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EXTREME-MASS RATIO INSPIRALS

■ Stellar-mass object spiraling into 104 − 106 M⊙.
■ This range of masses corresponds to relaxed nuclei.
■ With LISA z∼ 1, 4.

[Amaro-Seoane 2018, Babak et al +Amaro-Seoane 2017, Amaro-Seoane et al 2007]

■ Rates are very low: 10−5, 10−6 per year.
(stellar-mass BHs and MW)

■ Take into account the impact of asymmetry between pro- and
retrograde orbits in the location of the LSO helps, if MBH is Kerr.
[Amaro-Seoane, Sopuerta & Freitag 2013]

■ In any case, we don’t expect EMRIs at the Galactic Centre, right?
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NOT REALLY.
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EARLY-STAGE EMRIS, E-EMRIS

■ The evolution of an EMRI can be divided in three stages.

(1) Monochromatic EMRIs
∼ 105yrs away frommerger. We can consider them
mono.

(2) Oligochromatic EMRIs
∼ 103−4yrs away frommerger. Will cover a very
short frequency range.

(3) Polychromatic EMRIs
“the oneswe have been talking about all along”,
(using Bernard’s words).
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HUMOUR ME...
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EVOLUTION OF AN EMRI IN THE EARLY STAGES
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185000 yr before plunge, an E-EMRI would be already on band with
SNR> 10. Waveforms à la Barack and Cutler.

[PAS, Lin & Tzanavaris (TBS)]
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EVOLUTION OF AN EMRI IN THE EARLY STAGES
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500000 yr before plunge, an E-EMRI would be already on band with
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FINE... AND THE EVENT RATE?
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EVENT RATE CALCULATION: ALMOST COPY AND PASTE FROM AS 2019

■ The event rate in phase-space can be calculated as follows

Γ̇EMRI ≃
∫ acrit

amin

dnbh(a)

Trlx(a) ln
(
θ−2

lc

)
■ We need to determine four quantities

1. The loss-cone angle
2. The number of bh
3. The relaxation time as a function of the radius
4. The critical radius acrit
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(1) THE LOSS-CONE ANGLE

■ It can be approximated as

θlc ≃ 1√
Jmax/Jlc

Jlc ≃ 4G
c

MBH, J2max = GMBHa

[Alexander & Livio 2001]

■ So that

θ2lc ≃
√

8RS
a
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(2) THE NUMBER OF BH AS A FUNCTION OF THE RADIUS

■ Assuming the power-law distribution,

nbh(a) ∼ fsub ·N0

(
a
R0

)3−γ

■ Differentiating,

dnbh(a) = fsub (3− γ)
N0
R0

(
a
R0

)2−γ

da
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(3) THE RELAXATION TIME AS A FUNCTION OF THE RADIUS

■ Relaxation due to the most massive stellar species, stellar-mass
black holes

Trlx(a) = T0

(
a
R0

)γ−3/2

■ With

T0 ≃ 4.26
(3− γ)(1+ γ)3/2

√
R3
0(GMBH)

−1

ln(Λ)N0

(
MBH
mbh

)2
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(4) THE CRITICAL SEMI-MAJOR AXIS

■ From its definition, it is the threshold between stellar dynamics
and the GW-dominated regime

Trlx, peri = CTGW(a, e)

■ And

8GMBH
c2

= (1− e)aW(ι, s)

W(ι, s) takes into account the asymmetry between pro- and
retrograde orbits for the location of the LSO for a Kerr MBH
[Amaro-Seoane et al 2013].
The function depends on the spin of the MBH a and the inclination
of the orbit ι.
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(4) THE CRITICAL SEMI-MAJOR AXIS

■ EMRI orbits have e ∼ 1, hence

TGW(a, e) ∼
√
2 24
85

c5

G3
a4 (1− e)7/2

mbh M2
BH

■ So that we obtain

acrit = R0

[
20480
1207 (3− γ)(1+ γ)3/2CW(ι, s)5/2 N0 ln(Λ)

(
MBH

mbh

)−1
] 1

γ−3
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THE CRITICAL RADIUS

Definition of acrit, at a fixed trlx for illustration.
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THE RATES

■ The integral can be solved analytically (*)

Γ̇ ∼ 1.92× 10−6 yrs−1Ñ0 Λ̃ R̃−2
0 m̃2×{

1.6× 10−1R̃1/2
0 Ñ−1/2

0 Λ̃−1/2m̃1/2 W(ι, s)−5/4×[
ln
(
9138 R̃0 Ñ−1

0 Λ̃−1m̃W(ι, s)−5/2
)
− 2

]
−

4× 10−2R̃1/2
0 ×

[
ln
(
618 R̃0

)
− 2

]}
,

(*) If you distrust computer algebra systems.
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THE RATES

■ with the following notation,

Λ̃ :=

(
ln(Λ)

13

)
, Ñ0 :=

(
N0

12000

)
R̃0 :=

(
Rh
1pc

)
, m̃ :=

(
m

10M⊙

)
.

■ The advantage is that Γ̇ contains all physical information, including
the relaxation time and critical radius, embedded
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EMRI EVENT RATE AT THE GC FOR m̃ = 1
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Peebles 1972 power-law solution, mbh = 10M⊙. The event rate

depends on the inclination of the orbit (ι) and the spin of the MBH (s).
The values for m̃ = 4 are somewhat larger.
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SO MUCH FUSS FOR THIS? WE KNEW IT.
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AGAIN.
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500000 yr before plunge, E-EMRI on bandwith SNR> 10
[PAS, Lin & Tzanavaris (TBS)] 19



TIME IS OF THE ESSENCE

■ E-EMRIs spend a long time on band
■ The lifetime with SNR>10 in LISA is of T ∼ 105 yr−1

and the event rate Γ̇ ∼= 10−6 yr−1

■ Therefore... Howmany of these in band??
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FINAL NUMBERS

■ From the continuity equation of the eventswe can derive the
relative occupation fractions of the line density g = dN/da

■ Taking into account the eccentricity of the sources when
integrating N, the inclinations and spinswefind the final numbers
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NUMBER OF SOURCES IN BAND, AT ANY GIVEN MOMENT
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THREE EQUATIONS, THREE UNKNOWNS

NII
NIII

=
a1/2band − a1/2thr

a1/2crit − a1/2band

NI
NII +NIII

=
1
8
× 1− (amin/athr)

4

(acrit/athr)
1/2 − 1

NI +NII = Γ̇× T (acrit, e)
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RELATIVE OCCUPATION FRACTIONS

NI = Γ̇× T (acrit, e)× Ω1

NII = Γ̇× T (acrit, e)× Ω2

NIII = Γ̇× T (acrit, e)× Ω3, (1)

where we have introduced the weighting functions Ω1, Ω2 and Ω3

Ω1 ≡
(
√athr − √acrit)(a4min − a4thr)

(a4thr(8
√
a(
√

acrit/athr − 1) + √acrit) + a9/2thr (7 − 8
√

acrit/athr) + a4min(
√athr − √acrit)

Ω2 ≡
8a4thr(

√
a − √athr)(

√
acrit/athr − 1)

a4thr(8
√
a(
√

acrit/athr − 1) + √acrit) + a9/2thr (7 − 8
√

acrit/athr) + a4min(
√athr − √acrit)

Ω3 ≡
8a4thr(

√
a − √acrit)(1 −

√
acrit/athr)

(a4thr(8
√
a(
√

acrit/athr − 1) + √acrit) + a9/2thr (7 − 8
√

acrit/athr) + a4min(
√athr − √acrit)
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TOTAL NUMBER FOR m̃ = 1 AT ANY GIVEN TIME(*)
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TOTAL NUMBER FOR m̃ = 4 AT ANY GIVEN TIME(*)
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A FOREST OF E-EMRIS:
FORE- AND BACKGROUND POPULATION
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A FOREST OF E-EMRIS: TOBS REMOVED (NAÏVE PICTURE)
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IN BAND OUT TO 0.1 GPC (NAÏVE PICTURE)
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TOTAL STRAIN

■ The combined amplitude is an incoherent sumpondered by
differentweights ξ

■ The weight represents the occupation fraction probability
■ Even if one particular source is not in band the addition

(multiplication) of that particular population fractionmight be
■ A bit like Kosmas Indikopleustes’ paradox1 (if you allowme the

comparison)Only that this does not decay as 1/r 2 because in GWs
we capture the “full wave”, contrary to electromagnetism

■ The forest hence extends beyond 0.1 Gpc
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SO, HOW DOES THE FORE- AND BACKGROUND LOOK
LIKE?
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I don’t know (yet).
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SO...
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E-EMRIS - EARLY-INSPIRAL EMRIS

■ EMRIs can be divided into three categories

- Monochromatic
- Oligochromatic

}
Early-inspiral EMRIs

- Polychromatic } Late-type; The usual ones.
■ If we consider the GC, then we can map these categories with SNR
- Mono: ∼ 102−3

- Oligo: ∼ 103−5

■ For mono- and oligo-EMRIs it is not the rate that matters
- It is the rate and the time spent on band being detectable, plus
their cosmical number

■ Because they have large SNRs, and so:
- E-EMRIs add up to create a fore- and background signal
- This “forest”will cause trouble (up to 0.01Hz affected, huge SNRs)
■ What is the shape of the forest?
- I amworking on it...
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AN IMPLICIT ASSUMPTION

■ I am assuming that different mass “species” contribute to
relaxation individually...
... and that the total amount of relaxation in the system can be
added up linearly from them.
Can I do that?
“Yes.”

■ The distribution function of mass and velocity is f(m, v),
and amoment of the change of velocities is of the form

< dv2 >=

∫
dv2f(m, v)dmdv.

■ And this can be envisaged as

< dv2 >=
∑
m

n(m)

(∫
dv2f(v)dv

)
,

with n(m) the density of stars of mass m. 37



HARMONICS

The strain amplitude in the n-th harmonic at a given distance D,
normalized to the typical values of this work is

hn = g(n, e)G
2 MBHmCO
Da c4

≃ 8× 10−23g(n, e)
(

D
500Mpc

)−1 ( a
10−5 pc

)−1

(
MBH

103 M⊙

)(
mCO
10M⊙

)
.

In this expression MBH is the mass of the IMBH, mCO is the mass of
the compact object (CO), and g(n, e) is a function of the harmonic
number n and the eccentricity e [Peters & Matthews 1963]. We consider the RMS
amplitude averaged over the two GW polarizations and all directions.
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