Extreme mass ratio inspirals in accretion disks

Laura Sberna (Max Planck Institute for Gravitational Physics, Potsdam)

Asymmetric Binaries meet Fundamental Astro-Physics GSSI, L'Aquila September 2023

(Unknown) fraction of all EMRIs detectable by LISA

[Dittmann, Miller 2019, Pan+ 2021, Derdzinski, Mayer 2022]

PHYSICAL REVIEW D 84, 024032 (2011)

Observable signatures of extreme mass-ratio inspiral black hole binaries embedded in thin accretion disks

PHYSICAL REVIEW D 89, 104059 (2014) Can environmental effects spoil precision gravitational-wave astrophysics?

Bence Kocsis,¹ Nicolás Yunes,^{2,1} and Abraham Loeb¹

Enrico Barausse,^{1,2,*} Vito Cardoso,^{3,4,†} and Paolo Pani^{3,5,‡}

(Unknown) **fraction** of all EMRIs detectable by LISA

[Dittmann, Miller 2019, Pan+ 2021, Derdzinski, Mayer 2022]

Migration (I, II)

PHYSICAL REVIEW D 84, 024032 (2011)

Observable signatures of extreme mass-ratio inspiral black hole binaries embedded in thin accretion disks

PHYSICAL REVIEW D 89, 104059 (2014) Can environmental effects spoil precision gravitational-wave astrophysics?

Bence Kocsis,¹ Nicolás Yunes,^{2,1} and Abraham Loeb¹

Enrico Barausse,^{1,2,*} Vito²Cardoso,^{3,4,†} and Paolo Pani^{3,5,‡}

(Unknown) fraction of all EMRIs detectable by LISA

[Dittmann, Miller 2019, Pan+ 2021, Derdzinski, Mayer 2022]

Migration (I, II)

Accretion and "wind"

PHYSICAL REVIEW D 84, 024032 (2011)

Observable signatures of extreme mass-ratio inspiral black hole binaries embedded in thin accretion disks

PHYSICAL REVIEW D 89, 104059 (2014) Can environmental effects spoil precision gravitational-wave astrophysics?

Bence Kocsis,¹ Nicolás Yunes,^{2,1} and Abraham Loeb¹

Enrico Barausse,^{1,2,*} Vito²Cardoso,^{3,4,†} and Paolo Pani^{3,5,‡}

(Unknown) **fraction** of all EMRIs detectable by LISA

[Dittmann, Miller 2019, Pan+ 2021, Derdzinski, Mayer 2022]

Accretion and "wind"

Migration (I, II)

Dynamical friction

PHYSICAL REVIEW D 84, 024032 (2011)

Observable signatures of extreme mass-ratio inspiral black hole binaries embedded in thin accretion disks

PHYSICAL REVIEW D 89, 104059 (2014) Can environmental effects spoil precision gravitational-wave astrophysics?

Enrico Barausse,^{1,2,*} Vito²Cardoso,^{3,4,†} and Paolo Pani^{3,5,‡}

Bence Kocsis,¹ Nicolás Yunes,^{2,1} and Abraham Loeb¹

LET'S BECOME ASTROPHYSICISTS, WITH ONE EXAMPLE

Work in progress with L. Speri and C. Miller

Magnetised Neutron Star

 $B \sim 10^{14}$ Gauss

Work in progress with L. Speri and C. Miller

NS versus disk magnetic field

Work in progress with L. Speri and C. Miller

NS versus disk magnetic field

NS versus disk magnetic field

Work in progress with L. Speri and C. Miller

NS versus disk magnetic field

Work in progress with L. Speri and C. Miller

Work in progress with L. Speri and C. Miller

magnetic versus gravitational attraction

Work in progress with L. Speri and C. Miller

magnetic versus gravitational attraction

 $R_{\text{gravity (Bondi)}} = M_{\text{NS}}/c_s^2$

>

Work in progress with L. Speri and C. Miller

magnetic versus gravitational attraction

 $R_{\text{gravity (Bondi)}} = M_{\text{NS}}/c_s^2$

MAGNETIC DRAG

$$\dot{L}_{\rm magnetic} = \pi \ \rho_{\rm disk} \ c_s \ R_B^2$$

Work in progress with L. Speri and C. Miller

MAGNETIC DRAG

$$\dot{L}_{\rm magnetic} = \pi \ \rho_{\rm disk} \ c_s \ R_B^2$$

 \dot{L}_{mag}

Work in progress with L. Speri and C. Miller

$$_{\text{gnetic}}/\dot{L}_{\text{GW}} \simeq 3 \times 10^{-5} \left(\frac{r}{10 M}\right)^{5/2}$$

negative PN

Disk parameters: $f_{\rm Edd} = 0.1$, $\alpha = 0.01$; $B_{NS} = 10^{14}$ Gauss

THE IMPLICATIONS OF AN ENVIRONMENTAL EFFECT

Formation of NS EMRIs or tidal disruption events: migrate faster towards the central black hole

THE IMPLICATIONS OF AN ENVIRONMENTAL EFFECT

Formation of NS EMRIs or tidal disruption events: migrate faster towards the central black hole

lisa detection: rest of the talk!

THE LARGEST EFFECT

Planetary-like migration

[Goodman, Rafikov 2001; GWs: Kocsis+ 2011, Yunes+ 2011]

EXTREME MASS RATIO INSPIRALS IN ACCRETION DISKS: THE PROBLEM

Analytic models borrowed from planetary science

[Kocsis+ 2011]

Few simulations,

don't capture all the physics

[Derdzinski+, 2020]

EXTREME MASS RATIO INSPIRALS IN ACCRETION DISKS: THE PROBLEM

Analytic models borrowed from planetary science

[Kocsis+ 2011]

Few simulations,

don't capture all the physics

[Derdzinski+, 2020]

DETECTING EXTREME MASS RATIO INSPIRALS WITH LISA

Our waveform model:

FastEMRIWaveforms (FEW)

[Katz+ 2021, https://bhptoolkit.org]

Kerr, circular, equatorial

Adiabatic trajectories (LISA: post-adiabatic) AAK waveforms (weak field amplitudes)

Courtesy of L. Speri

DETECTING EXTREME MASS RATIO INSPIRALS WITH LISA

Our waveform model:

FastEMRIWaveforms (FEW)

[Katz+ 2021, https://bhptoolkit.org]

Kerr, circular, equatorial

Adiabatic trajectories (LISA: post-adiabatic) AAK waveforms (weak field amplitudes)

Courtesy of L. Speri

EXTREME MASS RATIO INSPIRALS IN ACCRETION DISKS: A REALISTIC ANALYSIS

A

 n_r

 $L_{\text{environment}} = A r^{n_r}$ $\mathcal{L}_{\mathrm{GW}}$

 n_r

EXTREME MASS RATIO INSPIRALS IN ACCRETION DISKS: A REALISTIC ANALYSIS

 n_r

MEASURING THE DISK WITH GRAVITATIONAL WAVES ALONE

Disk parameters: accretion rate and viscosity

[Nelson 2018]

 n_r

A

 n_r

GRAVITATIONAL WAVES + ELECTROMAGNETIC OBSERVATIONS

Golden scenario: host identification and measurement of the bolometric luminosity

13 [Speri, LS et al. 2207.10086]

EXTREME MASS RATIO INSPIRALS IN ACCRETION DISKS: THE RISKS

- 0.9 \mathcal{O}

EXTREME MASS RATIO INSPIRALS IN ACCRETION DISKS: THE RISKS

- 0.9 \mathcal{O}

14 [Speri, LS et al. 2207.10086]

GENERAL RESULT

15 [Speri, LS et al. 2207.10086]

GENERAL RESULT

15

ASTROPHYSICAL ENVIRONMENTS IN THE NEAR FUTURE

- Eccentricity (could enhance prospects!) [Xuan+ 2022]
- **Relativistic** models for planetary-like migration

[D'Orazio, Duffell 2021]

ASTROPHYSICAL ENVIRONMENTS IN THE NEAR FUTURE

- Eccentricity (could enhance prospects!) [Xuan+ 2022]
- **Relativistic** models for planetary-like migration

• **Realistic** simulations of planetary-like migration

[D'Orazio, Duffell 2021]

Current limitations in simulations:

- intermediate mass ratio
- Newtonian gravity
- leading order orbit decay
- no radiation, no magnetic fields
- Iimited Mach number
- black holes: sink prescriptions

ASTROPHYSICAL ENVIRONMENTS IN THE NEAR FUTURE

- Eccentricity (could enhance prospects!) [Xuan+ 2022]
- **Relativistic** models for planetary-like migration

• **Realistic** simulations of planetary-like migration

Oscillations in planetary-like migration

 $\dot{r}/\Omega r$

16

Thank you!

Laura Sberna (Max Planck Institute for Gravitational Physics, Potsdam)

Asymmetric Binaries meet Fundamental Astro-Physics GSSI, L'Aquila September 2023 Z

