Dynamic tidal resonances in EMRIs

Béatrice Bonga - 21 September 2023

Bonga, Yang & Hughes [1905.00030, PRL] + Gupta, Bonga, Chua & Tanaka [2104.03422, PRD] + Gupta, Speri, Bonga, Chua & Tanaka [2205.04808, PRD] + Bonga, Gupta, Peters [23yy.xxxx]

Extreme Mass Ratio Inspirals (EMRI)

EMRIs as isolated systems ?

 $M=4 imes 10^{6} M_{\odot}, \mu=M_{\star}=30 M_{\odot}, R=5 AU \Longrightarrow \epsilon \sim 2 imes 10^{-13}$

Osculating elements code

Geodesics + 5PN fluxes + tidal force

Tidal force weak and averages out

Evolution comparison Tidal force is important during resonances!

Resonances: matching of frequencies

Orbital frequencies of EMRI

Orbital frequency perturber

Perturber is far \rightarrow Keplerian frequency = Ω_{ϕ}

 M_{\star}

$n\,\omega_r+k\,\omega_ heta+m\,\omega_\phi+s\,\Omega_\phi=0$

Selection rule only non-zero if k+m+s is even

Key EMRI Waveform requirements

Tidal force only important during resonance

In the past...

Perturber assumed to be *stationary*

 $au_{orbit} \ll au_{resonance} \ll au_{rad}, au_{tide}$

Dynamic model

Perturber is in a circular Keplerian orbit \rightarrow no extra parameter!

New insights: dynamic model

Tidal force

Resonance contour stationary case

Resonance contour dynamic model

I. Jump sizes are similar (<10% difference generically, <30% when e>0.7)

2. But... resonance condition is \dim erent \rightarrow phase at resonance is different \rightarrow actual jump is very different!

Dynamic versus stationary

Ordering resonances different!

Dynamic tidal resonances will likely occur in EMRIs

Challenges for the future

I. How to deal with multiple resonances?

2. Upgrade dynamic model to eccentric orbit? (Is this needed?)

3. Are there additional physical effects that should be taken into account?

4. Are these resonances degenerate with other physics?

Back up slides

 $M=4 imes 10^6 M_\odot, \mu=M_\star=30 M_\odot ~~R=10 AU$ \implies $\epsilon\sim 10^{-14}$

Action-angle variables

Four constants of motion: $\{\mu, E, L_z, Q\}$

- \rightarrow Geodesic equation is integrable
- \rightarrow Action-angle variables are useful

$$\frac{dq_i}{d\tau} = \omega_i(\mathbf{J})$$
$$\frac{dJ_i}{d\tau} = 0$$

 $\mathbf{J} := \{J_r, J_\theta, J_\phi\}$

Before introducing a perturber....

... motion is not geodesic!

Gravitational radiation changes description

$$\begin{aligned} \frac{dq_i}{d\tau} &= \omega_i(\mathbf{J}) + \eta q_{i,\text{sf}}^{(1)}(q_\theta, q_r, \mathbf{J}) + \mathcal{O}(\eta^2) \\ \frac{dJ_i}{d\tau} &= \eta G_{i,\text{sf}}^{(1)}(q_\theta, q_r, \mathbf{J}) + \mathcal{O}(\eta^2) \end{aligned}$$

Mass ratio: μ /M

Self force 101: adiabatic approximation

$$\frac{dq_i}{d\tau} \approx \omega_i(\mathbf{J})$$
$$\frac{dJ_i}{d\tau} \approx \eta \left\langle G_{i,\mathrm{sf}}^{(1)}(q_\theta, q_r, \mathbf{J}) \right\rangle$$

Averaging

$$G_{\mathrm{sf}}^{(1)}(q_{\theta}, q_r, \mathbf{J}) = \sum_{k,n} G_{\mathrm{sf,kn}}^{(1)}(\mathbf{J}) e^{i(kq_{\theta} + nq_r)}$$

$$\bigtriangleup \left\langle G_{\rm sf}^{(1)}(q_{\theta},q_{r},\mathbf{J}) \right\rangle = G_{\rm sf,00}^{(1)}(\mathbf{J})$$

Not true when $k\omega_{\theta} + n\omega_{r} \approx 0$

Generic evolution

Resonant orbit

$$\begin{aligned} \frac{dq_i}{d\tau} &= \omega_i(\mathbf{J}) + \epsilon \, g_{i,\mathrm{td}}^{(1)}(q_{\phi}, q_{\theta}, q_r, \mathbf{J}) + \eta \, g_{k,\mathrm{sf}}^{(1)}(q_{\theta}, q_r, \mathbf{J}) + \mathcal{O}(\eta^2, \epsilon^2, \eta\epsilon) \\ & \epsilon &= M_{\star} M^2 \, \mathrm{x}_{\star} / R^3 \\ & \swarrow \\ \frac{dJ_i}{d\tau} = & \epsilon \, G_{i,\mathrm{td}}^{(1)}(q_{\phi}, q_{\theta}, q_r, \mathbf{J}) + \eta \, G_{i,\mathrm{sf}}^{(1)}(q_{\theta}, q_r, \mathbf{J}) + \mathcal{O}(\eta^2, \epsilon^2, \eta\epsilon) \end{aligned}$$

$$G_{i}^{(1)}(q_{\phi}, q_{\theta}, q_{r}, \mathbf{J}) = \sum_{m,k,n} G_{i,mkn}^{(1)}(\mathbf{J})e^{i(mq_{\phi} + kq_{\theta} + nq_{r})}$$

$$\omega_{mkn} := m\omega_{\phi} + k\omega_{\theta} + n\omega_r = 0$$

Jump sizes

- larger eccentricities \rightarrow larger jumps
- higher inclination \rightarrow larger jump for Q, but jump for L decreases
- higher spin → larger jumps (if retrograde), smaller jumps (if prograde)

Effect on the waveform also determined when the resonance occurs: need signal before and after resonance!

Change in "constants of motion"

Waveform validation

 $M=4 imes 10^{6} M_{\odot}, \mu=M_{\star}=30 M_{\odot}, R=5 AU$ $ightarrow \epsilon\sim 2 imes 10^{-13}$

$$\left(\log_{10}\frac{M}{M_{\odot}}, \log_{10}\frac{\mu}{M_{\odot}}, a, p, e, \mathbf{x}, q_r, q_{\theta}, q_{\phi}, \widetilde{\epsilon}\right)$$

If not accounted for, obtain wrong parameters

Extra tidal parameter does not harm others

