Secondary spin in asymmetric binaries Accounting for the spin of *both* black holes in EMRI waveforms

Lisa V. Drummond

Massachusetts Institute of Technology

Asymmetric Binaries meet Fundamental Astrophysics, GSSI, L'Aquila 2023

Overview of secondary spin

Spin-curvature coupling: How the small body's spin couples to curvature, and how that backreacts on its motion

What about the Spin of the small black hole?

Accurate EMRI waveform models include two types of effects:

- gravitational self-force, and
- spin-curvature force 2.

We must include the effect of the spin of both black holes in EMRI models

$$f^{\alpha} = f^{(1)\alpha} + f^{(2)\alpha} + \mathcal{O}(\varepsilon^{3})$$

$$f^{(1)\alpha} = f^{(1)\alpha}_{mono} + f^{\alpha}_{SCF} \quad f^{(2)\alpha} = f^{(2)\alpha}_{mono} + f^{\alpha}_{dipole}$$

Kerr geodesics and parallel transport

Spin-curvature force

Dipole term in $T_{\mu
u}$

Kinematics of an orbiting small body

Spin-curvature force f^{α}_{SCF}

M. Mathisson, 1937; A. Papapetrou, 1951; W. G. Dixon, 1970

Kerr geodesics and parallel transport

Mathisson-Papapetrou-Dixon equations

Equations describing the motion of a **spinning test body** in curved spacetime

$$\frac{Dp^{\alpha}}{d\tau} = -\frac{1}{2} R^{\alpha}_{\beta\gamma\delta} u^{\beta} S^{\gamma\delta} := f^{\alpha}_{S} / \mu$$
Spin-curvature
$$\frac{DS^{\alpha\beta}}{d\tau} = p^{\alpha} u^{\beta} - p^{\beta} u^{\alpha}$$

$$p_{\mu} S^{\mu\nu} = 0 \longrightarrow \frac{Tulczyjew-Dixon spin-supplementary condition}{Tulczyjew-Dixon spin-supplementary condition}$$

 $S^{\mu\nu}$ is the spin tensor of the secondary

$$S^{\mu} = -\frac{1}{2} \epsilon^{\mu\nu}_{\ \ \alpha\beta} p_{\nu} S^{\alpha\beta}$$
 is the spin vector of the secondary

Kerr geodesics and parallel transport

Mathisson-Papapetrou-Dixon equations ...to leading-order in spin

Kerr geodesics and parallel transport

Spin-curvature force

Dipole term in $T_{\mu\nu}$

Radiation due to an orbiting small body

Non-spinning body: **Point-particle GW fluxes**

Spinning body: **Spinning-particle GW** fluxes

radiation using the **Teukolsky equation** $_{-2}\mathcal{O} \ _{-2}\Psi = 4\pi\Sigma\mathcal{T}$

The source term \mathcal{T} in the Teukolsky equation can be found from the stress-energy tensor $T^{\mu\nu}$ describing the small body

 $T_{geo}^{\mu\nu} = \int d\tau \left(\frac{\mu u_{geo}^{\mu} u_{geo}^{\nu}}{\sqrt{-g}} \delta^4 \left(x^{\rho} - z_{geo}^{\rho}(\tau) \right) \right) \qquad T_{spin}^{\mu\nu} = \int d\tau \left(\frac{p^{(\mu} u^{\nu)}}{\sqrt{-g}} \delta^4 \left(x^{\rho} - z^{\rho}(\tau) \right) - \nabla_{\alpha} \left(\frac{S^{\alpha(\mu} u^{\nu)}}{\sqrt{-g}} \delta^3 \left(x^{\rho} - z^{\rho}(\tau) \right) \right) \right)$

Kerr geodesics and parallel transport

Spin-curvature force

Dipole term in $T_{\mu
u}$

Orbit of a **spinning body** around a black hole

• Consider a spinning body orbit and compute **corresponding GW fluxes** (e.g., Piovano, arXiv:2004.02654; Skoupý & Lukes-Gerakopoulos, arXiv:2102.04819)

$$\begin{split} \langle \dot{E} \rangle &= - q \left(\langle \mathscr{F}^{E\mathcal{J}^{+}} \rangle_{S} + \langle \mathscr{F}^{E\mathcal{H}^{+}} \rangle_{S} \right) \\ \langle \dot{J}_{z} \rangle &= - q \left(\langle \mathscr{F}^{J_{z}\mathcal{J}^{+}} \rangle_{S} + \langle \mathscr{F}^{J_{z}\mathcal{H}^{+}} \rangle_{S} \right) \end{split}$$

Compute **GW fluxes** using Teukolsky equation

Recent progress in secondary spin

Kerr geodesics and parallel transport

Dipole term in $T_{\mu
u}$

Mappings between *geodesics* and *spinning-body orbits*

Geodesic and spinning-body orbit have the same **constants of motion**

Time $M\lambda$

Geodesic and spinning-body orbit have the same turning points

Time Mλ

Kerr geodesics and parallel transport

Dipole term in $T_{\mu
u}$

"Reference" geodesic and spinning-body orbit have the same constants of motion

Vojtěch Witzany (arXiv:1808.06582) derived the Hamiltonian and canonical coordinates for the TD SSC

$$H_{TD} = \frac{1}{2} (g^{\mu\nu} - \gamma^{\mu\nu}) U_{\mu} U_{\nu} = -1,$$

where $\gamma^{\mu\nu} = \frac{4s^{\nu\gamma} R^{\mu}_{\gamma\kappa\lambda} s^{\kappa\lambda}}{4 + R_{\chi\eta\omega\xi} s^{\chi\eta} s^{\omega\xi}}$

Hamiltonian for the Tulczyjew-Dixon condition

$$\mathscr{U}_{\mu} = U_{\mu} + \frac{1}{2} e_{C\nu;\mu} e_D^{\nu} s^{CD},$$

where
$$s_{CD} \equiv s^{\mu\nu} e_{C\mu} e_{D\nu}$$

 x^{μ} and \mathcal{U}_{μ} are canonically conjugate

Kerr geodesics and parallel transport

$$\begin{split} \frac{dr}{d\lambda} &= \pm \Delta \sqrt{w_r'^2 - e_{0r} e_{C;r}^{\kappa} e_{\kappa B} \tilde{s}^{CD}} \ ,\\ \frac{d\theta}{d\lambda} &= \pm \sqrt{w_{\theta}'^2 - e_{0\theta} e_{C;\theta}^{\kappa} e_{\kappa B} \tilde{s}^{CD}} \ ,\\ \frac{d\psi_p}{d\lambda} &= \sqrt{\hat{K}} \left(\frac{(r^2 + a^2)\hat{E} - a\hat{L}_z}{\hat{K} + r^2} + a \frac{\hat{L}_z - a\hat{L}_z}{\hat{K}} \right) \end{split}$$

Kerr geodesics and parallel transport

Dipole term in $T_{\mu
u}$

"*Reference*" geodesic and spinning-body orbit have the same turning points

Alternative parameterisation: Drummond & Hughes (arXiv:2201.13334 and arXiv:2201.13335)

Frequency-domain treatment of spinning-body motion:

Orbital frequencies modified: Υ ,

Spin precession frequency Υ_s introduced due to precessing spin vector

 $f[r(\lambda), \theta(\lambda), S(\lambda)] =$

$$_{r} = \hat{\Upsilon}_{r} + \Upsilon^{S}_{r}$$
 and $\Upsilon_{\theta} = \hat{\Upsilon}_{\theta} + \Upsilon^{S}_{\theta}$

$$\sum_{k,n=-\infty}^{\infty} \int_{jkn}^{\infty} e^{-(ij\Upsilon_s + ik\Upsilon_\theta + in\Upsilon_r)\lambda}$$

Kerr geodesics and parallel transport

Dipole term in $T_{\mu
u}$

$$r_{min} = \frac{p}{1+e'}, r_{max} = \frac{p}{1-e}$$
 and $I = \pi/2 - \frac{p}{1-e}$

Correction to $\frac{pM}{1 + e\cos\left(\hat{\chi}_r + \chi_r^S\right)} + \delta r_S$ libration region **Correction to true anomaly angle**

Because are using a **frequency-domain formulation**; we can constrain all of the **purely radial** motion to remain inside the same radial turning points as the "reference" geodesic orbit.

Kerr geodesics and parallel transport

Circular aligned inspirals with spinning primary: Piovano et al., arXiv:2004.02654

GW fluxes as a function of radius for different *a* values

GW phase shifts as a function of radius for different *a* values

parallel transport

Kerr geodesics and parallel transport

Waveforms: circular aligned orbit, non-spinning primary, Mathews et al., arXiv:2112.13069

Calculation of self-force including spin of secondary using RWZ formalism

Components of the inspiral

Kinematics of an orbiting small body

+

GW Radiation due to an orbiting small body

GW-driven inspiral

GW Radiation due to an orbiting small body

GW-driven inspiral

GW Radiation due to an orbiting small body

GW-driven inspiral

Piovano, et al. 2020, **arXiv:**2004.02654

Mathews, et al. 2021, **arXiv:**2112.13069

Skoupý, Lukes-Gerakopoulos, 2021, **arXiv:**2102.04819

Piovano, et al. 2020, **arXiv:**2004.02654

Mathews, et al. 2021, **arXiv:**2112.13069

Skoupý, Lukes-Gerakopoulos, 2022, **arXiv:**2201.07044

Skoupý, Lukes-Gerakopoulos, Drummond & Hughes, 2023, arXiv:2303.16798

GW Radiation due to an orbiting small body

GW-driven inspiral

Piovano, et al. 2020, **arXiv:**2004.02654

Mathews, et al. 2021, **arXiv:**2112.13069

Skoupý, Lukes-Gerakopoulos, 2021, **arXiv:**2102.04819

Piovano, et al. 2020, **arXiv:**2004.02654

Mathews, et al. 2021, **arXiv:**2112.13069

Skoupý, Lukes-Gerakopoulos, 2022, **arXiv:**2201.07044

Skoupý, Lukes-Gerakopoulos, Drummond & Hughes, 2023, arXiv:2303.16798

Generic inspiral: work in progress

How do we build a *generic* inspiral?

How do we build a *generic* inspiral?

How do we build a *generic* inspiral?

Review of recent progress (~2019 onwards)

- **Fully generic spinning-body orbits** with arbitrary spin alignment are well-characterized; two different approaches have been used and compared (Witzany, arXiv:1903.03651, Drummond & Hughes, arXiv:2201.13334, arXiv:2201.13335)
- **★ Self-force calculation including secondary spin** (Josh Mathews, arXiv:2212.13069)
- **★ Equatorial inspirals including all spinning-body effects** have been computed (Skoupý et al., arXiv:2201.07044)
- **Fully generic spinning-body GW fluxes** computed (Skoupý et al., arXiv:2303.16798)
- **★** First pass at generic spinning-body waveforms (neglecting dipole stress-tensor effects) has been computed (Drummond et al., 2023)
- **The detectability of small-body spin** has been assessed using a Fisher Matrix framework (Piovano et al., arXiv:2105.07083)

Open questions and future work

★ Compute generic Carter-like constant evolution for spinning secondary and generate generic inspirals

- the interplay with self-force, do spinning secondary or self-force effects
- **Detectability** of small-body spin for generic orbital configurations? Full
- of the Black Hole Perturbation Toolkit

Combine with self force (for generic inspirals, need to take care that the parameterization of self-force and secondary spin effects is equivalent); study dominate in different regions of parameter space, do they cancel each other?

Compute GW flux data and phase shifts across entire parameter space

Bayesian infererence study, for example with few (Fast EMRI waveforms)

* Incorporate these recent developments into the SpinningSecondary package

