

Search, recovery or destroy a waveform template: how important are eccentricity evolution and post-adiabatic terms for asymmetric binaries?

O. Burke, G. A. Piovano, N. Warburton, P.Lynch, L. Speri, C. Kavanagh, B. Wardell, A. Pound

Asymmetric Binaries meet Fundamental Astro-Physics L'Aquila, GSSI, 20-22 September 2023

Introduction-part 1 of 2

We can do wonder with EMRIs...

... if we use fast and accurate waveforms

- how fast? around 1-10ms
- \bullet how accurate? within 1 cycle \implies at 1-post-adiabatic order (1PA) 1

Complications:

vast parameter space (14d) & long, slow inspirals

Data analysis perspective

- Can we use approximate models?
- What happen if the mismodeled adiabatic order?
- Can we ignore 1PA terms?

Try answer these questions with Bayesian analysis and MCMC (GR, no environmental effects)

¹Hinderer at al. PhysRevD.78.064028(2008)

Introduction - 2 of 2

According to two-times scale expansion

 \mathcal{C}^1 contains second-order self-force+secondary spin corrections

Our state-of-the-art waveforms (Schwarzschild spacetime) :

- full 1PA for circular, equatorial orbits ²
- 0PA eccentric

Compared with approximate PN inspired models.

All models implemented in FEW \bigcirc_{3}

 2 Wardell et al. PhysRevLett.130.241402(2023); Mathews et al. PhysRevD.105.084031 (2022); Piovano et al PhysRevD.104.124019(2021)

³Katz et al. PhysRevD.104.064047(2021); Chua et al. PhysRevLett.126.051102(2021)

Bayesian analysis with EMRIs

- Observation of the second s
- Mismodelling evolution eccentric orbits for adiabatic waveform

Gabriel Andres Piovano

Bayesian analysis with EMRIs

Gabriel Andres Piovano

d the data stream of observations with parameters heta

$$\log p(\theta|d) \propto \log p(d|\theta) + \log p(\theta)$$

Priors $p(\theta)$: uniform for all parameters

Our samplers

- emcee for circular orbits
- Eryn with parallel tempering for eccentric orbits

Likelihood

Three TDI observable $X=\{A,E,T\}$, $h_{\rm e}^{(X)}(t; heta)$ true waveform $d^{(X)}(t)=h_{\rm e}^{(X)}(t; heta)+n^{(X)}(t)$

Noise $n^{(X)}(t)$ Gaussian and Stationary

$$\implies \log p(d|\theta) \propto -\frac{1}{2} \sum_{X = \{A, E, T\}} (d - h_m | d - h_m)_{(X)}$$

$$(a|b)_X = 4\operatorname{Re} \int_0^\infty \frac{\tilde{a}^{(X)}(f)(\tilde{b}^{(X)})^*(f)}{S_n^{(X)}(f)} df$$

Set $n^{(X)} = 0$ to maximize the impact of systematic biases

$$\implies \log p(d|\theta) \propto -\frac{1}{2} \sum_{X = \{A, E, T\}} (h_e - h_m | h_e - h_m)_{(X)}$$

Statistical vs systematic errors

Credit: Ollie Burke.

$$\mathcal{R} = rac{\Delta oldsymbol{ heta}_{\mathsf{sys}}}{\Delta oldsymbol{ heta}_{\mathsf{stat}}}$$

 ${\cal R}$ is SNR dependent since $\Delta heta_{
m sys} \propto {\it SNR^0}$ and $\Delta heta_{
m stat} \propto {\it SNR^{-1}}$

How important are 1PA terms for circular orbits?

Gabriel Andres Piovano

Orbital evolution for circular orbits at post-adiabatic order

$$\begin{aligned} \frac{\mathrm{d} \Phi_{\phi}}{\mathrm{d} t} &= \Omega_{\phi}(r) \\ \frac{\mathrm{d} r}{\mathrm{d} t} &= -\nu \left[F_0(r) + \nu F_1(r) \right] \end{aligned}$$

 ν symmetric mass ratio, χ spin of the secondary

Our models: same waveform structure, different evolution⁴

cir1PA

$$F_1(r) = F_1^{SF}(r) + \chi F_1^{\chi}(r).$$

cir0PA+1PA-3PN

$$F_1(r) = F_1^{3PN}(r) + \chi F_1^{\chi}(r).$$

 $\frac{F_1^{3\text{PN}}(r) \text{ given by resummed, PN series at 3rd order (credit: C. Kavanagh)}{^4\text{Wardell et al. PhysRevLett.130.241402(2023); Mathews et al. PhysRevD.105.084031}(2022); Piovano et al PhysRevD.104.124019(2021)}$

Gabriel Andres Piovano

Caveats: what we neglected

- evolution mass and spin primary. (1PA but numerically small)
- 2SF flux at horizon (unknown; small contribution)
- 1PA correction waveform amplitude (neglible, extremely slow variation)

Neglecting 1PA term for circular orbit - EMRI

Parameters: $q = 10^{-5}$, $M = 10^{6} M_{\odot}$, SNR ~ 70, $D_{L} = 1$ Gpc, T = 2 years.

Mismatch between cirOPA and cir1PA, is $\mathcal{M}(h^{(0PA)}(\boldsymbol{\theta}_{bf}), h^{e}(\boldsymbol{\theta}_{tr})) \sim 10^{-5}$

Neglecting 1PA term for circular orbit - EMRI

Parameters: $q = 10^{-4}$, $M = 10^{6} M_{\odot}$, SNR ~ 65, $D_{L} = 2$ Gpc, T = 1.5 year.

And the secondary spin?

Gabriel Andres Piovano

Neglecting 1PA term for circular orbit - EMRI $q = 10^{-5}$

Neglecting 1PA term for circular orbit - EMRI $q = 10^{-4}$

What happen for larger mass ratio?

Gabriel Andres Piovano

Neglecting 1PA term for circular orbit - IMRI $q = 10^{-3}$

Neglecting 1PA term for circular orbit - IMRI $q = 10^{-3}$

Mismodelling evolution eccentric orbits for adiabatic waveform

Gabriel Andres Piovano

Orbital evolution for eccentric orbits at adiabatic order

$$\begin{aligned} \frac{\mathrm{d}\Phi_{\phi}}{\mathrm{d}t} &= \Omega_{\phi}(p, e) \qquad \frac{\mathrm{d}\Phi_{r}}{\mathrm{d}t} = \Omega_{r}(p, e) \\ \frac{\mathrm{d}p}{\mathrm{d}t} &= -q\left(\frac{\partial p}{\partial E_{0}}\mathcal{F}_{0}^{E}(p, e) + \frac{\partial p}{\partial J_{0}}\mathcal{F}_{0}^{J}(p, e)\right) \\ \frac{\mathrm{d}e}{\mathrm{d}t} &= -q\left(\frac{\partial e}{\partial E_{0}}\mathcal{F}_{0}^{E}(p, e) + \frac{\partial e}{\partial J_{0}}\mathcal{F}_{0}^{J}(p, e)\right) \\ \mathcal{F}_{0}^{E}(p, e) \text{ energy flux } \mathcal{F}_{0}^{J}(p, e) \text{ angular momentum flux} \end{aligned}$$

Two models:

same waveform structure (given by FEW)...

...but different orbital evolution

- ecc0PA: BH perturbation theory fluxes
- ecc0PA-9PN : 9PN series fluxes (credit: N. Warburton)

Systematic biases for eccentric orbits and adiabatic waveform

Systematic biases for eccentric orbits and adiabatic waveform

Gabriel Andres Piovano

Systematic biases for eccentric orbits and adiabatic waveform

Gabriel Andres Piovano

Conclusions

Gabriel Andres Piovano

Conclusions: neglecting/mis modeling 1PA terms

Circular equatorial orbits in Schwarzschild

Neglecting 1PA terms

- only masses and r_0 are affected
- for $q\gtrsim 10^{-5}$ statistically significant biases...
- ...but tiny. Not relevant for (some) astrophysical applications
- 1PA-3PN correction works as well as 1PA-2GSF

Secondary spin

- strongly correlated with other parameters (especially masses, r_0)...
- ullet ...must be included for $q\gtrsim 10^{-4}$
- ullet ...can not be constrained for $q \lesssim 10^{-5}$

Eccentric orbits in Schwarzschild

Mismodeling 0PA term

- all parameters are affected
- larger biases for larger initial eccentricity e_0
- injection exact waveform & recovery with approximate waveform is much more difficult than circular orbits

But this the tip of the iceberg! Analysis must be extended to Kerr, generic orbits, 1PA terms, resonances...

Final notes and acknowledgments

- thank to all collaborators for their time and contributions
- special thanks to O. Burke for amazing work on the data analysis front
- this work uses the FastEmriWaveform of the BHPToolkit Ø https://bhptoolkit.org/FastEMRIWaveforms/html/index.html
- Feel free to contact me at gabriel.piovano@ucd.ie

Final notes and acknowledgments

- thank to all collaborators for their time and contributions
- special thanks to O. Burke for amazing work on the data analysis front
- this work uses the FastEmriWaveform of the BHPToolkit Ø https://bhptoolkit.org/FastEMRIWaveforms/html/index.html
- Feel free to contact me at gabriel.piovano@ucd.ie

Thank you for you attention!