

Detection And Study of Medium-Low Energy Gamma-Rays With Novel Spaceborn Detectors

Ph.D. candidate: Aleksei Smirnov Advisor: Felicia Carla Tiziana Barbato

20/10/2023

Wonderful experiments and results in the hard X-ray/low energy gamma ray range (**E** ∼**10-200 keV**) and high energy gamma rays range (**E > 1 GeV**)

Medium energies still under-explored (**E** ∼ **MeV**)

Powerful probes for the extreme Universe

GW170817 TXS 0506+056

E S I AND RESERVED AS A RESERVED OF STRUCK AND RESERVED ASSESSMENT AND RESERVED ASSESSMENT AND RESERVED ASSESSMENT AND RESERVED AN

3

<u>GS</u> FULL DETECTOR SIMULATIONS: CRYSTAL EYE PERFOMANCE

NUSES/Zirè Space Rider/WINK Full detector

- Different crystal material check
- Test beam
- Debugging & characterization
- Simulations
- Full detector simulation
- Check different geometries

E S TEAMBLE AND MINK: A PATHFINDER FOR THE SPACE RIDER FLIGHT

Technological pathfinder eligible for the Space RIDER launch by ESA in 2025

SCIENTIFIC GOAL : Background characterization

3 different type of LYSO scintillators:

1. Ground surfaces by EPIC 2. Polished surfaces by EPIC 3. Ground surfaces by OST

WINK: a pathfinder mission for the future Crystal Eye X and γ rays all sky monitor

Number of pixels: 3 **Material**: LYSO Photodetectors: 4x4 Hamamatsu MPPC 3x3 mm² 50 µm **Weight**: 1.5 kg **Power consumption:** < 10 W **FOV:** 30°

UNIVERSITÀ DEGLI STUDI DI NAPOLI

PRIN 2022

6

Energy

Expected LYSO spectrum

Measurement of power consumption

Answers to ESA questions to design the Space Rider electrical interface

Measurement of background signal

Study the LYSO Spectrum for trigger system

ELSENTING SETTING SET

Power Consumption vs Time

Time

<u> San Sa</u>n Sa

As INSTEAd ASSESSED AS A REPORT OF POWER CONSUMPTION

ELSENTING SETTING SET

Power Consumption [W]

SETTING THE TRIGGER THRESHOLD

Pixel7 AND-AND

SOURCE SPECTRUM

G S S SIMULATION SPECTRA

Terzina

Pathfinder for future missions devoted to UHE cosmic rays and neutrino astronomy throught space-based atmospheric Cerenkov light detection.

Measure the fluxes of low energy (<250 MeV) CR, mainly electrons and protons, to study cosmic rays, Van Allen belts, space weather and the magnetosphere-ionospherelitosphere couplings (MILC) in case of seismic / volcanic activities. Detect 0.1-10 MeV photons for the study of transient (GRB, e.m. follow up of GW events, SN emission lines,...) and steady gamma sources.

New technologies and approaches

Developement of new observational techniques, testing new sensors (e.g. SiPM) and related electronics/DAQ for space missions. New solutions for the satellite platform.

to Sun

16

Zire final design

 Zirettino (for test and calibrations)

- 3 planes x-y view FTK
- 32 layers PST
- 2 layers 4x4 CALOg
- 9 ACS
- 1 plane x-y view FTK
- 8 layers PST
- 1 layers 2x4 CALOg
- 5 ACS

E S AND S A ZIRETTINO CONSTRUCTION

The fiber tracker (FTK)

Plastic Scintillator Tower (PST) bars

PST layout

Anticoincidence and SiPM readout

E S AND RESERVE ASSESS

G S CONSUMER SECTION CONSUMING ST

 $154\,$

 $152\,$

 $pst_1_1_3$

Close

pst_1_7_2

1540
1541
1536
1542

1540
1536

1542
1539

1540
1539

BEAM SPOT POSITION

 1000

 $\begin{tabular}{|c|c|} \hline \quad pt2.2.3 \\ \hline \quad pt4.2.3 \\ \hline \end{tabular}$

2000 4000 6000 8000 10000
Histogram of pst_2_3

2000 4000 6000 8000

- SIF conference, Crystal Eye report, A.Smirnov, <https://2023.congresso.sif.it/talk/508>
- Crystal Eye: a wide sight on the Universe for X and gamma-ray detection, R.Colalillo et al,38th International Cosmic Ray Conference (ICRC2023), Proceedings of Science

CONFERENCES FUTURE PERSPECTIVES

- Realization of a "slice"-prototype in 2024
- Space Rider mission in 2025
- Undergo test beams
- New geometry for the full detector and prototype

BACK UP

CONCLUSION

CRYSTAL EYE PERFOMANCE

EFFICIENCY

Efficiency in th i-th bin is defined as follows:

 $\varepsilon_i = \frac{n_i}{N_i}$, with *n* the number of
events ofter the selection oute

events after the selection cuts and N are the simulated number of events in the field of view hitting the detector.

EFFECTIVE AREA

The effective area in the *i*-th bin is defined as follows:

$$
A_{\text{eff}_i} = \frac{n_i}{N_i} \times A_{source}, \text{ with } n \text{ the}
$$

number of events after the selection cuts, N the total number of simulated events and A_{source} the surface area of the source where gamma rays are generated.

EFFECTIVE AREA IN DIFFERENT MATERIALS

Effective area was calculated considering LYSO and GAGG scintillating crystals for the pixel material.

Effective Area - $\theta = 0^\circ$

CONTINUUM SENSITIVITY

Continuum sensitivity at the N_a significance level for a Tobs observation time is defined as follows:

$$
S = \frac{N_{\sigma}}{0.68} \sqrt{\frac{B \Delta \Omega_{68}}{A_{\text{eff}} T_{\text{obs}} \Delta E}}
$$

Where B is the background level, A_{eff} the effective area within a energy bin ΔE .

> This sensitivity depends on the angular resolution of the instrument. Here on the left are the 1 year sensitivity curves for different assumed theta resolutions (analogous to PSF 68% containment).

30

TRANSIENT SENSITIVIITY (GRB case)

This sensitivity is computed from the following signal/noise ratio:

 $\frac{S}{}$ = N \boldsymbol{N} $\sqrt{N+B}$

Where N is the number of counts from an assumed source spectral model and B the background count level.

The plot shows the integrated sensitivity (1s) exposure time) for an assumed GRB comptonized model, as a function of the peak energy of the model.

$$
\frac{dN}{dE} = A_{norm} \left(\frac{E}{E_0}\right)^{\gamma} exp\left(-\frac{E(\gamma+2)}{E_{peak}}\right)
$$

SIMULATION DESIGN

Without structure With structure With structure

MEASUREMENT SPECTRA

CONFIGURATION

- Shaping time 87.5 ns
- Gate coincidence 90 ns
- High voltage 56 V
- High gain 5 units

SIMULATION SPECTRUM

- 1. Calculate the expected number of decay events that would occur within the 100-second time window, based on the source activity and the half-life.
- 2. Generate a simulation of this number of decay events, using a Monte Carlo method.
- 3. For each decay event, calculate the energy deposited in the detector by the decay products, using a detector response simulation.
- 4. Assign a random time value to each decay event, sampled from a distribution that reflects the decay time distribution of the source. This can be a uniform distribution, assuming a constant rate of decay.
- 5. Sort the events by time and use a Poisson distribution to determine the number of events that occur in each time bin. This generates a simulated energy spectrum for the given time window.
- 6. Apply Calibration Curve to smear simulation result

SIMULATION SPECTRUM

LYSO (Lutetium Yttrium Orthosilicate) is a popular scintillating material used for radiation detection due to its high light output, good energy resolution, and fast decay time.

We have a spectrum generated from a LYSO scintillator with Na-22. Na-22 decays through beta-plus decay and results in two gamma photons with energies of 511 keV, which are used for energy calibration. In addition to the primary 511 keV gamma radiation emitted as a result of positron annihilation, Na-22 decay also leads to a characteristic secondary peak. This is due to a subsequent nuclear de-excitation process.

Comparing these two spectra, we can observe the impact of Na-22 on the energy spectrum. The prominent peak at 511 keV is due to the gamma radiation from Na-22 decay. This peak is used to calibrate and test our detection system, ensuring accurate energy measurements.

The histogram subtraction method is a technique commonly used in data analysis, especially in radiation spectroscopy. In this process, we subtract the spectrum of the LYSO scintillator alone from the combined LYSO + Na-22 spectrum. See the next slide.

Subtraction Spectrum

Na-22 spectrum

We used Gaussian fits to determine the precise energy levels corresponding to the 511 keV and 1275 keV peaks

Cobalt-60 decays by beta decay into Nickel-60, a process during which it emits two gamma rays with energies of 1.17 and 1.33 MeV, respectively. These two gamma rays provide distinct peaks in the energy spectrum.

Subtraction Spectrum

Co-60 spectrum

The formula for calculating resolution is given by R , where σ represents the width of the peak (standard deviation) and E represents the center of the peak (mean). Essentially, this formula gives us the full width at half maximum (FWHM) as a percentage of the mean energy, providing a measure of how well our detector can resolve distinct energy levels. For each peak in our spectra – whether it's the 511 keV and 1275 keV peaks from the Na-22 source, or the 1.17 MeV and 1.33 MeV peaks from the Cobalt-60 source – we calculate the resolution using the aforementioned formula. This enables us to assess the performance of our detector across different energy levels

40

G S

S L

CRYSTAL EYE PERFOMANCE

Effective area

Comparing Detector Effective Areas

Effective Area - $\theta = 0^\circ$

Effective area was calculated considering LYSO and GAGG scintillating crystals for the pixel material

CRYSTAL EYE PERFOMANCE

Efficiency 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Theta = 0° Theta = 30° 0.2 Theta = 60° 0.1 Theta = 90° $10²$ $10³$ $10⁴$ 10 Primary Energy (keV)

Efficiency in th i-th bin is defined as follows:

 $\varepsilon_i = \frac{n_i}{N_i}$, with *n* the number of events after the selection cuts and N are the simulated number of events in the field of view hitting the detector.

follows: $A_{\text{eff}_i} = \frac{n_i}{N_i} \times A_{source}$, with *n* the number

of events after the selection cuts, N the total number of simulated events and Asource the surface area of the source where gamma rays are generated.

Simulation Design

Without structure With structure With structure

E S I CONSUMING TRIGGER LOGIC

G S Measurement spectrum

S **I**

CONFIGURATION

- Shaping time 87.5 ns
- Gate coincidence 90 ns
- High voltage 56 V
- High gain 5 units

- 1. Calculate the expected number of decay events that would occur within the 100-second time window, based on the source activity and the half-life.
- 2. Generate a simulation of this number of decay events, using a Monte Carlo method.
- 3. For each decay event, calculate the energy deposited in the detector by the decay products, using a detector response simulation.
- 4. Assign a random time value to each decay event, sampled from a distribution that reflects the decay time distribution of the source. This can be a uniform distribution, assuming a constant rate of decay.
- 5. Sort the events by time and use a Poisson distribution to determine the number of events that occur in each time bin. This generates a simulated energy spectrum for the given time window.
- 6. Apply Calibration Curve to smear simulation result

E S E ROWER CONSUMPTION

 \vert 1) Switch on the board (spike)

 $\ddot{3}$ Autoboot

- 5 HV-SIPM ON
- $\ddot{\bm{6}}$ Data Acquisition

E S E ROWER CONSUMPTION

10 Disk 1 off, disk 2 off, switch off

SEAR PEDESTAL PARAMETERS(LG)
 SEAR PEDESTAL PARAMETERS(LG)

155633 155812 155953

POSITION 0
 8 I

Nvalid = **Number of validation events**

 Nvalid = **Number of events passing external trigger**

POSITION 3

 Nvalid = **Number of validation events**

 Nvalid = **Number of events passing external trigger**

it was plotted the hit map of the first 2 PST layers

POSITION 4

 Nvalid = **Number of validation events**

 Nvalid = **Number of events passing external trigger**

it was plotted the hit map of the first 2 PST layers

POSITION 5
 8 POSITION 5

 Nvalid = **Number of validation events**

 Nvalid = **Number of events passing external trigger**

it was plotted the hit map of the first 2 PST layers

E S
 ROWER CONSUMPTION

Power Consumption vs Time

E S
 ROWER CONSUMPTION

57

Power Consumption vs Time

SCAN PEDESTAL PARAMETERS(HG)

155633 155812 155953

SCAN PEDESTAL PARAMETERS

$$
V_{SiPM} = V_{BD} + V_{OV} = V_{HV} - V_{DAC}
$$

Resolution

Terzina

Pathfinder for future missions devoted to UHE cosmic rays and neutrino astronomy throught space-based atmospheric Cerenkov light detection.

Zirè

Measure the fluxes of low energy (<250 MeV) CR, mainly electrons and protons, to study cosmic rays, Van Allen belts, space weather and the magnetosphere-ionospherelitosphere couplings (MILC) in case of seismic / volcanic activities. Detect 0.1-10 MeV photons for the study of transient (GRB, e.m. follow up of GW events, SN emission lines,...) and steady gamma sources.

New technologies and approaches

Developement of new observational techniques, testing new sensors (e.g. SiPM) and related electronics/DAQ for space missions. New solutions for the satellite platform.

BEAM SPOT POSITION INVESTIGATION

2 \otimes bar_1_1 bar_1_2 bar_2_3

PST

PST

FTK

BEAM SPOT POSITION 2

CALOg

CALOg

FTK

CALOg

BEAM SPOT POSITION 4

FTK

31J3 31J2

PST

CALOg

BEAM SPOT POSITION 5PST

CALOg

63

 bar_1_1 bar_2 bar_3

Setting the trigger threshold

64

Step 1 – Fit peaks and assign the corresponding energy

Step 2 – Make a plot ADC channel vs Energy

Step 3 – Linear fit

Step 4 – Recalculate ADC channels in energy using linear response of ADC