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1 INTRODUCTION

1 Introduction

Here we are going to introduce a topic which arises from the study of condensed-matter, spin
glasses and super-fluids, but it turns out to be a very important theoretical framework also for
understanding the problem of Inference and Learning Algorithms.

We will start by recalling the concept of ergodic system and what we mean when we talk
about ergodicity breaking. Then, we’re going to introduce the p-spin model, which is the test
bench for our discussion. After computing the free energy for this model, we will introduce
the Franz-Parisi potential, a very useful concept for exploring the thermodynamic landscape of
our system. Finally, we are going to show how the concepts we developed can be also useful in
order to understand some concepts related to information theory and machine learning.

1.1 Ergodic Systems and Ergodicity Breaking

We say that a system is ergodic if the dynamics, for almost all initial configurations, visits all
regions of the available phase space with uniform probability. If the ergodicity hypothesis holds,
we can associate to each micro-state a probability to occur, which from a canonical perspective
is given by the Gibbs weight

P (C0) =
e−βH[C0]∫
DC e−βH[C ]

Given any macroscopic observable A, we have that the average value computed over the dy-
namics of the system corresponds to the weighted average computed over all the possible con-
figurations, namely the ensemble average

E[A] ≡ lim
t→∞

1

t

∫ t

0

dτA(C (τ)|C0) =

∫
DC A(C )P (C ) ≡ 〈A〉 (1)

Of particular interest are the systems for which, under certain conditions, the equivalence
between thermodynamic and dynamic averages written in Eq. (1) does not hold.

A simple example is given by magnetic systems: above the critical temperature Tc all the
configurations of spins are allowed, and on average the magnetization of the system is zero.
However, once the temperature goes below Tc, the system choices one of the new equilibrium
states with non-zero magnetization. The ergodicity is broken, because now the available
states are only those that agree with the magnetization of the system. Theoretically, due to the
thermal fluctuations, it would be always possible that the system switches from one equilibrium
state to the other, but in practice the time required for this to happen is much larger than the
observation time.

Other systems, such as the spin glasses, display a much more complicated behaviour, and the
ergodicity breaking comes out in very fancy fashions.
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2 P-SPINS MODEL

2 P-Spins Model

2.1 Introduction

The variables of our model are continuous spins σi ∈ [−∞,+∞], i = 1...N .

The Hamiltonian for a generic p-spin model is:

HJ,p = −
∑

i1<i2<...<ip

Ji1,i2,...,ipσi1σi2 · · · σip (2)

In our discussion we’re going to consider the case p = 3, with Hamiltonian

HJ = −
∑
i<j<k

Jijkσiσjσk (3)

where the coefficients {Jijk}i<j<k ≡ ~J represents what we call the disorder of the system.
We define the configuration vector of the spins, namely the micro-state of the system, as
~σ = {σ1, ..., σN}. The probability for a given configuration to occur is then

PJ [~σ] =
e−βHJ [~σ ]

ZJ [β]
, (4)

where β = 1
T

.

The partition function is given by

ZJ [β] =

∫ +∞

−∞

N∏
i=1

dσi e
−βHJ [~σ ]δ

(
N∑
i=1

σ2
i −N

)
=

∫
R

Dσ e−βHJ [~σ ] (5)

where we defined the measure

Dσ =
N∏
i=1

dσi δ

(
N∑
i=1

σ2
i −N

)
. (6)

The spherical constraint
∑N

i=1 σ
2
i = N implemented in Eq. (6) is needed for technical reasons,

i.e., in order to have a bounded energy.

Given an observable A[~σ] : RN → R, we can compute its average value as:〈
A
〉

=

∫
R

DσA[~σ]PJ [~σ] (7)

Once we manage to compute the partition function, the free energy of the system for a given
disorder realization is straightforwardly given by

FJ = − 1

β
log
(
ZJ [β]

)
(8)
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2.2 Quenched Disorder 2 P-SPINS MODEL

and this is the most important object that we want to study.
The quenched disorder Jijk are random variables that follow a gaussian distribution

P (Jijk) =
1√

2πσN
e
− 1

2

(
Jijk
σN

)2
(9)

where σ2
N is the variance (the letter N remarks the explicit dependence on the number of spins),

defined as

σ2
N =

p!

2Np−1
(10)

This definition is important in order to guarantee the extensivity of FJ , that is FJ ∼ N . Note

also that P (Jijk)
N�1−−−→ δ(Jijk).

2.2 Quenched Disorder

When we talk about quenched disorder (in italian “disordine fissato”), we refer to the idea of
thermalize the system by keeping the disorder configuration fixed.
The physical observable (thermodynamic potential) is the total free energy, which from the
thermodynamic we know to be given by F = U − TS.
Giving the fact that we can have many possible disorder configurations, we want to define the
quenched free energy as

FJ = − 1

β
log
(
ZJ [β]

)
→ FJ = − 1

β
log
(
ZJ [β]

)
(11)

where the over-bar means “averaged over disorder”. More explicitly, this can be written as

FJ = − 1

β

∫
DJP

[
~J
]

log

(∫
R

Dσ e−βHJ [~σ]

)
(12)

where we denoted:
DJ =

∏
i<j<k

dJijk (13)

Another way to do define the average free energy is what is called annealed free energy:

FJ = − 1

β
log

[∫
DJDσP

[
~J
]
e−βHJ

]
(14)

The difference between the two definitions is that the quenched free energy is obtained by
thermalizing the system with a fixed disorder and then taking the average over all possible
disorder configurations, while the annealed free energy is obtained by making the disorder
evolve with the system. In general the annealed free energy is easier to calculate, because
the logarithm is outside the integral, but gives certainly correct results when ergodicity is not
broken (high temperature regime). If for example we have a problem in which there is disorder
but it’s a dynamic variable, and it evolves with the same time scale of the other variables of
the system, then the disorder is just only another variable, so we can average it as usual.
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2.3 Phase space and dynamics to explore it 2 P-SPINS MODEL

For the p-spin model the free energy has the important property to be self-averaging. Indeed,
given that each configuration ~J is a random variable, we have that the free energy for a given
quenched disorder configuration is also a random variable whose mean value is given by

FJ =

∫
DJP

[
~J
]
FJ (15)

and the variance is:
Var(F ) = F 2

J − F
2

J (16)

The self-averaging property reads

lim
N→+∞

√
Var(F )

FJ
∼ 1√

N
⇒ P (F )

N→+∞−−−−→ δ(F − FJ) (17)

This is important, because it allows to compute a well defined free energy per spin in the large
system size limit:

lim
N→+∞

FJ
N

= lim
N→+∞

FJ
N

(18)

To compute FJ we will need to use the (in-)famous replica trick:

f = lim
N→+∞

FJ
N

= lim
N→+∞

FJ
N

= lim
N→+∞

− 1

βN
log
(
ZJ
)

= lim
N→+∞
n→0

− 1

βNn

(
Zn
J − 1

)
(19)

which is nothing more than a Taylor expansion of an exponential:

lim
n→0

xn − 1

n
= lim

n→0

en log(x) − 1

n
= lim

n→0

1 + n log(x) + O(n2)− 1

n
= log(x) + O(n) (20)

2.3 Phase space and dynamics to explore it

The phase space of the system is the N −1 hyper-surface
∑N

i=1 σ
2
i = N . We say that ergodicity

breaking transition occurs when the phase space breaks down into disjoint ergodic components
(in condensed matter we talk about glass transition).
In the p-spin model we have two kinds of ergodicity breaking transitions:

• Ergodicity broken dynamically (DB) at temperature TD

• Ergodicity broken thermodynamically (TB) at the Kauzmann temperature TK

It is always true that TK < TD. We have a dynamic breaking when, if we start from a
configuration ~σ0, we cannot explore the whole phase space, but we are constrained inside an
egodic connected component. For TK < T < TD we have DB without TB. In this region
the probability for a configuration to belong to a given ergodic component, say A, is zero:
P (~σ ∈ A) = 0. In other words, if we sample the system according to P ∼ exp(−βH[~σ]), the
phase space volume associated to A is negligible.

Instead, for T < TK the thermodynamic breaking occurs, and we have disjoint ergodic com-
ponents with a non-zero phase space volume. Of course, the thermodynamic breaking always
implies dynamical breaking, while the vice-versa is not true.
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2.3 Phase space and dynamics to explore it 2 P-SPINS MODEL

2.3.1 Dynamic ergodicity breaking

For our system we can consider a Langevin dynamics

σ̇i(t) = −∂HJ

∂σi
+ ηi(t)

where ηi(t) is the white noise associated to thermal fluctuations

〈ηi(t)〉 = 0 〈ηi(t) ηj(t′)〉 = 2Tδijδ(t− t′)

Formally, if φs( ~σ0) is the flux of the Langevin dynamics, when T < TD the average over the
dynamics is no more equal to the ensemble average:

lim
t→∞

1

t

∫ t

0

dsA[φs( ~σ0)] 6= 〈A〉

In practice, what happens for T < TD is that the number of disjoint ergodic components N

grows as N ∼ eNΣ, where Σ is the configurational entropy, hence it is exponentially unlikely to
fall in one of them. By looking at the energy landscape, we have that the number of minima
grows exponentially, and becomes more and more unlikely to end up in one of them.

Figure 1: Phase space landscape for the dynamic breaking (left) and the thermodynamic breaking
(right). Don’t be deceived by the dimension of the areas: the number of microstates within each
component doesn’t change; the point is that only a subset of the energy minima survives.

Now we are going to show that for TK < T < TD we do have states (disjoint ergodic compo-
nents), but they are statistically irrelevant. Let us compute the partition function for a given
disorder configuration:

ZJ(β) =

∫
Dσ e−βHJ [~σ] (?)

=
N∑
α=1

∫
~σ∈Bα

Dσ e−βHJ [~σ]

=
N∑
α=1

Zα =
N∑
α=1

e−βNfα , (21)
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2.3 Phase space and dynamics to explore it 2 P-SPINS MODEL

where in (?) we took into account the fact that we are studying a system composed by N disjoint
components {Bα}α=1,...,N. Since each configuration ~σ takes values only inside his connected
component Bα the integration can be split as shown in the first line of Eq. (21).

Now we introduce a function density of states that counts the number of states with a given
energy f

N(f) =
N∑
α=1

δ
(
f − fα

)
. (22)

Since the number of “states” is exponentially large in the systems size, we can define the
so-called configurational entropy as:

Σ(f) =
1

N
logN(f), (23)

where N is the number of degrees of freedom (spins) in the systems. The partition function
can be written as:

ZJ(β) =

∫ ∞
0

df e−βNfN(f) =

∫ ∞
0

df e−βNf+NΣ(f) =

=

∫ ∞
0

df e−βNΦ(β,f) ≈ e−βNΦ(β,f∗) (24)

where we defined a new thermodynamic potential

Φ(β, f) ≡ f − TΣ(f) = U − TS − TΣ(f), (25)

and where f ∗ is defined as the solution of the saddle-point equation

∂Φ(f, β)

∂f
= 0 =⇒ 1

T
=
∂Σ

∂f

∣∣∣∣
f=f∗

.

We can get rid of the integration over free energy in Eq. (24) by means of a saddle-point
approximation thanks to the large N limit we are interested in.

The probability associated to a given state α is given by

Pα =
Zα
Z

=
Zα∑N

γ=1 Zγ
=

e−βfαN∑N

γ=1 e
−βfγN

(?)
=

e−βf
∗N

e−βf∗N+NΣ(f∗)
= e−NΣ(f∗) (26)

And hence we have that the probability is exponentially small. In (?) we used the saddle point
approximation at the denominator, and at the numerator we assumed that, in the large-N
limit, all typical configurations at a given temperature T have the same free-energy, i.e.

lim
N→∞

FJ(β)

N
= f ∗(β) + O

(
1√
N

)
(27)

apart from subleading corrections. This is equivalent to say that, in the large-N limit, by
fixing the temperature T we are uniquely fixing even the free energy. This assumption is not
generally true for all models, but it is true for the p-spin model considered here. Models where
this hypothesis does not hold are said to have “chaos in temperature”.
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2.4 Free Energy Calculation 2 P-SPINS MODEL

2.4 Free Energy Calculation

In order to compute the free energy for the p-spin model we can exploit equation (19) and focus
on the replicated partition function Zn

J . The non-averaged version is given by

Zn
J =

∫ +∞

−∞
Dσ exp

{
β
∑
i<j<k

Jijk

n∑
α=1

σαi σ
α
j σ

α
k

} n∏
α=1

δ

(
N∑
i=1

(σαi )2 −N

)
(28)

where we denoted

Dσ ≡
N∏
i=1

n∏
α=1

dσαi (29)

The average over the disorder reads as

Zn
J =

∫
R

DJ P
[
~J
]
Zn
J (30)

but since P (Jijk) is a gaussian distribution, in practice we have to compute the product of

N(N − 1)...(N − p+ 1) =

(
N

p

)
(31)

identical integrals as

I =

∫
R
dJijk

1√
2πσN

exp

{
−J2

ijk

Np−1

p!
+ βJijk

n∑
α=1

σαi σ
α
j σ

α
k

}

=

√
πp!

Np−1

1√
2πσN

exp

{
β2p!

4Np−1

( n∑
α=1

σαi σ
α
j σ

α
k

)2}
= exp

{
β2p!

4Np−1

n∑
αβ=1

σαi σ
β
i σ

α
j σ

β
j σ

α
kσ

β
k

}

where recall that Np−1

p!
is the variance of Pijk, so here we can appreciate the fact that this choice

of P guarantees the extensivity of F . Indeed, otherwise there would be no way to apply the
thermodynamic limit at the end, because of the presence of the pre-factor coming out from the
gaussian integral. The corresponding term in equation (30) becomes

= exp

{
β2p!

4Np−1

∑
i<j<k

n∑
αβ=1

σαi σ
β
i σ

α
j σ

β
j σ

α
kσ

β
k

}

= exp

{
β2

4Np−1

∑
ijk

n∑
αβ=1

σαi σ
β
i σ

α
j σ

β
j σ

α
kσ

β
k

}

= exp

{
β2

4Np−1

n∑
αβ=1

( N∑
i=1

σαi σ
β
i

)p}

= exp

{
β2N

4

n∑
αβ=1

(
1

N

N∑
i=1

σαi σ
β
i

)p}
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2.4 Free Energy Calculation 2 P-SPINS MODEL

The averaged partition function can now be written as

Zn
J =

∫
Dσ exp

{
β2N

4

n∑
αβ=1

(
1

N

N∑
i=1

σαi σ
β
i

)p} n∏
α=1

δ

(
N∑
i=1

(σαi )2 −N

)
(32)

where we can recognize the overlap between the configurations α and β:

Qαβ =
1

N

N∑
i=1

σαi σ
β
i (33)

Remark 1: since Qαβ is an intensive quantity, the argument of the exponential in equation
(32) is an extensive variable that can be interpreted as a free energy.

Remark 2: we started from an expression in which we had independent replicas and coupled
spins :

− β
∑
i<j<k

Jijk

n∑
α=1

σαi σ
α
j σ

α
k (34)

and, after these calculations, we got a form in which spins are decoupled but replicas are coupled :

β2N

4

n∑
αβ=1

(
1

N

N∑
i=1

σαi σ
β
i

)p
(35)

and note also that the disorder Jijk has disappeared in (35), as we represented in Figure 2.

Figure 2: Pictorial way to show that, by using the replica trick, we decouple spins and couple replicas.

Now we want to change variables, switching to a description in terms of our order parameter Q.
The trick is the same used to quantize gauge theories, and it consists on writing the identity 1
in a clever way as a function 1[Q,Λ] of the overlap parameter matrix Q = {Qαβ}α,β=1,...,n and
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2.4 Free Energy Calculation 2 P-SPINS MODEL

of the related Lagrange multipliers matrix Λ = {λαβ}α,β=1,...,n:

1[Q,Λ]
(a)
=

∫
dQαβ δ

(
NQαβ −

N∑
i=1

σαi σ
β
i

)
(b)
=

∫ ∏
α<β

dQαβ

∏
α<β

δ

(
NQαβ −

N∑
i=1

σαi σ
β
i

)
(c)
=

∫ ∏
α<β

dQαβ

∫ λ0αβ+i∞

λ0αβ−i∞
dλαβ exp

{
N
∑
α<β

λαβ Qαβ

}
exp

{
−
∑
α<β

λαβ

N∑
i=1

σαi σ
β
i

}
where in (a) we used the overlap definition, in (b) we’ve done nothing but multiplying many
times 1 and in (c) we opened the Dirac delta integrating through a straight vertical line in the
complex plane, where λ0

αβ is the intersection between the integrating path and the real axis;
the idea is to remove the hard constraint imposed by the delta by introducing an integral.
By multiplying the last identity to (32) we can insert the definition of Qαβ:

Zn
J =

∫
Dσ exp

{
β2N

4

n∑
αβ=1

(
Qαβ

)p} n∏
α=1

δ (Qαα − 1) · 1[Q,Λ] (36)

In the expression of the partition function in Eq. (36) we have exploited the constraint imposed
within 1[Q,Λ] to write

n∏
α=1

δ

( N∑
i=1

(
σαi
)2 −N

)
=

n∏
α=1

δ

(
Qαα − 1

)
, (37)

where we have neglected irrelevant N factors coming out from the Dirac deltas. We can thus
define

DΛ =
n∏

α<β

dλαβ (38)

DQ =
n∏

α<β

dQαβ

n∏
α=1

δ

(
Qαα − 1

)
(39)

In conclusion, we can rewrite Zn
J as:

Zn
J =

∫
DQ DΛ Dσ exp

{
β2N

4

n∑
αβ=1

(
Qαβ

)p
+ N

∑
α<β

λαβ Qαβ −
∑
α<β

λαβ

N∑
i=1

σαi σ
β
i

}
(40)

First, we want to integrate over the spins, and in particular we have N identical gaussian
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integrals:

I =

∫
R
Dσ exp

{
−
∑
α<β

λαβ

N∑
i=1

σαi σ
β
i

}

=

∫
R

n∏
α=1

N∏
i=1

dσαi exp

{
−
∑
α<β

λαβ

N∑
i=1

σαi σ
β
i

}

=

[∫
R

n∏
α=1

dσα exp

{
−1

2

∑
αβ

λαβ σ
ασβ
}]N

=

[∫
Rn
d~σ exp

{
−1

2
~σTΛ~σ

}]N
=

[
(2π)n/2√

det Λ

]N
= exp

{
−N

2
log(det Λ) +

Nn

2
log(2π)]

}
= exp

{
−N

2
Tr
(
log(Λ)

)
}

where in the last passage we neglected the constant term and we used the following property:

Prop: log(detB) = Tr
(
log(B)

)
Proof. We just have to prove that det

(
expA

)
= exp

(
TrA

)
, then if we choose A = log(B) and

we take the log at both sides, we are done.
Recall that for every complex squared matrix A there exists a matrix S such that A = S−1JS,
where J is the Jordan form. Then:

det
(
expA

)
= det

(
exp

(
S−1JS

))
= det

(
S−1 exp

(
J
)
S
)

= detS−1 det
(
exp J

)
detS = detS−1 detS det

(
exp J

)
= det

(
exp J

) (1)
=
∏
i

eJii = e
∑
i Jii

= exp
(
Tr(J)

)
= exp

(
Tr(A)

)
where in (1) we used the property that for a 4-blocks matrix

J =

(
D1 E
C D

)
the determinant is det J = detD1 det

(
D − CD−1

1 E
)
. In a Jordan matrix, E and C are non-

squared zero matrices, while in the diagonal we have the Jordan matricesDj. Hence the previous
formula can be applied iteratively and becomes det J =

∏
j detDj, where j goes through the

number of diagonal blocks. But the determinant of the j-esim block is just
∏

i|j Jii|j because of
the form of Dj

Dj =


λj 1 0 . . . 0

0 λj 1
. . .

...

0 0 λj
. . . 0

...
. . . . . . . . . 1

0 0 0 . . . λj
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2.4 Free Energy Calculation 2 P-SPINS MODEL

So far we have obtained:

Zn
J =

∫
DQDΛ exp

{
β2N

4

n∑
αβ=1

(
Qαβ

)p
+
N

2
Tr
(
ΛQ
)
− N

2
Tr
(
log(Λ)

)}
(41)

Now we can introduce the Effective Action Ŝ such that

Zn
J =

∫
DQDΛ exp

{
NŜ(Λ, Q)

}
(42)

and since we are interested in the large N limit, we can perform as usual a saddle point
approximation

Zn
J =

∫
DQ exp

{
NŜ(Λ∗(Q), Q)

}
(43)

where Λ∗ is the solution of the saddle-point equations

∂Ŝ

∂Λαβ

= 0 =⇒ ∂

∂Λ

[
1

2
Tr
(
ΛQ
)
− 1

2
Tr
(
log(Λ)

)]
= 0

=⇒
[
Tr
(
Q
)
− Tr

(
1

Λ

)]
= 0

=⇒ Λ∗ = Q−1,

where, having assumed that λαβ are real and symmetric we can take derivatives and ignore
trace operators as if Λ was a number. Once we put the saddle-point solution Λ∗ = Q−1 inside
(43) we get

Zn
J =

∫
DQ exp

{
β2N

4

n∑
αβ=1

(
Qαβ

)p
+
N

2
Tr
(
1n×n) +

N

2
Tr
(
log(Q)

)}

=

∫
DQ exp

{
β2N

4

n∑
αβ=1

(
Qαβ

)p
+
N

2
log(det(Q)) +

Nn

2

}
. (44)

Finally, we can define an Effective Free Energy as:

A[Q] = − 1

n

[
β2

4

n∑
αβ=1

(
Qαβ

)p
+

1

2
log(det(Q))

]
(45)

and we can ignore as usual the irrelevant constant terms. We have introduced a prefactor 1/n
because we expect that in the limit n→ 0 the argument of the exponential in Eq. (44) will be
proportional to n. Indeed, what we want to calculate is:

lim
N→∞

FJ
N

= lim
N→∞

lim
n→0
− 1

nNβ
(Zn

J − 1) = lim
N→∞

lim
n→0
− 1

nNβ

(∫
DQe−nNA[Q] − 1

)

12
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Exchanging the order of the two limits (we are physicists, hence we can) allows us to use the
saddle point approximation

lim
N→∞

FJ
N
' lim

n→0
lim
N→∞

− 1

nNβ

(
e−nNA[Q∗] − 1

)
so that, finally:

lim
N→∞

FJ
N
' lim

n→0
lim
N→∞

− 1

nNβ

(
e−nNA[Q∗] − 1

)
' lim

n→0
lim
N→∞

− 1

nNβ

(
1− nNA[Q∗]− 1

)
⇒ lim

N→∞

FJ
N

=
1

β
A
[
Q∗
]

Notice that in both the saddle point we’ve ignored the prefactor because at the end these give
a contribute ∼ O

( log(N)
N

)
.

To proceed further we have to make an ansatz over the structure of Q.

2.4.1 Case T > TK: metastable phase and ergodic phase

It turns out that for T > TK the right hypothesis for the structure of Q is the Replica
symmetric ansatz (RS):

QRS =


1 q0 . . . q0

q0 1 . . . q0
...

...
. . .

...
q0 . . . q0 1

 (46)

Where we can appreciate that the constraint δ
(∑N

i=1 σ
2
i −N

)
ensures that we have 1 in the

Q-diagonal. Without this constraint, we would have had ∞ in the Q-diagonal, because we’re
computing the self-overlap of a configuration in a continuous and unlimited domain. Also, since
A[Q] depends on the elements of Q, the effective free energy wouldn’t have been bounded, and
we couldn’t have taken the saddle point approximation of a quantity that doesn’t have any
stationary point.

For such a matrix we have:

det(Q) = det




1− q0 0 . . . 0

0 1− q0 . . . 0
...

...
. . .

...
0 . . . 0 1− q0


︸ ︷︷ ︸

A

+


q0 q0 . . . q0

q0 q0 . . . q0
...

...
. . .

...
q0 . . . q0 q0


︸ ︷︷ ︸

uvT


= (1− q0)n + nq0(1− q0)n−1 = (1− q0)n

(
1 +

nq0

1− q0

)
where here we’ve used the Matrix Determinant Lemma:
Prop: Suppose A to be an invertible square matrix, then: det(A+uvT ) = det(A)

(
1+vTA−1u

)
13
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where in our case ~v =
[
1 . . . 1

]T
and ~u = q0

[
1 . . . 1

]T

⇒ log(det(Q)) = n log(1− q0) + log

(
1 +

nq0

1− q0

)
n→0
= n log(1− q0) + n

q0

1− q0

+ O(n2)

∑
α,β

Qp
αβ = n+ n(n− 1)qp0 = n(1− qp0)

⇒ A
[
QRS

]
= − 1

n

[
β2

4
n(1− qp0) +

n

2
log(1− q0) +

n

2

q0

1− q0

]
= −

[
β2

4
(1− qp0) +

1

2
log(1− q0) +

1

2

q0

1− q0

]

fRS(β) = lim
N→∞

FJ
N

= max
q0

{
− 1

2β

[
β2

2
(1− qp0) + log(1− q0) +

q0

1− q0

]}
(47)

2.4.2 Case T < TK: glass phase

For T < TK the right choice for the overlap matrix is instead the one step replica symmetry
breaking ansatz (1RSB), in which we assume

Q1RSB =



1 q1

. . . q0 q0

q1 1
1 q1

q0
. . . q0

q1 1

q0 q0
. . .


︸ ︷︷ ︸

n×n

(48)

Each block is of size m×m, with m < n. After some calculations one gets

f1RSB(β) = lim
N→∞

FJ
N

= − 1

2β
max
q0,q1,m

{
β2

4

[
1−mqp0 − (1−m)qp1

]
+ (49)

+
m− 1

m
log(1− q0) +

1

m
log

[
1−mq0 − (1−m)q1

]
+ (50)

+
qo

1−mq0 − (1−m)q1

}
(51)

In the limit n → 0 it turns out that m ∈ [0, 1]. Thus, for 1RSB we have three variational
parameters: q0, q1,m. Why is that?
For T > TK we have just one ergodic component. If we try to measure the overlap between
any two states, say ~σ and ~τ , we obtain q0 = 1

N
~σ · ~τ . Instead, in the glass phase it is different

14
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to compute the overlap between two states that are inside the same connected component or
between two states belonging to different components. For this reason we have two overlap
values, q0 and q1. Moreover, we find that m ∈ [0, 1] becomes the probability to pick up two
states at random (according to the Boltzmann weight) that belong to different clusters.

Remark: notice that both in equations (47) end (49) we seek the maximum of the free energy
with respect to the variational parameters. This can look strange, because we often want to
minimize the free energy in order to get the equilibrium configuration. We will go deeper in
this aspect further on.

The conditions we require to take the maximum of the free energy over the variational param-
eters are:

A) RS: ∂fRS
∂q0

= 0→ 1 equation

B) 1RSB: ∂f1RSB
∂q0

= 0; ∂f1RSB
∂q1

= 0; ∂f1RSB
∂m

= 0; → 3 equations

• For T > TD B) has no solutions, so the only possible free energy is fRS

• For TK < T < TD both A) and B) have solutions, but f1RSB > fRS. Hence f1RSB is a
metastable phase

• For T < TK f1RSB becomes the stable phase

Figure 3: On the left the ergodic phase with just one variational parameter; on the left the glass phase.
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2.5 Machine Learning

In the machine learning framework, the target is to learn a rule by doing inference on something.
The ML scheme can be summarized as follows:

1. An Architect generates data according to some rule.

2. The rule used for generating data is thrown away, but you are given the data.

3. You try to find out the rule according to some protocol (deterministic or probabilistic
algorithm).

Question: do we succeed or not? Answer: There are phase transitions. Namely, depending
on the amount of data or on some parameters of the rule used to generate them we may be
able or not to find out the rule.

2.6 Phase Transitions in Inference Algorithms

Before proceeding further, it is useful to introduce what a Stochastic Monte Carlo Dynamics
(for a disordered system) is.
Suppose that we start with a configuration vector at discrete time t, ~σ(t) = {σ1(t), ..., σN(t)},
and we want define an update rule σi(t+ 1) = Rule[σi(t)]. The Hamiltonian associated to ~σ(t)
is

HJ [~σ(t)] = −
∑
i<j<k

Jijkσi(t)σj(t)σk(t) with
N∑
i=1

σ2
i (t) = N

The Metropolis update Rule consists on proposing a σnewi , such that the Hamiltonian of
the new configuration is

Hnew
J [~σ(t+ 1)] = HJ [σ1(t), ..., σnewi , ..., σN(t)] (52)

where σi(t+ 1) = σnewi . Next, we compute the ”energy cost” for the new configuration as

∆E = Hnew
J −HJ (53)

and we decide whether to keep or to reject the new configuration on the base of the following
condition:

if ∆E < 0 −→ σi(t+ 1) = σnewi

if ∆E > 0 −→ pick r ∼ U(0, 1)

if e−β∆E > r −→ σi(t+ 1) = σnewi

else −→ σi(t+ 1) = σi(t)

In this way we can simulate a stochastic Monte Carlo dynamics.

16
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2.7 Example of an inference problem

An example of an inference problem is given by the following game:

1. Choose a root spin configuration ~σR = {σR1 , ..., σRN}

2. Sort out a set of couplings ~J = {Jijk} correlated to ~σR, that is, such that ~σR is an
equilibrium state according to a Boltzmann weight

P ( ~J, ~σR) = exp

(
−β
∑
ijk

Jijkσ
R
i σ

R
j , σ

R
k

)
(54)

3. Now you throw ~σR away and retain {Jijk}i<j<k
Question: Can I retrieve ~σR by means of a probabilistic Monte Carlo dynamics, that is,
sampling configurations with weight P ( ~J, ~σ)?
Answer: not always, it depends on the value of β that we used in the conditional probability
P ( ~J, ~σR)

Figure 4: Pictorial representation of the ergodicity breaking in inference problems.
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3 Franz-Parisi Potential

The Franz-Parisi (FP) potential V (q), where q is the overlap between two replicas, is a function
of overlap which depends parametrically on temperature and which allows to characterize the
thermodynamics of the system. The characteristic behaviour of V (q) at different temperatures
is shown in Fig. 5.

Figure 5: Behaviour of the Franz-Parisi potential. From left to right: ergodic phase, metastable phase,
glass phase.

We can see that in the ergodic phase (T > TD), on average the states are totally uncorrelated
(since the minimum of V is for q = 0). In the metastable phase (TK < T < TD) for certain
initial conditions it is possible to get stuck in the metastable minimum q∗ ' 1, whereas in the
glass phase q∗ becomes the stable value, and the states are maximally correlated.

The glass transition at TK is also known as Random First-Order Transition, due to its mixed-
order character. In fact, it displays both features of a 1st order transition, namely the ap-
pearance of a second minimum at a finite value of the order parameter, q∗ > 0) and of a 2nd

order one, the absence of latent heat at the transition point (the first derivative with respect
to temperature of the free energy is continuous at the transition).

For the p-spin model there is no simple field along which the system aligns at small temperatures
T < TK (i.e. that plays the role of the magnetization for the Ising model). The idea of F-P is

to pick up a state ~S with probability ∼ exp(−βHJ [~S]) that will be the state along which the
system freezes for T < TK .

First, we choose a given configuration ~S and define the un-normalized probability

PJ,S(q) ∝
∫ +∞

−∞

{ N∏
i=1

dσi

}
exp

(
−βHJ [~σ]

)
δ

(
qN −

N∑
i=1

σiSi

)
(55)

then we choose the normalization such that PJ,S(q = 0)
T→∞−→ 1, because we know that in the

ergodic phase the states are uncorrelated. Hence we require:

PJ,S(q = 0) =

∫
Dσ e−βHJ [~σ] δ

(
~σ · ~S

) T→∞−→ ∫
Dσ e−βHJ [~σ] = ZJ(β) (56)

because if the states are uncorrelated ~σ · ~S = 0 ∀ ~S, and the Dirac delta is always active.

⇒ PJ,S(q) =
ZJ,S(q)

ZJ(β)
=

1

ZJ(β)

∫
Dσ e−βHJ [~σ]δ

(
qN − ~σ · ~S

)
= exp [−β (FJ,S(q)− FJ)] (57)
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Since we are interested in the large size limit N →∞, we can exploit the self-averaging property
of the free energy:

PJ,S(q)
N→∞−→ exp

[
−βN

(
〈fJ,S(q)〉 − fJ

)]
(58)

where, as usual, 〈·〉 indicates the ensemble average, while · is the average over the disorder. We
can now define the Franz-Parisi potential as

V (q) = 〈fJ,S(q)〉 − fJ (59)

that can be interpreted as the free energy cost to keep an equilibrium configuration at a given
overlap q with another, previously chosen, configuration ~S.

Let us focus now in the case TK < T < TD. We already know that the number of states scales
as N ∼ eΣN , and thus the probability to choose a configuration in basin of α is Pα ∼ e−ΣN . But
this is equivalent to say that Pα is the probability to choose a configuration with high overlap
with a pre-assigned configuration ~Sα belonging to basin of α, that is q = 1

N
~Sα · ~σ ' 1.

The probability to have a generic overlap q is PJ,S(q) = e−NβV (q), hence we have:

Pα = PJ,S(q = q∗ ' 1) = e−NβV (q∗) = e−NΣ ⇒ Σ = βV (q = q∗)

We therefore find the important result

V (q = q∗) = TΣ (60)

This means that if we are able to compute V (q∗) we can also quantify the configurational
entropy Σ, namely we can “count” the number of metastables glassy states.

19



3.1 Computation of the Franz-Parisi potential 3 FRANZ-PARISI POTENTIAL

3.1 Computation of the Franz-Parisi potential

We want to compute
V (q) = 〈fJ,S(q)〉 − fJ (61)

for T > TK . From the previous section we already know that

fJ = − 1

β

[
β2

4
(1− (q∗0)p) +

1

2
log(1− q∗0) +

1

2

q∗0
1− q∗0

]
with

∂fJ
∂q

∣∣∣∣
q=q∗

= 0

We can therefore focus on the first term

fJ,S(q) = − 1

Nβ
log
[
ZJ,S(q)

]
= − 1

Nβ
log

[∫
Dσe−βHJ [~σ]δ

(
qN − ~σ · ~S

)]
〈fJ,S(q)〉 =

1

ZJ(β)

∫
DSe−βHJ [~S]fJ,S(q) =

1

ZJ(β)︸ ︷︷ ︸
(a)

∫
DSe−βHJ [~S]

[
− 1

Nβ
log
(
ZJ,S(q)

)︸ ︷︷ ︸
(b)

]
(62)

〈fJ,S(q)〉 =

∫ ∏
i<j<k

dJijkP (Jijk)〈fJ,S(q)〉

Now, when we try to take the average over the disorder, problems arise both on (a) and (b)
terms of equation (62). We can tackle the computation introducing replicas in two points of
the expression:

(a)⇒ 1

ZJ(β)
= lim

n→0
Zn−1
J (β) (b)⇒ log

[
ZJ,S(q)

]
= lim

m→0

Zm
J,S − 1

m
(63)

Overall, we have:

〈fJ,S(q)〉 = lim
N→∞

lim
n,m→∞

− 1

βN

[∫
DS e−βHJ [~S]Zn−1

J (β)

(
Zm
J,S(q)− 1

m

)]
(64)

= lim
N→∞

lim
n,m→∞

{
− 1

βmN

[∫
DS e−βHJ [~S]Zn−1

J (β)Zm
J,S(q)

]
︸ ︷︷ ︸[

Zn
]

+
Zn−1
J (β)

mβN

∫
DS e−βHJ [~S]︸ ︷︷ ︸

ZJ (β)

}

(65)

In the second term we can already take the limit n→ 0, and the two partition functions cancel
out. What remains is

〈fJ,S(q)〉 = lim
N→∞

lim
n,m→∞

− 1

βNm

([
Zn
]
− 1

)
(66)

[
Zn
]

=

{∫
DS1 e−βHJ [~S1] ·

[∫
DS exp

(
−β

n∑
a=2︸︷︷︸
n−1

HJ [~Sa]

)]
·
∫

Dσ exp

(
−β

m∑
α=1︸︷︷︸
m

HJ [~σα]

)
·

·
m∏
α=1

δ

(
qN − ~σα · ~S1

)}
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where we denoted by ~S1 the equilibrium configuration which plays the role of a random pinning
field for the replica ~σ

[
Zn
]

=

{∫
DS exp

(
−β

n∑
a=1

HJ [~Sa]

)
·
∫

Dσ exp

(
−β

m∑
α=1

HJ [~σα]

)
·
m∏
α=1

δ

(
qN − ~σα · ~S1

)}
and recall that the measure is

Dσ =
m∏
α=1

N∏
i=1

dσαi

m∏
α=1

δ

( N∑
i=1

(σαi )2 −N
)

Let us unfold the integrand:

exp

{
−β
[ n∑
a=1

HJ [~Sa] +
m∑
α=1

HJ [~σα]

]}
= exp

{
β

[ ∑
i<j<k

Jijk

( n∑
a=1

Sai S
a
j S

a
k +

m∑
α=1

σαi σ
α
j σ

α
k

)]}

Computing the average over the disorder involves

(
N
p

)
gaussian integrals of the kind:

∫ +∞

−∞
dJijkP (Jijk) exp β

[ ∑
i<j<k

Jijk

( n∑
a=1

Sai S
a
j S

a
k︸ ︷︷ ︸

master

+
m∑
α=1

σαi σ
α
j σ

α
k︸ ︷︷ ︸

slave

)]
=

= exp

[
p!β2

4Np−1

( n∑
a,b=1

Sai S
b
iS

a
j S

b
jS

a
kS

b
k +

m∑
α,β=1

σαi σ
β
i σ

α
j σ

β
j σ

α
kσ

β
k + 2

n,m∑
a,α=1

Sai σ
α
i S

a
j σ

α
j S

a
kσ

α
k

)]

Now we proceed along the line of what we’ve done for the free energy computation and even-
tually we get [

Zn
]

=

∫
DσDS exp

{
β2N

4
D[S,σ]

}
(67)

where D[S,σ] is defined as:

D[S,σ] =
n∑
a,b

(
1

N

N∑
i=1

Sai S
b
i

)p
+

m∑
α, β

(
1

N

N∑
i=1

σai σ
b
i

)p
+

n,m∑
a, α

(
1

N

N∑
i=1

Sai σ
α
i

)p
+

n,m∑
a, α

(
1

N

N∑
i=1

σai S
α
i

)p
(68)

In the expression above ~Sa are the Master Replica, which acts as a random pinning field chosen
according to the equilibrium distribution P

(
~S
)
∼ 1

Z
e−βHJ . Instead, ~σα are the Slave Replica,

equilibrated under the constraint of a given overlap with ~S. Thus we can introduce three order
parameters:

• Master-Master overlap

Qa, b =
1

N

N∑
i=1

Sai S
b
i ∈Mn×n (69)

• Slave-Slave overlap

Rα, β =
1

N

N∑
i=1

σαi σ
β
i ∈Mm×m (70)
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• Master-Slave overlap

Pa, β =
1

N

N∑
i=1

Sai σ
α
i ∈Mn×m (71)

Now we can insert these definitions in equation (67), and in order to do that we can use the
usual trick already seen for the free energy calculations:

1 =

∫ ∏
a<b

dQa b

∏
a<b

∫ Q̂0
ab+i∞

Q̂0
ab−i∞

dQ̂a b exp

{
N
∑
a<b

Q̂abQab

}
exp

{
−
∑
a<b

Q̂ab

N∑
i=1

Sai S
b
i

}
by doing the same also for R and P , we end up with:[

Zn
]

=

∫
DQ DR DP DQ̂ DR̂ DP̂

N∏
i=1

D~xi e
β2N
4

K+N
2
T− 1

2

∑N
i=1 ~x

T
i Q̂ ~xi

m∏
α=1

δ (P1α − q) (72)

where K and T are defined as:

K =
n∑
a,b

(
Qab

)p
+

m∑
α, β

(
Rαβ

)p
+ 2

n,m∑
a, α

(
Paα
)p

(73)

T = Tr
[
Q̂Q
]

+ Tr
[
R̂R
]

+ Tr
[
P̂ TP

]
+ Tr

[
P̂P T

]
(74)

whereas ~xi is a vector in the replica space (both master and slave)

~xi =
(
S1
i , ..., S

n
i , σ

1
i , ..., σ

m
i

)
∈ Vn+m (75)

and Q̂ and Q are two block matrices that represent all the order parameters:

Q̂ =

(
Q̂ P̂

P̂ T R̂

)
∈Mn+m×n+m (76)

Q =

(
Q P
P T R

)
∈Mn+m×n+m (77)

The integrals over the spin variables ~xi are gaussian:

Ixi =

∫ N∏
i=1

D~xi exp

{
−1

2

N∑
i=1

~xTi Q̂ ~xi

}
= e−

N
2

log
(

det Q̂
)

= e−
N
2

Tr
(

log Q̂
)

(78)

Thanks to the block-structure of Q̂, equation (74) is nothing but Tr
(
Q̂Q
)
. If we define

Ŝ(Q, Q̂) ≡ Tr
(
Q̂Q
)
− Tr

[
log
(
Q̂
)]

(79)

the integration over Q̂ reads

IQ̂ =

∫
DQ̂ exp

{
N

2
Ŝ(Q, Q̂)

}
(80)

In the large size limit we can perform a saddle point approximation. The maximum is given
by:

0 =
∂Ŝ

∂Q̂
=

∂

∂Q̂

[
Tr
(
Q̂Q
)
− Tr

(
log Q̂

)]
⇒ Q̂ = Q−1 (81)
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Now we can use the following identity:
Prop. Given the structure of Q in equation (77), then:

Tr log
(
Q
)

= Tr log
(
Q
)

+ Tr log
(
R− P TQ−1P

)
(82)

Proof. We have

detQ = det
(
QR− PP T

)
= det

[
Q
(
R−Q−1PP T

)]
= det

(
Q
)

det
(
R− P TQ−1P

)
and using the result we already proved we can conclude

Recollecting all the pieces, we get:

[
Zn
]

=

∫
DQ DR DP exp {NS(Q,R, P )}

m∏
α=1

δ (Paα − q) (83)

where

S(Q,R, P ) =
β2

4
K + Tr log

(
Q
)

+ Tr log
(
R− P TQ−1P

)
(84)

As before we can introduce an effective free energy as:

A[Q,R, P ] = − 1

m
S[Q,R, P ] (85)

and we are ready to come back to equation (66) and to perform a saddle point approximation

〈fJ,S(q)〉 = lim
N→+∞
n→0
m→0

− 1

mNβ

([
Zn
]
− 1
)
' lim

N→+∞
n→0
m→0

− 1

mNβ

[
exp
{
−nNA

[
Q∗, R∗, q

]}
− 1

]
, (86)

where the only elements of Paα different from zero are those fixed from the constraint to be equal
to q (see the explicit form of the Ansatz below), so that there is no saddle point approximation
to do with respect to P , just to explicitate its dependence on q. We end up with the Franz-Parisi
potential definition:

βV (q) = 〈fJ,S(q)〉 − fJ =
1

β
max
QabRαβ

A
[
Q,R, q

]
− fJ (87)

Where does q arise from the previous expression? Recalling that we’re considering the system
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at temperature T > TK , the saddle point solutions of equation (86) are:

Q∗ab =

 1 q0

. . .

q0 1

 (88)

R∗αβ =

1 r
. . .

r 1

 (89)

P ∗aα =

q . . . q
0 . . . 0
0 . . . 0


︸ ︷︷ ︸

m×n

(90)

where q is the element that appears in the constraint:

δ
(
qN −

N∑
i=1

σαi S
1
i

)
(91)

A couple of words are now in order to explain some subtelties related to the strategy to find
solutions for the saddle-point equations Eq. (87). By considering the two limits n → 0 and
m → 0 which allow to pass from the expression in Eq. (86) to the one in Eq. (87) we need to
clarify one important point: though considering that n/m → 1 when both n,m → 0, still in
the expression of the effective action we regard terms of order O(m) subleading with respect to
terms of order O(n). This allows us for instance to approximate the saddle-point equation for
Qab in the following manner

∂

∂Qab

[
β2

4

∑
ab

Qp
ab + log detQ+ log det(R− P TQ−1P )

]
= 0 ≈

≈ ∂

∂Qab

[
β2

4

∑
ab

Qp
ab + log detQ

]
= 0, (92)

for the reason that Q is an n× n matrix, so that both
∑

abQ
p
ab and log detQ, once the replica

symmetric ansatz of Eq. (88) is plugged into the expression, turns out to be of order O(n) while
the term log det(R−P TQ−1P ) is of order O(m), because R and P TQ−1P are m×m matrices.
The “physical” argument to say that terms O(m) are sub-leading with respect to term O(n)
then goes back to the meaning of Eq. (65); while the limit n→ 0 is related to the equilibrium
average over the master replicas Si’s, the limit m→ 0 is related the equilibrium average of slave
replicas σi’s, while keeping fixed Si. This means that the average over slave replicas, physically,
comes first with respect to the average over master replicas. The σi’s are thermalized under
the effect of a quenched random pinning field represented by one of the Si’s. Correspondingly,
this means that the limit m → 0 must be taken first and, consequently terms of order O(m)
are sub-leading with respect to terms of order O(n). That is why the saddle point equation for
Qab decouples from the one for Rαβ. This notwithstanding, at the end both limits n → 0 and
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m→ 0 must be considered, so that the n at the numerator cancels out with the 1/m prefactor.
We are thus left with

βV (q) = − 1

2β

[
β2

2
(1− (q∗0)p) + log(1− q∗0) +

q∗0
1− q∗0

]
+

1

β
max
Rαβ

{
− 1

m

[
β2

4

∑
αβ

Rp
αβ + log det

(
R− P TQ−1P

)]}
− fJ

=
1

β
max
Rαβ

{
− 1

m

[
β2

4

∑
αβ

Rp
αβ + log det

(
R− P TQ−1P

)]}
. (93)

since we known from the p-spin model calculation that we have precisely

fJ = − 1

2β

[
β2

2
(1− (q∗0)p) + log(1− q∗0) +

q∗0
1− q∗0

]
. (94)

We have therefore shown how the calculation of 〈fJ,S(q)〉 yields a contribution which perfectly
cancels out with fJ . In the limit of m→ 0 the energetic term with Rαβ becomes

β2

4m

∑
αβ

Rp
αβ =

β2

4m
[m+m(m− 1)rp]

m→0
=

β2

4
(1− rp). (95)

For the entropic terms involving R we have first to find out who is the matrix R − P TQ−1P .
Since the solution of the saddle point equation for Qab for temperatures T > TK is Qab = 1n×n
we have, taking into account the Ansatz in Eq. (90) for P ,

(
P TQ−1P

)
αβ

=
∑
ab

Pαa(Q
−1)abPbβ =

∑
ab

PαaδabPbβ =
n∑
a=1

PαaPaβ = q2, (96)

so that

R− P TQ−1P =


1− q2 r − q2 . . . r − q2

r − q2 1− q2 . . . r − q2

...
...

. . .
...

r − q2 . . . r − q2 1− q2



=


1− r 0 . . . 0

0 1− r . . . 0
...

...
. . .

...
0 . . . 0 1− r

+


r − q2 r − q2 . . . r − q2

r − q2 r − q2 . . . r − q2

...
...

. . .
...

r − q2 . . . r − q2 r − q2.

 (97)

We exploit once again the formula of the determinant of a m ×m matrix C = A + B where
A is diagonal with all elements equal to a, Am×m = diag(a, . . . , a), and B is completely filled
with elements all identical to b, B = b 1m ⊗ 1m:

det(C) = det(A+B) = am +m b am−1. (98)
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The last formula, applied to R− P TQ−1P yields:

det(R− P TQ−1P ) = (1− r)m +m (r − q2) (1− r)m−1

= (1− r)m
[
1 +m

r − q2

1− r

]
, (99)

from wich we have

lim
m→0

1

m
log det(R− P TQ−1P ) = log(1− r) + lim

m→0

1

m
log

(
1 +m

r − q2

1− r

)
= log(1− r) +

r − q2

1− r
. (100)

At the end, collecting all pieces, what we get is:

βV (q) =
1

β
max
r

{
−β

2

4
(1− rp)− β2qp

2
− log(1− r)− r − q2

1− r

}
(101)

and the maximization has to be performed numerically. Again, notice that we are looking for
the maximum of the free energy instead of the minimum. The reason comes from the the replica
limit m→ 0.

3.2 Maximization vs Minimization Argument over Qab

Consider the free energy of a magnetic system (for example the Curie-Weiss model):

F (M) = U(M)− TS(M) (102)

Usually in statistical mechanics you look to configurations which minimize the free energy, and
we want to be consistent with that; note also that F and U agree in sign. Now we have to
recognize what is the internal energy of our p-spin model. The expression we found for the
internal energy is

f(β) =
1

β
A[QSP ] = − 1

n

[ Energetic term︷ ︸︸ ︷
β

4

n∑
α,β=1

(QSP )pαβ +

Entropic term︷ ︸︸ ︷
1

2β
log

(
det(QSP )

)]
And we therefore make the assignment

U(Qαβ) = −β
4

n∑
αβ

(
Qαβ

)p
(103)

When n > 1 in principle you should minimize the free energy f with respect to Qαβ; the point
is that when you take the limit n→ 0 the internal energy changes sign. Indeed, if we consider
the simplest possible ansatz, the replica symmetric one, it turns out that:

U(Qαβ) = −β
4

n∑
αβ

(
Qαβ

)p
=
βn

4

[
(1− n)qp0 − 1

]
(104)
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and we can see that the value of q0 that minimize the function for n > 1 is the one that
maximize the function for n < 1, as shown in figure (6).
The change in the sign essentially comes out when we try to count the off-diagonal terms, which
are n(n− 1), and we realize that this quantity becomes negative for n→ 0.
Maximization has been proved rigorously by Guerra Francesco (Rome) in the paper: Comm.
Math. Phys. (2003).

Figure 6: Behaviour of the internal energy depending on the parameter n. As soon as n < 1 the
function changes its concavity
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4 Statistical mechanics and inference problems

The main reference for this chapter is Statistical Physics and Inference Problems. Notes: M.C.
Angelini, F. Caltagirone, F. Krzakala.
Let us consider as a building block for what follows the discrete p-spin model with nearest
neighbours interaction

HJ( ~J, ~σ) = −
∑
<ijk>

Jijkσiσjσk (105)

where Jijk and σi have become binary variables of values in
{
−1,+1

}
. If we denote by � the

couplings and by ◦ the spin variables, the geometry of the system can be described by the
regular random graph where each spin is attached to three couplings, and each coupling is
attached to three spins.

Figure 7: Bethe Lattice.

It can be proved that this graph is the only type of geometry with finite connectivity that
with our choice of H (105) displays a glass transition (for example, in a square lattice this
wouldn’t happen). In particular, this geometry with discrete variables has the same kind of
physics of the p-spin model with continuous variables, with the three different phases and the
two temperatures TK and TD.
This pattern is called Locally Tree-Like Random Graph and it’s well described in Information
Physics Computation. M. Mézard, A. Montanari (2009).

4.1 Bayesian Inference

Now we want play the ”inference game” already mentioned in section 2.5.

Recall that:

1. INPUT: random sequence of digits ~σ0 =
{
σ0

1, ..., σ
0
N

}
, σ0

i = ±1 (the signal).

2. OUTPUT: coupling coefficients ~J0 =
{
Jijk
}
<ijk>

3. Probabilistic RULE to get ~J0 from ~σ0: ~J0 are such that the spins ~σ0 are an equilibrium
configuration at temperature T = β−1

P
(
J 0
ijk

)
=

1

2 cosh β
exp
{
βJ0

ijkσ
0
i σ

0
jσ

0
k

}
(106)
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We thus have a rule depending on a parameter β. By tuning the value of β, the output
will be more or less correlated to the input.

Figure 8: Schematic diagram of inference game.

The conditional probability of the output ~J0, given the input ~σ0, is the Likelihood function:

P
(
~J0| ~σ0

)
= e−βH

[
~J0, ~σ0

]
(107)

while P ( ~σ0) is the Prior Probability. What we are going to do in what follows is called bayesian
inference.
The bayesian inference consists on throwing away ~σ0 and trying to infer it from the knowledge
of ~J0. Bayesian inference exploits the Bayes formula for conditional probabilites:

P
[
~σ|~J

]︸ ︷︷ ︸
Posterior

P
[
~J
]

= P
[
~J |~σ
]︸ ︷︷ ︸

Likelihood

P
[
~σ
]︸ ︷︷ ︸

Prior

(108)

and we want to find the Posterior Probability, namely:

P
[
~σ|~J

]
=
P
[
~J |~σ
]
P
[
~σ
]

P
[
~J
] =

P
[
~J |~σ
]

P
[
~J
] (109)

where the last step is justified by the choice of a uniform prior.
The P

[
~J
]

term can be obtained by a simple normalization argument:

1 =
∑
{~σ}

P
[
~σ|~J

]
⇒ P

[
~J
]

=
∑
{~σ}

P
[
~J |~σ

]
= Z

(
~J
)

(110)

and therefore we know the posterior:

P
[
~σ| ~J0

]
=

1

Z
(
~J0
)e−βH[ ~J0,~σ

]
(111)

This is called Planted Ensemble, because the couplings we sampled were correlated to ~σ0 through
the relation (106).

Now we look at the problem from a machine learning point of view, that is, we still know the
“right answer” ~σ0 and we want to train our algorithm in order to minimize the number of
errors, i.e. the loss function.
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• We sample the configurations ~σ according to the probability P
[
~σ| ~J0

]
• The loss function (“energy”) is

E =
1

N

N∑
i=1

(
1− δσi,σ0

i

)
(112)

• To minimize E we use the Argmax algorithm

σ̂i = argmaxσi µ
(
σi| ~J0

)
(113)

where µ is the marginal probability distribution:

µ
(
σi| ~J0

)
=

∑
{σj |j 6=i}

1

Z
(
~J0
)e−βH[~σ| ~J0 ] =

∑
{σj |j 6=i}

P
[
~σ| ~J0

]
(114)

The configuration, iteratively selected by the Argmax algorithm is, by definition, the one that
minimizes the free energy:

f = − 1

Nβ
log

(∑
{~σ}

exp
{
−βH[~σ| ~J0 ]

})
(115)

In order to estimate how the chances to perform a successful inference depend on the parameter
β, it is useful to study how the free energy depends on the similarity (overlap) between the

answer of our inference and with the signal to be retrieved ( ~σ0). We can define the overlap as
follows:

q =
1

N

N∑
i=1

(
1− δσi σ0

i

)
− 1

2
= E

[
~σ, ~σ0

]
− 1

2
(116)

and the associated free energy is:

f ~J0, ~σ0(q) = log

(∑
{~σ}

exp
{
−βH[~σ| ~J0 ]

}
δ
(
qN − ~σ · ~σ0

))
(117)

But, on average, we know that
〈
f ~J0, ~σ0(q)

〉
∼ V (q), so our inference problem is strictly connected

with the Franz-Parisi potential. In particular, we know that P (q) ∼ e−βNV (q), and therefore
we can state that inference is successful when for N →∞ we have p(q ' 1) > 0, i.e. when we

have a finite probability to retrieve the correct ~σ0.

The shape of the potential for various temperatures is shown in Figure 5). We can conclude that
if T > TD then inference is impossible, if T < TK inference is possible with finite probability
(easy) and in between TD < T < TK inference is a hard problem, exponentially unlikely, because
we already now that in this case τalg ∼ exp {NΣ}.

Remark 1: As already said, the above argument works because we are supposed to know what
~σ0 is, otherwise we cannot even compute the error function E. Here we have assumed that first
we train our algorithm (supervised learning) and we check if inference is possible and, if so, we
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eventually can forget about our input and make predictions over data belonging to the same
distribution.
Remark 2: Glass transitions in algorithms are quite common, and they are not restricted to
the p-spin model we used for our discussion. In supervised learning you are given the training
data and the labels and you want to learn an associative rule. In statistical mechanics this
corresponds to an inverse problem, where you know the configurations and you want to learn
the coupling coefficients, so you are moving in this phase space of coefficients.
In ML the phase space is the Hypothesis class H of our predictor rules, and the size of training
sample ms plays the role of the temperature. If we increase the size of the training set our
learning improves, and this is due to the fact that we add more constraints to the phase space.
Since H has an entropy very similar to the configurational entropy, the transition beyond which
you can learn the problem with good probability occours when the entropy of this phase-space
goes to zero.
For example, in the Perceptron algorithm or in Neural Networks this idea works.
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