PTOLEMY: A detector for the oldest neutrinos in the Universe Chris Tully (Princeton)

26 April 2023
L'Aquila Joint Astroparticle Colloquium Gran Sasso Laboratory

JOHN

TEMPLETON
FOUNDATION
Inspiring Awe © Wonder
$\underline{\text { http://ptolemy.Ings.infn.it }}$

Neutrinos sources across the Cosmos

Neutrino Masses from Oscillations

3 mass eigenstates
3 flavors
(electron, muon, tau)

Cosmic Neutrino Background

Neutrino number density:

$$
\mathrm{n}_{\mathrm{v}}=112 / \mathrm{cm}^{3}
$$

Temperature:

$$
T_{v} \sim 1.95 \mathrm{~K}
$$

Time of decoupling:
$\dagger_{v} \sim 1$ second
neutron/proton ratio
@start of nucleosynthesis
Velocity distribution:

$$
\left\langle v_{v}>\sim T_{v} / m_{v}\right.
$$

Non-linear distortions Villaescusa-Navarro et al

Cosmic Elements

Neutrino Flux on the Sky

Cosmic Microwave Background (CMB)

Cosmic Neutrino Background (CNB)

PTOLEMY: Experiment to measure relic neutrinos from the Big Bang

G. Zhang and C. Tully, https://arxiv.org/abs/2103.01274 (https://arxiv.org/abs/2201.01888) (Highlight article: Journal cover)

Tritium β-decay

 (12.3 yr half-life)Relic neutrino momentum ~0.17 meV

```
For m
```

```
KE = p2/2m
```

KE = p2/2m
=0.17 meV (0.17 meV/100 meV)
=0.17 meV (0.17 meV/100 meV)
= 0.3 \mueV

```
    = 0.3 \mueV
```

Ultra-Cold!

Neutrino capture on Tritium

Detection Concept: Neutrino Capture

- Basic concepts for relic neutrino detection were laid out in a paper by Steven Weinberg in 1962 [Phys. Rev. 128:3, 1457] applied for the first time to massive neutrinos in 2007 by Cocco,
Mangano, Messina [DOI: 10.1088/1475-7516/2007/06/015] and revisited in 2021 by Cheipesh, Cheianov, Boyarsky https://arxiv.org/abs/2101.10069

What do we know?
Gap (2m) constrained to
m < ~200meV from precision cosmology
Electron flavor expected with
$m>\sim 50 \mathrm{meV}$
from neutrino oscillations

CvB Detection Requires:

few $\times 10^{-6}$ energy resolution set by m_{v}

KATRIN ~ 10^{-4} (current limitation)
PTOLEMY: $\quad 10^{-4} \times 10^{-2}$
(compact filter) \times (microcalorimeter)

Motion of a Charged Particle in a B Field

Classic Velocity Selector

Is this the only way to select velocity?

PTOLEMY Filter Concept

Auke Pieter Colijn (PATRAS 2019)

$$
\left.\boldsymbol{V}_{E \times B}^{y}(z)\right|_{x, y=0}=\frac{\boldsymbol{E} \times \boldsymbol{B}}{B_{x}^{2}}=\frac{E_{z} B_{x} \hat{\boldsymbol{y}}}{B_{x}^{2}}=\frac{E_{z}}{B_{x}} \hat{\boldsymbol{y}}
$$

$$
\left.\boldsymbol{V}_{\nabla B}(z)\right|_{x, y=0}=-\frac{\boldsymbol{\mu} \times \boldsymbol{\nabla}_{\perp} \boldsymbol{B}(\boldsymbol{z})}{q B(z)}=-\frac{\mu}{q B_{x}} \frac{d B_{x}}{d z} \hat{\boldsymbol{y}}
$$

Enforce zero drift in y (rotate E):
yields

$$
\left.E_{z}(z)\right|_{y=0}=-\frac{\mu}{q} \frac{d B_{x}(z)}{d z}
$$

Bingo!

Selected velocity based on cyclotron drift

How well can one select velocities?

45 mm

Kinetic Energy - 18600 (eV)
Deflection is $\sim 4 \mathrm{~mm} / \mathrm{eV}$ (over a drift distance of 400 mm)

Lorentz4 Code

PTOLEMY R\&D Development Setup

Measurement Arm: $\mu \mathrm{Cal}$

Thin sensors:
~ 1 eV electron can be stopped with very small C

Au 30 nm
Ti 12 nm $\mathrm{SiN}_{\mathrm{x}} 500 \mathrm{~nm}$

Si

$\operatorname{SiN}_{x} 500 \mathrm{~nm}$

1% energy resolution at optical photon energies, i.e. measures the wavelength of a 500 nm photon to a few nm

Resolution of $\sim m_{v}$: Area $\sim 15 \mu \mathrm{~m} \times 15 \mu \mathrm{~m}$

C. Pepe, E. Monticone, M. Rajteri

First Version of the PTOLEMY filter
PTOLEMY
Wonyong
Chung
filter@Princeton

Conduction-Cooled Superconducting Coils

- LNGS magnet sepecifications within $\sim 20 \%$ of a Wind Generator system made by ANSALDO designed in Spain (10 Open MRI similar commercial systems sold per year)
- This is the preferred option and reduces $70 \mathrm{~kW} \rightarrow 10 \mathrm{~kW}$ power

Filter Performance

Improves as $\mathbf{B}^{\mathbf{2}}$ for a fixed filter dimension

18.6 keV @ $1 \mathrm{~T} \rightarrow \sim 10 \mathrm{eV}$ (in 0.4 m)
18.6 keV @ 3T $\rightarrow \sim 1 \mathrm{eV}$ (in 0.6m)

PTOLEMY Collaboration, https://arxiv.org/abs/2108.10388
"Implementation and Optimization of the PTOLEMY Electromagnetic Filter"
https://iopscience.iop.org/article/10.1088/1748-0221/17/05/P05021

Electrode Prototype

Wonyong
Chung
(Princeton)

Pitch 85 Long Trajectory

\bullet

Andi Tan (Princeton)

Antenna Design Studies

Yuno Iwasaki (Princeton)

Pin Antenna

1 fW peak (87.3% of total, Avg. 5\%) Bouncing (every $\sim 40 \mathrm{~ns}$) @ 27 GHz

RF Antenna and Readout

Dutch-led Consortium: *started 9/1/21 (5-year)

One second after the Big Bang
Every second, Earth is bombarded with an enormous number of neutrinos from the cosmos. These neutrinos were created in the primordial soup one second after the Big Bang, but they have never been observed. The researchers will develop an experiment to observe "relic neutrinos" by investigating the decay of heavy-hydrogen tritium.

Official secretary on behalf of the consortium: Prof. Auke Colijn - University of Amsterdam

Consortium: University of Amsterdam, Nikhef, Radboud University, The Hague University of Applied Sciences, TNO, Princeton Physics Department, Gran Sasso National Laboratory (LNGS), Netherlands' Physical Society, Ampulz, Karlsruhe Institute of Technology

Amount awarded: 1.1 million euros

Recent Project 8 Tritium Measurement

RF measurement
background levels
extremely low. extremely low.

No events observed above endpoint, Setting upper limit on background rate
$<3 \times 10^{-10} / \mathrm{eV} / \mathrm{s}(90 \% \mathrm{CL})$
$\rightarrow<1$ event per eV in 100 years!

End-to-end Transport w/Kassiopeia

Magnet

40 cm
35 cm

Zero-Field Calorimeter Transition

Gap Opening in Double-Sided Highly Hydrogenated Free-Standing Graphene

Maria Grazia Betti,* Ernesto Placidi, Chiara Izzo, Elena Blundo, Antonio Polimeni, Marco Sbroscia, José Avila, Pavel Dudin, Kailong Hu, Yoshikazu Ito, Deborah Prezzi,* Miki Bonacci, Elisa Molinari, and Carlo Mariani

Cite This: Nano Lett. 2022, 22, 2971-2977

Read Online
ACCESS | 亗 Metrics \& More | 国 Article Recommendations | Supporting Information

ABSTRACT: Conversion of free-standing graphene into pure graphane-where each C atom is sp^{3} bound to a hydrogen atomhas not been achieved so far, in spite of numerous experimental attempts. Here, we obtain an unprecedented level of hydrogenation $\approx 90 \%$ of sp^{3} bonds) by exposing fully free-standing nanoporous sanples-constituted by a single to a few veils of smoothly rippled graphene-to atomic hydrogen in ultrahigh vacuum. Such a controlled hydrogenation of high-quality and high-specific-area samples converts the original conductive graphene into a wide gap semiconductor, with the valence band maximum $(\mathrm{VBM}) \sim 3.5 \mathrm{eV}$ below the Fermi level, as monitored by photoemission spectromicroscopy and confirmed by theoretical
 predictions. In fact, the calculated band structure unequivocally identifies the achievement of a stable, double-sided fully hydrogenated configuration, with gap opening and no trace of π states, in excellent agreement with the experimental results.

QUANTUM SPREAD

- Distributing tritium on flat graphene has one drawback
spatially localized tritium
Δ
uncertainty on tritium's momentum

spread in final electron energy
[Cheipesh, Cheianov, Boyarsky - PRD 2021, 2101.10069]
- A simple semi-classical estimate:
fluctuating momenta

$$
\begin{aligned}
\mathbf{p}_{T} & =\Delta \mathbf{p}_{T} \\
\mathbf{p}_{H e} & =\overline{\mathbf{p}}_{H e}+\Delta \mathbf{p}_{H e} \\
\mathbf{p}_{e} & =\overline{\mathbf{p}}_{e}+\Delta \mathbf{p}_{e}
\end{aligned}
$$

energy and momentum conservation returns

$$
\Delta E_{e} \simeq\left|\frac{\mathbf{p}_{e} \cdot \boldsymbol{\Delta} \mathbf{p}_{T}}{E_{H e}}\right| \sim \frac{p_{e}}{m_{H e}} \frac{1}{\Delta x_{T}}
$$

spread of initial tritium wave

$$
\text { function }\left(\Delta x_{T} \sim 0.1 \AA\right)
$$

QUANTUM SPREAD

- Distributing tritium on flat graphene has one drawback
spatially localized tritium

[Cheipesh
uncertainty on tritium's momentum

spread in final electron energy
- A simple semi-classical estimate:
fluctuating momenta

$$
\begin{aligned}
\mathbf{p}_{T} & =\Delta \mathbf{p}_{T} \\
\mathbf{p}_{H e} & =\overline{\mathbf{p}}_{H e}+\Delta \mathbf{p}_{H e} \\
\mathbf{p}_{e} & =\overline{\mathbf{p}}_{e}+\Delta \mathbf{p}_{e}
\end{aligned}
$$

energy and momentum conservation returns

$$
\Delta E_{e} \simeq\left|\frac{\mathbf{p}_{e} \cdot \Delta \mathbf{p}_{T}}{E_{H e}}\right| \sim \frac{p_{e}}{m_{H e}} \frac{1}{\Delta x_{T}} \sim 0.6-0.8 \mathrm{eV}
$$ an order of magnitude larger than the wanted energy accuracy

spread of initial tritium wave

$$
\text { function }\left(\Delta x_{T} \sim 0.1 \AA\right)
$$

QUANTUM SPREAD

- The resulting rate is
${ }^{3} \mathrm{He}^{+}$is mostly freed from the graphene \longrightarrow the cosmic neutrino peak disappears under the decay spectrum

When the ${ }^{3} \mathrm{He}^{+}$remains bound in the ground state the peak is well separated \rightarrow it is however exponentially unlikely

Collaboration with Savannah River National Laboratory for Tritium Loading

CNT, NPG, CVD-G, and De-localized Atomic T Geometries
~2Å flat potential - not chemically active

HV Stability and Monitoring

environmental parameter stabilization (dT $\sim 0.1^{\circ} \mathrm{C}$, Pressure $<1 \mathrm{mBar}$, humidity 0%)

Single board
$\sigma=0.3 \mathrm{mV}$
Expect $\sqrt{ } \mathrm{N}_{\text {boards }}$:
~1.4mV@20kV

LNGS Full-Scale Prototype

TEMPLETON
FOUNDATION
Inspiring Awe © Wonder

- Features of prototype:
- Iron-return flux magnet @1T w/ conduction-cooled SC coils
- small (few cm^{2}) tritium-loaded graphene target from SRNL w/Rome hydrogen loading system
- RF antenna @26.5GHz from Univ.of Amsterdam/TNO
- PTOLEMY filter with high precision HV reference
- Vacuum cryostat interface to TES microcalorimeter fridge
- Fabrication in progress on most elements (SC coil approval soon)
- Operate through 2024 for first tritium data release

Relic Neutrino Exp Search Sensitivities (NH)

\(\left.$$
\begin{array}{c|c}\text { Curve } & \text { Description } \\
\hline \hline \text { Orange } & \begin{array}{c}\text { PTOLEMY sensitivity to Dirac (solid) and Majorana } \\
\text { (dotted) neutrinos, standard method. Time dependent } \\
\text { method for Dirac neutrinos (dot-dashed). }\end{array} \\
\hline \text { Cyan } & \begin{array}{c}\text { Stodolsky effect sensitivity to Dirac (solid) and Majorana } \\
\text { (dotted) neutrinos. }\end{array}
$$

\hline Pink \& Coherent scattering sensitivity to Dirac (solid) and

Majorana (dotted) neutrinos.\end{array}\right]\)| Light | Accelerator sensitivity to Dirac (solid) and Majorana
 (dotted) neutrinos. Using an optimistic setup for Dirac
 neutrinos (dot-dashed). |
| :---: | :---: |
| Grey | Excluded by theory and experiment for $T_{\nu_{i}}=T_{\nu, 0}$ (solid,
 Figures 9 and 10). Excluded by KATRIN (dashed,
 Figures 11 and 12). |
| Blue | Excluded by Pauli exclusion principle for $T_{\nu_{i}} \neq T_{\nu, 0}$. |
| Purple | Strongest mass bound on unstable Dirac neutrinos, from
 cosmology. |
| Red | Strongest mass bound on unstable Majorana neutrinos,
 from KamLAND-Zen. |
| Green | Strongest mass bound on stable neutrinos, from cosmology. |

Relic Neutrino Exp Search Sensitivities (IH)

https://arxiv.org/abs/2207.12413

Description
\(\left.$$
\begin{array}{c|c}\text { Curve } & \text { Description } \\
\hline \hline \text { Orange } & \begin{array}{c}\text { PTOLEMY sensitivity to Dirac (solid) and Majorana } \\
\text { (dotted) neutrinos, standard method. Time dependent } \\
\text { method for Dirac neutrinos (dot-dashed). }\end{array} \\
\hline \text { Cyan } & \begin{array}{c}\text { Stodolsky effect sensitivity to Dirac (solid) and Majorana } \\
\text { (dotted) neutrinos. }\end{array}
$$

\hline Pink \& Coherent scattering sensitivity to Dirac (solid) and

Majorana (dotted) neutrinos.\end{array}\right]\)| Light | |
| :---: | :---: |
| green | Accelerator sensitivity to Dirac (solid) and Majorana
 (dotted) neutrinos. Using an optimistic setup for Dirac
 neutrinos (dot-dashed). |
| Grey | Excluded by theory and experiment for $T_{\nu_{i}}=T_{\nu, 0}$ (solid,
 Figures 9 and 10). Excluded by KATRIN (dashed,
 Figures 11 and 12). |
| Purple | Strongest mass bound on unstable Dirac neutrinos, from
 cosmology. |
| Red | Strongest mass bound on unstable Majorana neutrinos,
 from KamLAND-Zen. |
| Green | Strongest mass bound on stable neutrinos, from cosmology. |

Outlook

- The sustained effort in PTOLEMY R\&D is a testament to the importance our dedicated group of collaborators place on pushing the frontier of early Universe neutrino cosmology clever ingenuity is behind many advances
- PTOLEMY expects to become the leader in tritium endpoint energy measurement resolution within the next 2 years
- Next stop (w/ more target mass): absolute neutrino mass

Backup

Bobsledding (pushing electron up potential)

Dynamically Adjusted (side channels) to Total Energy "Selector"

Transverse "Selector" (one channel)

side

Center

Gonzalez-Herrero, H. et al. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science (80). 352, 437-441 (2016).

Ultra-slow electron drift region

Scanning ExB Voltages to Maximize Duration of Antenna Signal

Midde electrodes at +- 2 V

Quantum-Limited Parametric Amp

High Frequency Josephson Traveling Wave Parametric Amp (TWPA)

Joint Project w/ MIT and Project 8

Electromagnetic Filters

MAC-E filter
Magnetic Adiabatic Invariance
$\mu=\frac{p_{\perp}^{2}}{q B}=$ constant
$p_{\perp} \rightarrow p_{\|}$Collimation: $-\nabla \mathbf{B}| | \mathbf{B}$
Filter (E - Field)
Reflect for $\mathrm{E}<\mathrm{E}_{\text {filter }}$
Pass for $\mathrm{E}>\mathrm{E}_{\text {filter }}$
$m_{v}<0.8 \mathrm{eV} / \mathrm{c}^{2}$ (90\% CL)
https://arxiv.org/abs/2105.08533
$\rightarrow 0.2 \mathrm{eV} / \mathrm{c}^{2}$ Sensitivity Goal
($\sim 1 \mathrm{eV}$ energy resolution)

Electromagnetic Filters

Transverse Drift filter

Magnetic Adiabatic Invariance
$\mu=\frac{p_{\perp}^{2}}{q B}=$ constant
No Collimation: $-\nabla B \perp B$
Filter (E-Field)
$\frac{d T_{\perp}}{d t}=\frac{\mu}{B^{2}} \boldsymbol{E} \cdot(\boldsymbol{\nabla} B \times \boldsymbol{B})$
PTOLEMY

Big Bang Cosmology

Adiabatic Density Anisotropies $\delta \sim 10^{-5}$ at $z \sim 1100$

Where we think there is an initial $\tau_{\mathrm{i}}=0$ Big Bang Singularity is believed to be the "end" of an inflation period that slowly pulled out (>60 e-folds $a(\tau) \sim e^{H \tau}$) of a "de Sitter"-like spacetime

Axions and Relic Neutrinos

- Early Universe models trend toward having axion and neutrino sector implications:
- Both involve relatively low masses
- Both have unique coupling terms including non-SM
- Both see some stopping blocks at BBN and CMB
- Both have possibilities for late Universe generation in warm-inflation-like models
- Experiments are distinct in terms of wave-like or targetbased particle detection, but interesting parameter spaces can be correlated depending on the model

Where neutrinos come in

- Example: F. Takahashi, W. Yin, and A. Guth, "QCD axion window and low-scale inflation", 10.1103/PhysRevD.98.015042 (2018). https://arxiv.org/abs/1805.08763
- $H_{\text {inf }}<\theta(1) \mathrm{MeV}$ no fine-tuning of misalignment angle needed
- Upper bound on axion scale relaxed \rightarrow wave-like particles with dark matter abundance
- Reheating? Right-handed neutrinos coupled to the inflaton (B-L Higgs?)
- Inflaton-Radiation equality, followed by perturbative right-handed neutrino decays to Higgs and leptons (resonant leptogenesis?)
- Heavier right-handed neutrino radiative correction increases spectral index

Rich era of axion experiments - but with neutrinos a close buddy

End of Expansion

Frictional term $\propto \dot{\phi}$ may couple to gauge singlets:

- Right-handed neutrinos??
\rightarrow CNB w/ high local density and much more uniform

Dipole ~ $8 \% \rightarrow<1 \%$
Quad $\sim 4 \% \rightarrow<0.5 \%$
C. Andrei, A. ljjas and P.J.Steinhardt, The End of Expansion, https://arxiv.org/abs/2201.07704
A. lijas and P.J. Steinhardt, The End of Expansion and Dark Radiation (tentative title), in preparation
K. Berghaus, P.W. Graham, D.E. Kaplan, G.D. Moore and S. Rajendran, Dark Energy Radiation,

Also:
https://arxiv.org/abs/2012.10549
D. Green, D.E. Kaplan and S. Rajendran, Neutrino Interactions in the late universe, https://arxiv.org/abs/2108.06928

