Secondary spin in asymmetric binaries

Accounting for the spin of both black holes in EMRI wavetorms
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Overview of secondary spin
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Accurate EMRI wavetorm models include
two types of effects:

Gravitational-self force: How the
small body dimples spacetime, and how
that backreacts on its motion 1

gravitational self-force, and
2. spin-curvature force

We must include the effect of the

spin of both black holes
in EMRI models

Spin-curvature coupling: How the small
body’s spin couples to curvature, and how
that backreacts on its motion




Secondary spin contributes to the 1PA term
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Gravitational self force. Secondary spin
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Flowchart for Spin-curvature force Perturbed orbital kinematics Corrections to frequencies

spinning secondary Kerr geodesics and

contribution to parallel transport |25 -l Inspiral with
GW 4 Dipoletermin 1, .
phase K secondary spin

| % Coupling between curvature
and small-body spin leads to
spin-curvature force
Y Pushes the motion of the small
Spinning body: body away from the geodesic
Spin-curvature orbit and causes small body’s

coupling spin to precess

Non-spinning body:
Geodesic equations

M. Mathisson,1937; A. Papapetrou,
1951; W. G. Dixon, 1970




Flowchart for Perturbed orbital kinematics

spinning secondary Kerr geodesics and
contribution to parallel transport In
spiral with
A Dipoletermin 7, prra i

G phase secondary spin

Mathisson-Papapetrou-Dixon equations

Equations describing the motion of a spinning test body in curved spacetime

Dp“

ry — EngguﬁS e fg‘é u (1) SHY is the spin tensor of the secondary
DS Spin-curvature force |
= p*uf — pPu® SH = — 56’“’ ﬁpyS“ﬂ is the spin
Tulczyjew-Dixon spin- vector of the secondary
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supplementary condition




Flowchart for Perturbed orbital kinematics

spinning secondary Kerr geodesics and
contribution to parallel transport In
spiral with
A Dipoletermin 7, prra i

G phase secondary spin

Mathisson-Papapetrou-Dixon equations
..to leading-order in spin

///KJ L> 8 FL(L = GG \/a'l—m"e,
: YV coupling
Motion of the small body J

Evolution of spin vector




Secondary spin contributes to the 1PA term
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Flowchart for | Spin-curvature force s Perturbed orbital kinematics §# ] ~Corrections to frequencies

spinning SGCOHO’BI’)/ Kerr geodesics and | v
contribution to parallel transport |5 . | Inspiral with
GW phase p nL,, Corrections to GW fluxes REE = secondary spir
Compute GW
radiation using the
Teukolsky equation
Non-spinning body: Spinning body: 0 LW =4n2T
Point-particle Spinning-particle D —————
GW fluxes GW fluxes The source term J in

the Teukolsky equation
can be found from the

stress-energy tensor T+

describing the small body

HU Uy (b, v) galuy,v)
T, = Jd’” Tt (V- o) | = e St 0 - 2@) -, 5 (v = /()
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Flowchart for | Spin-curvature force s Perturbed orbital kinematics |5 ke  Corrections to frequencies
: v

spinning secondary Kerr geodesics and ||+
huti arallel transport | .y
OIBONS : : : Dipole termin 1, Corrections to GW fluxes R = inspiral with
G phase H secondary spin

Orbit of a spinning body ) Compute GW fluxes using
around a black hole leukolsky equation

o Consider a spinning body orbit and compute corresponding GW fluxes
(e.g., Piovano, arXiv:2004.02654; Skoupy & Lukes-Gerakopoulos, arXiv:2102.04819)

(E) = = q ((F7 )+ (F577);)

(1) = =g ({F= )5+ (F )
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Recent progress in secondary spin



Flowchart for Spin-curvature force Perturbed orbital kinematics Corrections to frequencies
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spinning secondary Kerr geodesics and |
contribution to parallel transport [ N
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| Inspiral with
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Mappings between geodesics and spinning-body orbits

Geodesic and spinning-body orbit Geodesic and spinning-body orbit have
have the same constants of motion the same turning points

-- Geodesic Spinning -- Geodesic Spinning
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Flowchart for Perturbed orbital kinematics
spinning secondary Kerr geodesics and |

contribution to parallel transport [ v
| Dipole term in L,

| Inspiral with
‘1 Corrections to GW fluxes secondary spin

GW phase

“Reference” geodesic and spinning-body orbit have the same constants of motion

Vojtéch Witzany (arXiv:1808.06582) derived the Hamiltonian and canonical coordinates for the TD SSC
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where s, = s*eq ep,
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Hamiltonian for the Tulczyjew-Dixon condition xH and U , are canonically conjugate
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Flowchart for Perturbed orbital kinematics
spinning secondary Kerr geodesics and |
contribution to parallel transport | \4 Incniral v
: . . | nspiral with
| Dipoleterm in L,

GW phase

secondary spin

(E,L,Q) = (E°, L, 0)

Compute or/(E, LZ, 0)
and 00(E, L,

Detine angle-type
coordinates using or, and 60,

dy, \/% (r +a2)E—a . +aiz—a(1 ~Z)E
dA K+ 12 K — a2z2




Flowchart for Perturbed orbital kinematics
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spinning secondary Kerr geodesics and |
contribution to parallel transport 5 . .
GW phase Dipoletermin 7,

| Inspiral with
‘1 Corrections to GW fluxes secondary spin

“Reference” geodesic and spinning-body orbit have the same turning points

Alternative parameterisation: Drummond & Hughes (arXiv:2201.13334 and arXiv:2201.13335)

Frequency-domain treatment of spinning-body motion:
Orbital frequencies modified: Y, =Y.+ Y3and Y, =Y, + Y,

Spin precession frequency Y  introduced due to precessing spin vector

1 00
FTr), 000, SDT = Y, D e T KXo i)

j=—1 k,n=—0o0
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http://arxiv.org/abs/2201.13334
http://arxiv.org/abs/2201.13335

Flowchart for Spin-curvature force Perturbed orbital kinematics Corrections to frequencies
spinning secondary Kerr geodesics and |

contribution to parallel transport [ v
| Dipole term i L,

| Inspiral with
‘1 Corrections to GW fluxes secondary spin

“Reference” geodesic and spinning-body orbit have the same turning points

and I = r/2 — sgn(L,)0,,

GW phase

Spin axis

in Horizon

M Correction to

r= - + ory libration region
1 +ecos (7, +x5)

N\

Correction to true anomaly angle

Because are using a frequency-domain formulation; we can
constrain all of the purely radial motion to remain inside the

same radial turning points as the “reference” geodesic orbit.



Secondary spin contributes to the 1PA term
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Flowchart for
spinning secondary
contribution to
GW phase

Circular aligned inspirals with spinning primary: Piovano et al., arXiv:2004.02654

Kerr geodesics and |
parallel transport ¢

- Spin-curvature force f Perturbed orbital kinematics § 2l  Corrections to frequencies
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Flowchart for
spinning secondary

- Spin-curvature force f Perturbed orbital kinematics § 2l  Corrections to frequencies
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Flowchart for - Spin-curvature force | Perturbed orbital kinematics § 2 Corrections to frequencies
spinning secondary Kerr geodesics and | 3
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Calculation of self-force including spin of secondary using RWZ formalism



Components of
the inspiral

Kinematics of an GW Radiation due to GW-driven inspiral

orbiting small body an orbiting small body
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Eccentric equatorial inspiral
with aligned spins

Generic inspiral with any
spin orientation




Components of
the inspiral

Complexity
of orbit

Circular equatorial inspiral
with aligned spins

Eccentric equatorial inspiral
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Generic inspiral with any
spin orientation
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How do we build a genericinspiral?

Kinematics of an
orbiting small bodly

GW radiation due to an
orbiting small body

-

-
‘ -—’
~~~~~

GW-driven inspiral

Spinning-body
orbital kinematics

Drummond & Hughes, 2022a
and 2022b

Spinning-particle

GW fluxes

Skoupy, Lukes-Gerakopoulos,
Drummond & Hughes, 2023

Work in progress; Carter-like constant
evolution must be characterized

v Spin-curvature force |- Perturbed orbital kinematics § 2] ~ Corrections to frequencies
5 v
\ 4

Kerr geodesics and |
parallel transport |
4 Dipoletermin 1,

| Corrections to GW fluxes

Inspiral with
secondary spin
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How do we build a genericinspiral?

Kinematics of an GW radiation due to an

orbiting small body orbiting small body GW-driven inspiral

Spinning-body Non-spinning body:
orbital kinematics Point-particle GW fluxes

Hughes etal., 2021
Drummond et al., 2023

a first pass only, incomplete!

v Spin-curvature force e Perturbed orbital kinematics § .| Corrections to frequencies
3 v
\ 4

Kerr geodesics and |
parallel transport |- . Y Inspiral with

| Correction38 .
A secondary spin
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How do we build a genericinspiral?
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Review of recent progress (~2019 onwards)

% Fully generic spinning-body orbits with arbitrary spin alignment are well-characterized; two

different approaches have been used and compared (Witzany, arXiv:1903.03651, Drummond &
Hughes, arXiv:2201.13334, arXiv:2201.13335)

% Self-force calculation including secondary spin (Josh Mathews, arXiv:2212.13069)

% Equatorial inspirals including all spinning-body effects have been computed (Skoupy et al.,
arXiv:2201.07044)

% Fully generic spinning-body GW fluxes computed (Skoupy et al., arXiv:2303.16798)

% First pass at generic spinning-body waveforms (neglecting dipole stress-tensor effects) has
been computed (Drummond et al., 2023)

% The detectability of small-body spin has been assessed using a Fisher Matrix framework
(Piovano et al., arXiv:2105.07083)
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Open questions and future work

% Compute generic Carter-like constant evolution for spinning secondary and
generate generic inspirals

% Combine with self force (for generic inspirals, need to take care that the
parameterization of self-force and secondary spin effects is equivalent); study
the interplay with self-force, do spinning secondary or self-force effects
dominate in different regions of parameter space, do they cancel each other?

% Compute GW flux data and phase shifts across entire parameter space

% Detectability of small-body spin for generic orbital configurations? Full
Bayesian infererence study, for example with few (Fast EMRI waveforms)

% Incorporate these recent developments into the SpinningSecondary package
of the Black Hole Perturbation Toolkit






