

# Detection And Study of Medium-Low Energy Gamma-Rays With Novel Spaceborn Detectors

Ph.D. candidate: Aleksei Smirnov Advisor: Felicia Carla Tiziana Barbato

20/10/2023



Wonderful experiments and results in the hard X-ray/low energy gamma ray range (E ~10-200 keV) and high energy gamma rays range (E > 1 GeV)

Medium energies still under-explored (E ~ MeV)

#### Powerful probes for the extreme Universe

#### GW170817



#### TXS 0506+056









#### THE CRYSTAL EYE METHOD





## G S S

## FULL DETECTOR SIMULATIONS: CRYSTAL EYE PERFOMANCE















#### NUSES/Zirè

#### Space Rider/WINK

#### Full detector







- Different crystal material check
- Test beam

- Debugging & characterization
- Simulations

- Full detector simulation
- Check different geometries

![](_page_5_Picture_0.jpeg)

## WINK: A PATHFINDER FOR THE SPACE RIDER FLIGHT

![](_page_5_Picture_2.jpeg)

![](_page_5_Picture_3.jpeg)

Technological pathfinder eligible for the Space RIDER launch by ESA in 2025

SCIENTIFIC GOAL : Background characterization

3 different type of LYSO scintillators:

Ground surfaces by EPIC
Polished surfaces by EPIC
Ground surfaces by OST

WINK: a pathfinder mission for the future Crystal Eye X and y rays all sky monitor

Number of pixels: 3Material: LYSOPhotodetectors: 4x4 Hamamatsu MPPC 3x3 mm² 50 μmWeight: 1.5 kgPower consumption: < 10 W</td>FOV: 30°

![](_page_5_Picture_9.jpeg)

UNIVERSITÀ DEGLI STUDI DI NAPOLI

![](_page_5_Picture_11.jpeg)

**PRIN 2022** 

6

![](_page_6_Picture_2.jpeg)

SATA 2

![](_page_6_Picture_3.jpeg)

![](_page_6_Figure_4.jpeg)

![](_page_7_Picture_2.jpeg)

![](_page_7_Figure_3.jpeg)

Energy

Expected LYSO spectrum

Measurement of power consumption

Answers to ESA questions to design the Space Rider electrical interface

![](_page_7_Picture_8.jpeg)

Measurement of background signal

Study the LYSO Spectrum for trigger system

![](_page_8_Picture_0.jpeg)

Power Consumption vs Time

![](_page_8_Figure_3.jpeg)

Time

![](_page_9_Figure_0.jpeg)

![](_page_9_Picture_2.jpeg)

![](_page_9_Figure_3.jpeg)

10

![](_page_10_Picture_0.jpeg)

![](_page_10_Figure_2.jpeg)

![](_page_10_Figure_3.jpeg)

## SETTING THE TRIGGER THRESHOLD

![](_page_11_Picture_2.jpeg)

Threshold

![](_page_11_Figure_3.jpeg)

|                                | Level  | 1                           |          |          |          |     |
|--------------------------------|--------|-----------------------------|----------|----------|----------|-----|
| AND4                           |        | OR                          | 4        |          |          |     |
| Ļ                              | Ļ      |                             |          |          |          |     |
| Majority of 3 quadrants over 4 |        | At least one fired quadrant |          |          |          |     |
| YES YES YES                    | NO     | YES                         | NO       | NO       | NO       |     |
|                                | Level2 |                             |          |          |          |     |
|                                |        |                             | 200      |          |          |     |
| AND8                           |        | Ur                          | 32       |          |          |     |
| Coincidence of 2 crystals      | Fre    | ee running                  | (at leas | t one fi | red crys | tal |
| Particle trigger               |        | Calib                       | oration  | rigger   |          |     |

![](_page_11_Figure_5.jpeg)

Pixel7 AND-AND

![](_page_11_Figure_7.jpeg)

#### SOURCE SPECTRUM

![](_page_12_Figure_2.jpeg)

![](_page_12_Figure_3.jpeg)

Energy, MeV

![](_page_12_Figure_4.jpeg)

![](_page_12_Figure_5.jpeg)

13

#### SIMULATION SPECTRA

![](_page_13_Picture_2.jpeg)

h

14

![](_page_13_Figure_3.jpeg)

![](_page_13_Figure_4.jpeg)

# Terzina

Pathfinder for future missions devoted to UHE cosmic rays and neutrino astronomy throught space-based atmospheric Cerenkov light detection.

![](_page_14_Picture_4.jpeg)

Measure the fluxes of low energy (<250 MeV) CR, mainly electrons and protons, to study cosmic rays, Van Allen belts, space weather and the magnetosphere-ionosphere-litosphere couplings (MILC) in case of seismic / volcanic activities. Detect 0.1-10 MeV photons for the study of transient (GRB, e.m. follow up of GW events, SN emission lines,...) and steady gamma sources.

# New technologies and approaches

Developement of new observational techniques , testing new sensors (e.g. **SiPM**) and related electronics/DAQ for space missions. New solutions for the satellite platform.

to Sun

![](_page_15_Picture_2.jpeg)

![](_page_15_Figure_3.jpeg)

![](_page_16_Picture_2.jpeg)

## Zire final design

![](_page_16_Picture_4.jpeg)

# **Zirettino** (for test and calibrations)

![](_page_16_Picture_6.jpeg)

- 3 planes x-y view FTK
- 32 layers PST
- 2 layers 4x4 CALOg
- 9 ACS

- 1 plane x-y view FTK
- 8 layers PST
- 1 layers 2x4 CALOg
- 5 ACS

![](_page_17_Picture_0.jpeg)

#### **ZIRETTINO CONSTRUCTION**

![](_page_17_Picture_2.jpeg)

## The fiber tracker (FTK)

## **Plastic Scintillator Tower** (PST) bars

![](_page_17_Picture_5.jpeg)

![](_page_17_Picture_6.jpeg)

![](_page_17_Picture_7.jpeg)

## **PST** layout

## Anticoincidence and SiPM readout

![](_page_17_Picture_10.jpeg)

![](_page_17_Figure_11.jpeg)

![](_page_18_Figure_0.jpeg)

## **ZIRETTINO TRIGGERS**

![](_page_18_Picture_2.jpeg)

![](_page_18_Figure_3.jpeg)

| Triggers          |                               |  |  |
|-------------------|-------------------------------|--|--|
| $\langle \rangle$ |                               |  |  |
|                   |                               |  |  |
|                   |                               |  |  |
|                   |                               |  |  |
|                   | Internal                      |  |  |
|                   |                               |  |  |
|                   |                               |  |  |
|                   |                               |  |  |
| Muon              | Pst_cross & central_calog     |  |  |
| vertical          | (3,4,5,6)                     |  |  |
|                   | pst 1 1 2 & pst 2 2 2 &       |  |  |
| Pst cross         | pst_1_3_2                     |  |  |
|                   |                               |  |  |
|                   | calog_on(1) or calog_on(2) or |  |  |
|                   | calog_on(3) or calog_on(4) or |  |  |
|                   | calog_on(5) or calog_on(6) or |  |  |
| Calog on          | calog_on(7) or calog_on(8)    |  |  |
| Mip pass          |                               |  |  |
| no acs            | Any pst on & calog_on         |  |  |

#### **ZIRETTINO GUI**

![](_page_19_Picture_2.jpeg)

154

pst\_1\_1\_3

1502

![](_page_19_Figure_3.jpeg)

![](_page_19_Picture_4.jpeg)

calog\_1\_1x1

![](_page_19_Figure_5.jpeg)

#### **BEAM SPOT POSITION**

POSITION

![](_page_20_Figure_4.jpeg)

#### **HIT MAP**

![](_page_20_Figure_6.jpeg)

![](_page_20_Figure_7.jpeg)

![](_page_20_Figure_8.jpeg)

![](_page_20_Figure_9.jpeg)

![](_page_20_Figure_10.jpeg)

![](_page_20_Figure_11.jpeg)

![](_page_20_Figure_12.jpeg)

![](_page_20_Figure_13.jpeg)

4000

6000 8000 1000

pst\_1\_1\_3 pst\_3\_1\_3

pst\_2\_2\_3 pst\_4\_2\_3

![](_page_21_Picture_2.jpeg)

## CONFERENCES

- SIF conference, Crystal Eye report, A.Smirnov, <u>https://2023.congresso.sif.it/talk/508</u>
- Crystal Eye: a wide sight on the Universe for X and gamma-ray detection, R.Colalillo et al,38th International Cosmic Ray Conference (ICRC2023), Proceedings of Science

#### **FUTURE PERSPECTIVES**

- Realization of a "slice"-prototype in 2024
- Space Rider mission in 2025
- Undergo test beams
- New geometry for the full detector and prototype

## **BACK UP**

![](_page_22_Picture_1.jpeg)

## CONCLUSION

![](_page_23_Picture_1.jpeg)

## **CRYSTAL EYE PERFOMANCE**

![](_page_24_Picture_1.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_2.jpeg)

![](_page_25_Picture_3.jpeg)

#### EFFICIENCY

![](_page_26_Picture_1.jpeg)

Efficiency in th i-th bin is defined as follows:

 $\epsilon_i = \frac{n_i}{N_i}$ , with *n* the number of

events after the selection cuts and *N* are the simulated number of events in the field of view hitting the detector.

![](_page_26_Figure_5.jpeg)

#### **EFFECTIVE AREA**

![](_page_27_Picture_1.jpeg)

The effective area in the i-th bin is defined as follows:

$$A_{eff_i} = \frac{n_i}{N_i} \times A_{source}$$
, with *n* the

number of events after the selection cuts, *N* the total number of simulated events and *A*<sub>source</sub> the surface area of the source where gamma rays are generated.

![](_page_27_Picture_5.jpeg)

![](_page_27_Figure_6.jpeg)

#### **EFFECTIVE AREA IN DIFFERENT MATERIALS**

Effective area was calculated considering LYSO and GAGG scintillating crystals for the pixel material.

![](_page_28_Figure_3.jpeg)

Effective Area -  $\theta = 0^{\circ}$ 

#### **CONTINUUM SENSITIVITY**

![](_page_29_Picture_1.jpeg)

Continuum sensitivity at the  $N_{\sigma}$ significance level for a Tobs observation time is defined as follows:

$$S = \frac{N_{\sigma}}{0.68} \sqrt{\frac{B \Delta \Omega_{68}}{A_{eff} T_{obs} \Delta E}}$$

Where *B* is the background level,  $A_{eff}$  the effective area within a energy bin  $\Delta E$ .

This sensitivity depends on the angular resolution of the instrument. Here on the left are the 1 year sensitivity curves for different assumed theta resolutions (analogous to PSF 68% containment).

![](_page_29_Figure_6.jpeg)

30

![](_page_30_Picture_1.jpeg)

This sensitivity is computed from the following signal/noise ratio:

 $\frac{S}{N} = \frac{N}{\sqrt{N+B}}$ 

Where N is the number of counts from an assumed source spectral model and B the background count level.

The plot shows the integrated sensitivity (1s exposure time) for an assumed GRB comptonized model, as a function of the peak energy of the model.

![](_page_30_Figure_6.jpeg)

![](_page_30_Figure_7.jpeg)

## SIMULATION DESIGN

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)

Without structure

With structure

#### **MEASUREMENT SPECTRA**

#### CONFIGURATION

- Shaping time 87.5 ns
- Gate coincidence 90 ns
- High voltage 56 V
- High gain 5 units

![](_page_32_Figure_6.jpeg)

![](_page_32_Figure_7.jpeg)

Channel vs Energy

#### SIMULATION SPECTRUM

- 1. Calculate the expected number of decay events that would occur within the 100-second time window, based on the source activity and the half-life.
- 2. Generate a simulation of this number of decay events, using a Monte Carlo method.
- 3. For each decay event, calculate the energy deposited in the detector by the decay products, using a detector response simulation.
- 4. Assign a random time value to each decay event, sampled from a distribution that reflects the decay time distribution of the source. This can be a uniform distribution, assuming a constant rate of decay.
- 5. Sort the events by time and use a Poisson distribution to determine the number of events that occur in each time bin. This generates a simulated energy spectrum for the given time window.
- 6. Apply Calibration Curve to smear simulation result

## SIMULATION SPECTRUM

![](_page_34_Figure_1.jpeg)

LYSO (Lutetium Yttrium Orthosilicate) is a popular scintillating material used for radiation detection due to its high light output, good energy resolution, and fast decay time.

We have a spectrum generated from a LYSO scintillator with Na-22. Na-22 decays through beta-plus decay and results in two gamma photons with energies of 511 keV, which are used for energy calibration. In addition to the primary 511 keV gamma radiation emitted as a result of positron annihilation, Na-22 decay also leads to a characteristic secondary peak. This is due to a subsequent nuclear de-excitation process.

Comparing these two spectra, we can observe the impact of Na-22 on the energy spectrum. The prominent peak at 511 keV is due to the gamma radiation from Na-22 decay. This peak is used to calibrate and test our detection system, ensuring accurate energy measurements.

![](_page_35_Figure_3.jpeg)

The histogram subtraction method is a technique commonly used in data analysis, especially in radiation spectroscopy. In this process, we subtract the spectrum of the LYSO scintillator alone from the combined LYSO + Na-22 spectrum. See the next slide.

#### **Subtraction Spectrum**

Na-22 spectrum

![](_page_36_Figure_2.jpeg)

We used Gaussian fits to determine the precise energy levels corresponding to the 511 keV and 1275 keV peaks Cobalt-60 decays by beta decay into Nickel-60, a process during which it emits two gamma rays with energies of 1.17 and 1.33 MeV, respectively. These two gamma rays provide distinct peaks in the energy spectrum.

![](_page_37_Figure_1.jpeg)

#### **Subtraction Spectrum**

Co-60 spectrum

![](_page_38_Figure_2.jpeg)

#### Resolution

![](_page_39_Picture_1.jpeg)

The formula for calculating resolution is given by R , where  $\sigma$  represents the width of the peak (standard deviation) and E represents the center of the peak (mean). Essentially, this formula gives us the full width at half maximum (FWHM) as a percentage of the mean energy, providing a measure of how well our detector can resolve distinct energy levels. For each peak in our spectra – whether it's the 511 keV and 1275 keV peaks from the Na-22 source, or the 1.17 MeV and 1.33 MeV peaks from the Cobalt-60 source – we calculate the resolution using the aforementioned formula. This enables us to assess the performance of our detector across different energy levels

![](_page_39_Figure_3.jpeg)

40

![](_page_41_Picture_0.jpeg)

#### **CRYSTAL EYE PERFOMANCE**

![](_page_41_Picture_2.jpeg)

#### Effective area

![](_page_41_Figure_4.jpeg)

**Comparing Detector Effective Areas** 

![](_page_41_Figure_6.jpeg)

Effective Area -  $\theta = 0^{\circ}$ 

Effective area was calculated considering LYSO and GAGG scintillating crystals for the pixel material

![](_page_42_Picture_0.jpeg)

#### **CRYSTAL EYE PERFOMANCE**

![](_page_42_Picture_2.jpeg)

Efficiency 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Theta  $= 0^{\circ}$ Theta  $= 30^{\circ}$ 0.2 Theta  $= 60^{\circ}$ 0.1 Theta =  $90^{\circ}$ 10<sup>2</sup> 10<sup>3</sup> 10<sup>4</sup> 10 Primary Energy (keV)

Efficiency in th i-th bin is defined as follows:

 $\epsilon_i = \frac{n_i}{N_i}$ , with *n* the number of events after the selection cuts and *N* are the simulated number of events in the field of view hitting the detector.

![](_page_42_Figure_6.jpeg)

![](_page_42_Figure_7.jpeg)

The effective area in the <u>i-th</u> bin is defined as follows: $A_{eff_i} = \frac{n_i}{N_i} \times A_{source}$ , with *n* the number

of events after the selection cuts, *N* the total number of simulated events and *A*<sub>source</sub> the surface area of the source where gamma rays are generated.

## **Simulation Design**

![](_page_43_Figure_1.jpeg)

![](_page_43_Picture_2.jpeg)

Without structure

With structure

![](_page_44_Picture_0.jpeg)

#### **TRIGGER LOGIC**

![](_page_44_Picture_2.jpeg)

![](_page_44_Figure_3.jpeg)

![](_page_45_Picture_0.jpeg)

#### **Measurement spectrum**

#### CONFIGURATION

- Shaping time 87.5 ns
- Gate coincidence 90 ns
- High voltage 56 V
- High gain 5 units

![](_page_45_Figure_7.jpeg)

![](_page_45_Figure_8.jpeg)

- 1. Calculate the expected number of decay events that would occur within the 100-second time window, based on the source activity and the half-life.
- 2. Generate a simulation of this number of decay events, using a Monte Carlo method.
- 3. For each decay event, calculate the energy deposited in the detector by the decay products, using a detector response simulation.
- 4. Assign a random time value to each decay event, sampled from a distribution that reflects the decay time distribution of the source. This can be a uniform distribution, assuming a constant rate of decay.
- 5. Sort the events by time and use a Poisson distribution to determine the number of events that occur in each time bin. This generates a simulated energy spectrum for the given time window.
- 6. Apply Calibration Curve to smear simulation result

![](_page_47_Figure_1.jpeg)

![](_page_48_Picture_0.jpeg)

![](_page_48_Picture_2.jpeg)

![](_page_48_Figure_3.jpeg)

![](_page_48_Figure_4.jpeg)

1 Switch on the board (spike)

2 IDLE mode

3 Autoboot

![](_page_48_Figure_8.jpeg)

- 5 HV-SIPM ON
- 6 Data Acquisition

## **POWER CONSUMPTION**

![](_page_49_Picture_2.jpeg)

![](_page_49_Figure_3.jpeg)

10 Disk 1 off, disk 2 off, switch off

![](_page_50_Figure_0.jpeg)

#### SCAN PEDESTAL PARAMETERS(LG)

![](_page_50_Figure_2.jpeg)

#### **POSITION 0**

![](_page_51_Figure_2.jpeg)

Nvalid = Number of validation events

Nvalid = Number of events passing external trigger

![](_page_51_Figure_5.jpeg)

![](_page_51_Figure_6.jpeg)

## **POSITION 3**

![](_page_52_Figure_2.jpeg)

| TRIGGER                  | TRIGGER<br>EFFICIENC<br>Y<br>FOR<br>CENTRAL<br>POSITION<br>(Nvalid/Next<br>) |
|--------------------------|------------------------------------------------------------------------------|
| TRIG pst bar on<br>(any) | 1                                                                            |

Nvalid = Number of validation events

Nvalid = Number of events passing external trigger

![](_page_52_Picture_6.jpeg)

![](_page_52_Figure_7.jpeg)

it was plotted the hit map of the first 2 PST layers

#### **POSITION 4**

![](_page_53_Figure_2.jpeg)

| TRIGGER            | TRIGGER<br>EFFICIENC<br>Y<br>FOR<br>POSITION<br>(Nvalid/Next<br>) |
|--------------------|-------------------------------------------------------------------|
| Bar on, no fingers | 1                                                                 |
| Bar_on, fingers in | 1                                                                 |
| Trg ftk            | 1                                                                 |

Nvalid = Number of validation events

Nvalid = Number of events passing external trigger

![](_page_53_Picture_6.jpeg)

![](_page_53_Figure_7.jpeg)

it was plotted the hit map of the first 2 PST layers

HIT MAP

#### **POSITION 5**

![](_page_54_Figure_2.jpeg)

Nvalid = Number of validation events

Nvalid = Number of events passing external trigger

![](_page_54_Picture_5.jpeg)

![](_page_54_Figure_6.jpeg)

it was plotted the hit map of the first 2 PST layers

![](_page_55_Picture_0.jpeg)

Power Consumption vs Time

![](_page_55_Figure_4.jpeg)

![](_page_56_Picture_0.jpeg)

57

Power Consumption vs Time

![](_page_56_Figure_4.jpeg)

![](_page_57_Picture_0.jpeg)

![](_page_57_Picture_2.jpeg)

![](_page_57_Figure_3.jpeg)

![](_page_57_Figure_4.jpeg)

#### SCAN PEDESTAL PARAMETERS(HG)

![](_page_58_Figure_2.jpeg)

| SCAN PARAMETERS |     |            |       |    |           |    |        |        |
|-----------------|-----|------------|-------|----|-----------|----|--------|--------|
| FTK             | PST | <b>_</b> A | PST_B |    | CALOg 1x1 |    | RUN ID |        |
| HG=LG           | HG  | LG         | HG    | LG | DAC       | HG | LG     |        |
| 3               | 10  | 1          | 57    | 39 | 140       | 15 | 1      | 155135 |
| 13              | 12  | 3          | 58    | 41 | 140       | 17 | 3      | 155315 |
| 20              | 14  | 5          | 59    | 43 | 140       | 19 | 5      | 155454 |
| 31              | 16  | 7          | 60    | 45 | 140       | 21 | 7      | 155633 |
| 39              | 18  | 9          | 61    | 47 | 130       | 23 | 9      | 155812 |
| 43              | 20  | 11         | 62    | 49 | 125       | 25 | 11     | 155953 |

$$V_{SiPM} = V_{BD} + V_{OV} = V_{HV} - V_{DAC}$$

#### **Simulation Spectra**

![](_page_60_Picture_2.jpeg)

Resolution

![](_page_60_Figure_4.jpeg)

# Terzina

Pathfinder for future missions devoted to UHE cosmic rays and neutrino astronomy throught space-based atmospheric Cerenkov light detection.

# Zirè

Measure the fluxes of low energy (<250 MeV) CR, mainly electrons and protons, to study cosmic rays, Van Allen belts, space weather and the magnetosphere-ionosphere-litosphere couplings (MILC) in case of seismic / volcanic activities. Detect 0.1-10 MeV photons for the study of transient (GRB, e.m. follow up of GW events, SN emission lines,...) and steady gamma sources.

# New technologies and approaches

Developement of new observational techniques , testing new sensors (e.g. **SiPM**) and related electronics/DAQ for space missions. New solutions for the satellite platform.

## **BEAM SPOT POSITION INVESTIGATION**

![](_page_62_Picture_2.jpeg)

![](_page_62_Figure_3.jpeg)

![](_page_62_Figure_4.jpeg)

FTK

# with the second secon

PST

![](_page_62_Figure_6.jpeg)

PST

![](_page_62_Figure_7.jpeg)

![](_page_62_Figure_8.jpeg)

FTK

![](_page_62_Figure_10.jpeg)

![](_page_62_Figure_11.jpeg)

**BEAM SPOT POSITION 2** 

![](_page_62_Figure_12.jpeg)

CALOg

![](_page_62_Figure_13.jpeg)

![](_page_62_Figure_14.jpeg)

CALOg

![](_page_62_Figure_16.jpeg)

![](_page_62_Figure_17.jpeg)

![](_page_62_Figure_18.jpeg)

FTK

![](_page_62_Figure_19.jpeg)

![](_page_62_Figure_20.jpeg)

CALOg

#### **BEAM SPOT POSITION 4**

![](_page_62_Figure_22.jpeg)

## PST

![](_page_62_Figure_24.jpeg)

bar\_2\_3

bar\_2\_2

ar\_2\_1

X

bar\_1\_1 bar\_1\_2 bar\_1\_3

![](_page_62_Figure_25.jpeg)

#### BEAM SPOT POSITION 5

![](_page_62_Figure_28.jpeg)

FTK

![](_page_62_Figure_29.jpeg)

CALOg

![](_page_62_Figure_31.jpeg)

63

#### Setting the trigger threshold

![](_page_63_Figure_2.jpeg)

![](_page_63_Figure_3.jpeg)

![](_page_63_Figure_4.jpeg)

![](_page_63_Figure_5.jpeg)

![](_page_64_Picture_2.jpeg)

![](_page_64_Figure_3.jpeg)

![](_page_64_Figure_4.jpeg)

![](_page_64_Figure_5.jpeg)

![](_page_64_Picture_6.jpeg)

#### **Step 2** – Make a plot ADC channel vs Energy

![](_page_64_Figure_8.jpeg)

Step 3 – Linear fit

**Step 4** – Recalculate ADC channels in energy using linear response of ADC