux ratio
- spectral measurement of the heavy mass elements combined group

The HERD space mission

- Collaboration of Chinese, Italian, Swiss and Spanish institutes
- Launch planned for 2027
 - Onboard the China's Space Station
 - Lifetime ~10 years
 - Payload of ~4000 kg
- The primary scientific goals:
 - Precise CR spectra and composition at the 'knee'
 - \circ High energy $\gamma\text{-ray}$ astronomy and transient studies
 - Electrons spectra up to tens of TeV
 - Indirect search for Dark Matter signatures
- The expected performances

Acceptance	~2.5 m ² sr
Energy resolution	1.2% at 200 GeV (e/γ) 20-30% at 0.1 - 10 ³ TeV (nuclei)
e/γ angular resolution	0.1° at 10 GeV
Detection	10 GeV - tens TeV (e/γ) 30 GeV - 3 PeV (nuclei)

The detector design

- Particle energy measurement + e/p separation
- ~7500 LYSO crystals
- 55 X_0 and 3 λ_1

The HERD PSD

- Design: 4 layers of trapezoidal bars readout by SiPMs
- Requirements
 - High detection efficiency: ~99.9%
 - Good charge resolution < 30% at low Z
 - Wide dynamic range in identifying nuclei (at least up to Z = 30)
- Test beam campaigns at CERN and CNAO to
 - optimise SiPM-based readout
 - evaluate the overall performance of the prototypes

Experimental setup @CERN SPS, Oct 2023

Tile ADC - Spill

PSD Prototype & Tile (in the Trigger)

- made of BC404 plastic scintillator
- SiPMs (3 × 3 mm² & 1.3 × 1.3 mm²)
- HERD-BETA chip

lon beam

• Derived from a 150 GeV/A primary lead beam impinging onto a Beryllium target

Summary

All-particle analysis with DAMPE:

- Importance of the all-particle spectrum to provide a link between direct and indirect CRs experiments
- Analysis status
 - Built a preliminary structure for the analysis
 - Assumption of the Hoerandel model to obtain the composition model
 - Obtained a preliminary result for the all-particle

Hardware R&D of the HERD PSD:

• tests on hardware and prototypes construction for beam tests at CERN and CNAO

Workshops and conferences

- 6th International Symposium on Ultra High Energy Cosmic Rays (UHECR2022), L'Aquila, 3-7 oct. 2022
- 38th International Cosmic Ray Conference (ICRC2023), virtual, 26 jul. 3 aug. 2023
- 109 Congresso Nazionale SIF, Salerno, 11-15 sept. 2023

Collaboration meetings

- 11th international DAMPE workshop, virtual, 12-15 jun. 2023
- Some talks during periodical working group online meetings of DAMPE

Schools

- NBIA PhD School "Here, There & Everywhere", Copenhagen, 11-15 jul. 2022
- 6th HEP C++ course and hands-on training Essential, virtual, 6-10 mar. 2023
- 12th international IDPASC school and workshop, Granada, 18-28 sept. 2023

Other activities

- Test beam at CERN SPS for the HERD PSD, 17-25 nov. 2022
- Test beam at CNAO for the HERD PSD, 10-12 jan. 2023
- Test beam at CNAO for the HERD PSD, 21-23 may 2023
- Working in Bari to test the DAQ of the HERD PSD, 10-15 jul. 2023
- Test beam at CERN PS for the HERD PSD, 3-12 sept. 2023
- Test beam at CERN SPS for the HERD PSD, 6-11 oct. 2023

Outreach activities

- Participation in SHARPER (European Researchers nigh), L'Aquila, 30 sept. 2022
- Volunteer in UHECR2022 conference, L'Aquila, 3-7 oct. 2022
- 9th GSSI Astroparticle physics Science Fair, L'Aquila, 21-23 feb. 2023
- Participation to "Corso formazione ed addestramento Preposti per visite in underground", Assergi-LNGS, 10 may 2023

Backup slides

 $\Phi E^{2.6}$ (m⁻² sr⁻¹ s⁻¹) (GeV)^{1.6}

10⁴

All-particle spectrum recent measurements

HAWC:

ARGO-YBJ

HAWC-2011

TUNKA-133

Data from 01/2017 to 12/2020 Energy range 10 TeV - 1 PeV A Break at 28.1 TeV with 4.2 σ

NUCLEON:

Measuring the spectrum between 100 GeV -1 PeV

- to test the paradigm of a unique power law energy spectrum below the knee to provide a link between direct and indirect CRs detectors Ο
- Ο

Individual CR nuclei spectra

The HERD PSD

Tile ADC - Spill

PSD Prototype

- 8 bars made of BC404 plastic scintillator
- 8 Printed Circuit Boards (PCBs) housing & Hamamatsu SiPMs
 - \circ 4 of size 3 × 3 mm²
 - \circ 4 of size 1.3 × 1.3 mm²
- HERD-BETA chip as read-out electronics (by ICCUB-SiUB)

Tile (in the Trigger)

- BC404 plastic scintillator
- 2 SiPMS (3 × 3 mm² & 1.3 × 1.3 mm²)
- HERD-BETA chip

lon beam

• Derived from a 150 GeV/A primary lead beam impinging onto a Beryllium target

Experimental setup @CERN SPS, Oct 2023

The HERD PSD

