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The problem

The Taylor conjecture is a classical problem in plasma physics and
has been formulated years ago in a couple of papers (Taylor (1974)
and (1986)). It can be expressed as follows:

in ideal MagnetoHydroDynamics (MHD) the helicity of the
magnetic flux density B is conserved in time, no matter the
topological shape of the domain containing the fluid.

Here “ideal” means that the kinematic viscosity ν and the
magnetic resistivity η are equal to 0; what is the helicity will be
clarified in the next slides.
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Basic notations and geometry

We assume that Ω is a bounded connected open set in R3, with a
sufficiently smooth boundary Γ (say, Γ ∈ C 1,1).

The unit outward normal vector on Γ will be denoted by n.
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Basic notations and geometry (cont’d)

We recall some geometrical results (see, e.g., Cantarella et al.
(2002); see also Benedetti et al. (2012)).

Suppose that the first Betti number of Ω is positive, say, g > 0
(for g = 0, namely, a simply-connected domain, what we are going
to explain is not needed); then the first Betti number of Γ is equal
to 2g and it is possible to consider 2g non-bounding cycles on Γ,
{γj}gj=1 ∪ {γ′j}

g
j=1, that are (representative of) the generators of

the first homology group of Γ.

They are such that {γj}gj=1 are (representative of) the generators

of the first homology group of Ω (the tangent vector on γj is
denoted by tj), while {γ′j}

g
j=1 are (representative of) the generators

of the first homology group of Ω′, where Ω′ = B \ Ω, B being an
open ball containing Ω (the tangent vector on γ′j is denoted by t′j).
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Basic notations and geometry (cont’d)

It is also known that

in Ω there exist g ‘cutting’ surfaces {Σj}gj=1, that are
connected orientable Lipschitz surfaces with ∂Σj ⊂ Γ, such
that every curl-free vector in Ω has a global potential in the
‘cut’ domain Ω0 := Ω \

⋃g
j=1 Σj ; each surface Σj satisfies

∂Σj = γ′j , ‘cuts’ the corresponding cycle γj and does not
intersect the other cycles γi for i 6= j ;

in Ω′ there exist g ‘cutting’ surfaces {Σ′
j}

g
j=1, that are

connected orientable Lipschitz surfaces with ∂Σ′
j ⊂ Γ, such

that every curl-free vector in Ω′ has a global potential in the
‘cut’ domain (Ω′)0 := Ω′ \

⋃g
j=1 Σ′

j ; each surface Σ′
j satisfies

∂Σ′
j = γj , ‘cuts’ the corresponding cycle γ′j , and does not

intersect the other cycles γ′i for i 6= j .
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Basic notations and geometry (cont’d)

Figure: Ω is the two-fold torus.
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Basic notations and geometry (cont’d)

[Looking back at the literature on this topic, where some
misunderstanding can be noticed, it is interesting to make clear
that:

the statement concerning the ‘cutting’ surfaces Σj does not
mean that the ‘cut’ domain Ω0 is simply-connected nor that it
is homologically trivial: an example in this sense is furnished
by Ω = Q \ K , where Q is a cube and K is the trefoil knot.]
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The trefoil knot and its Seifert surface
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Functional spaces

We define the Hilbert spaces

H(curl; Ω) = {w ∈ (L2(Ω))3 |curlw ∈ (L2(Ω))3} ,
endowed with the norm

‖w‖curl;Ω = {‖w‖2
L2(Ω) + ‖curlw‖2

L2(Ω)}
1/2 ;

V = {w ∈ (L2(Ω))3 |divw = 0 in Ω,w · n = 0 on ∂Ω} .
endowed with the norm

‖w‖V = ‖w‖L2(Ω) .

The magnetic flux density B for a confined (magnetically-closed)
plasma typically belongs to V .
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The space of harmonic fields

We also need to introduce the space of harmonic Neumann vector
fields

H(m) = {ρ ∈ (L2(Ω))3 |curlρ = 0 in Ω,

divρ = 0 in Ω,ρ · n = 0 on Γ} .

This space has dimension g , the first Betti number of Ω; in
particular, it is trivial for a simply-connected domain Ω. A basis for
it will be denoted by

{
ρj
}g
j=1

, where ρj satisfies
∮
γk
ρj · tk = δjk

(see, e.g., Cantarella et al. (2002), Alonso Rodŕıguez et al. (2018)).
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The helicity of a vector field

What is the helicity? Let us give a precise definition (and we will
return on this later on).

The helicity of a vector field v, a concept introduced by Woltjer
(1958) and named by Moffatt (1969), is given by

H(v) =
1

4π

∫
Ω

∫
Ω
v(x)× v(y) · x− y

|x− y|3
dx dy .

It is a “measure of the extent to which the field lines wrap and coil
around one another” [Cantarella et al. (2000a), Cantarella et al.
(2001)]. Focusing on the physical meaning, “it is widely recognized
that the key property of turbulence that is most conducive to
dynamo action is its helicity” [Moffatt (2016)].1

1Dynamo action is the physical mechanism through which a rotating,
convecting, and electrically conducting fluid is able to maintain a magnetic
field.
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The Biot–Savart operator

The Biot–Savart operator BS is defined in V as

BS(v)(x) =
1

4π

∫
Ω
v(y)× x− y

|x− y|3
dy , x ∈ R3 . (1)

The relation between helicity and Biot–Savart operator is clearly
expressed by

H(v) =

∫
Ω
v · BS(v)|Ω .

Therefore for having a better understanding of helicity it is
interesting to analyze the Biot–Savart operator more in depth.
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Introducing the vector field

ṽ =

{
v in Ω

0 in R3 \ Ω

we see that BS(v) can be clearly rewritten as

BS(v)(x) =
1

4π

∫
R3

ṽ(y)× x− y

|x− y|3
dy .

A. Valli Taylor’s conjecture
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The Biot–Savart operator (cont’d)

Since v · n = 0 on ∂Ω and div v = 0 in Ω, it follows that ṽ satisfies
div ṽ = 0 in R3.

Therefore it is well-known that BS(v) ∈ (H1(R3))3 and satisfies
the relations curlBS(v) = ṽ and divBS(v) = 0 in R3.

Hence the restriction of BS(v) to Ω, denoted by BSΩ(v), satisfies
BSΩ(v) ∈ (H1(Ω))3 and{

curlBSΩ(v) = v in Ω

divBSΩ(v) = 0 in Ω .
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The projected Biot–Savart operator

Let us introduce the scalar function φv ∈ H1(Ω), solution to the
Neumann problem

∆φv = 0 in Ω
gradφv · n = BSΩ(v) · n on ∂Ω∫

Ω φv = 0 ,

whose existence is guaranteed by the fact that∫
∂Ω

BSΩ(v) · n =

∫
Ω
divBSΩ(v) = 0 .

A. Valli Taylor’s conjecture
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The projected Biot–Savart operator (cont’d)

The projected Biot–Savart operator is defined in V as follows:

B̂S(v) = BSΩ(v)− gradφv . (2)

Clearly, B̂S(v) is the (L2(Ω))3-orthogonal projection of BSΩ(v)
over V , and satisfies

curl B̂S(v) = v in Ω

div B̂S(v) = 0 in Ω

B̂S(v) · n = 0 on ∂Ω .

(3)

A. Valli Taylor’s conjecture



Introduction and physical remarks
The helicity and the Biot–Savart operator

MHD equations
The helicity of a domain

Vanishing line integrals

Another important property of both standard and projected
Biot–Savart field is the following:

Proposition (1)

It holds∮
γj

BSΩ(v) · tj = 0 and

∮
γj

B̂S(v) · tj = 0 ∀ j = 1, . . . g .
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Vanishing line integrals (cont’d)

Proof. Let us recall that BSΩ(v) is the restriction to Ω of BS(v)
defined in R3: hence we can apply the Stokes theorem on the
surface Σ′

j ⊂ Ω′, which satisfies ∂Σ′
j = γj . We have∮

γj

BSΩ(v) · tj =

∫
Σ′

j

curlBS(v) · n = 0 ,

as curlBS(v) = ṽ in R3, hence curlBS(v) = 0 in Ω′.

The same result holds for B̂S(v), as it differs from BSΩ(v) by
gradφv. 2
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A characterization of the projected Biot–Savart operator

In conclusion, the projected Biot–Savart field B̂S(v) satisfies
curl B̂S(v) = v in Ω

div B̂S(v) = 0 in Ω

B̂S(v) · n = 0 on ∂Ω∮
γj
B̂S(v) · tj = 0 ∀ j = 1, . . . g .

(4)

It is well-known that this problem has a unique solution (here we
will show that problem (4) is equivalent to a well-posed
saddle-point variational problem).

A consequence is that the projected Biot–Savart operator is
completely characterized as the solution operator to problem (4).

A. Valli Taylor’s conjecture
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A variational formulation

Define now

X = {w ∈ H(curl; Ω) | curl w · n = 0 on Γ}

Z = {w ∈ X |
∮
γj
w · tj = 0 for j = 1, . . . , g}

H = gradH1(Ω) .

Note also that V = H⊥.

A. Valli Taylor’s conjecture
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A variational formulation (cont’d)

A suitable variational formulation of problem (4) is the following
constrained least-square formulation.

For v ∈ V , the couple (B̂S(v), 0) is the solution (u,q) ∈ Z ×H of
the problem ∫

Ω
curlu · curlw +

∫
Ω
q ·w =

∫
Ω
v · curlw (5a)∫

Ω
u · p = 0 (5b)

for each (w,p) ∈ Z ×H.

Note that equation (5b) says that u ∈H⊥ = V .
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A variational formulation (cont’d)

The existence and uniqueness theory for problem (5) is based on
classical results for saddle-point problems. It can be proved that it
has a solution and that the solution is unique.
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The projected Biot–Savart operator revisited

We have thus characterized the projected Biot–Savart operator B̂S
in the following way.

Theorem (2)

Let T : V → Z ∩ V be the solution operator Tv = u, where
(u,q) ∈ Z ×H is the solution to problem (5). Then T is the

projected Biot–Savart operator B̂S .

This characterization opens the way to a complete spectral
analysis. In fact, the projected Biot–Savart operator is self-adjoint
and compact in V (see, e.g., Cantarella et al. (2001), Alonso
Rodŕıguez et al. (2018)), therefore its spectrum is discrete.
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Symmetry of the curl operator

For the analysis of the spectral problem associated to the
Biot–Savart operator it is fundamental to prove the symmetry of
the curl operator in Z. It can be shown that:

Theorem (3)

For all v, w ∈ Z, ∫
Ω

(curlw · v −w · curl v) = 0.

In other words, it is possible to see that for v, w ∈ Z it holds∫
Γ
v × n ·w = 0 .

In the sequel we will be back to this result.
A. Valli Taylor’s conjecture
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The spectrum of the curl operator

It is easily checked that the eigenvalues of the curl operator are the
reciprocals of the eigenvalues of T.

Note also that the curl operator is an unbounded operator from
Z ⊂ (L2(Ω))3 in (L2(Ω))3. Having seen that it is symmetric, the
proof that it is self-adjoint requires some additional work. Indeed,
the following sufficient conditions hold: first, its spectrum consists
only of eigenvalues; second, the range of curl ± iI is the whole
space (L2(Ω))3.
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Back to the helicity

Let us go back to the helicity of a vector field v ∈ (L2(Ω))3,
defined as

H(v) =
1

4π

∫
Ω

∫
Ω

(
v(x)× v(y)

)
· x− y

|x− y|3
dx dy .

We have already seen that

H(v) =

∫
Ω
v · BSΩ(v) .

If the vector field v satisfies the additional assumption v ∈ V , an
easy consequence of the fact that V = H⊥ is that

H(v) =

∫
Ω
v · B̂S(v) . (6)

A. Valli Taylor’s conjecture
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Back to the helicity (cont’d)

This last relation says that for a vector field v ∈ V ∩H(m)⊥ the
helicity could be also defined as

H(v) =

∫
Ω
v · A , (7)

where curlA = v, namely, A is a vector potential of v (see Moffatt
(1969)). In fact, for any other vector field A] with curlA] = v it
holds curl (A− A]) = 0 in Ω, thus (A− A]) ∈H⊕H(m).
Therefore v is orthogonal to A− A], and the helicity turns out to
be the same for any vector potential of v (namely, the definition

(7) is gauge invariant, and for A we can take B̂S(v)).

For a simply-connected domain one has H(m) = {0}: thus in
this case definition (7) is equivalent to (6).
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Back to the helicity (cont’d)

However, this is not true if Ω is not a simply-connected domain. A
gauge invariant definition of the helicity of v ∈ V in terms of a
vector potential has been devised by MacTaggart and V. (2019). It
reads as follows

H(v) =

∫
Ω
v · A−

g∑
j=1

(∮
γj

A · tj
)(∫

Σj

v · nj
)
, (8)

where, as before, curlA = v (and tj and nj are oriented so that
their scalar product at the point γj ∩ Σj is positive).

Note that the two definitions (6) and (8) are the same, as the

projected Biot–Savart vector field B̂S(v) satisfies Proposition (1).

A. Valli Taylor’s conjecture



Introduction and physical remarks
The helicity and the Biot–Savart operator

MHD equations
The helicity of a domain

Back to the helicity (cont’d)

The proof of (8) is based on the fact that a vector field Q with
curl Q = 0 in Ω belongs to H⊕H(m), thus it can be written as

Q = grad η +

g∑
j=1

αjρj .

Here, as already indicated, ρj are the basis elements of the space
H(m) of harmonic Neumann vector fields; in particular, the
coefficients αj are given by αj =

∮
γj
Q · tj .
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Back to the helicity (cont’d)

Assuming that v ∈ V , some computations lead to∫
Ω v ·Q =

∫
Ω v ·

(
grad η +

∑g
j=1 αjρj

)
=
∑g

j=1 αj

∫
Ω v · ρj

=
∑g

j=1 αj

∫
Σj

v · nj =
∑g

j=1

( ∮
γj
Q · tj

)( ∫
Σj

v · nj
)
.

This shows that for v ∈ V the quantity∫
Ω
v · A−

g∑
j=1

(∮
γj

A · tj
)(∫

Σj

v · nj
)

is invariant for any A for which curlA is the same.
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The MagnetoHydroDynamics equations

Let us finally consider the MHD equations
∂tu + (u · ∇)u− 1

µ0ρ0
(B · ∇)B− ν ∆u +∇π = 0

∂tB + curl (B× u) + η
µ0

curl curlB = 0

div u = 0

divB = 0 ,

(9)

with the initial conditions

u|t=0 = u0 , B|t=0 = B0

and the boundary conditions

u|Γ = 0 , (B · n)|Γ = 0 , (curlB× n)|Γ = 0 .

Here ν > 0 (kinematic viscosity), η > 0 (magnetic resistivity),
µ0 > 0 (magnetic permeability) and ρ0 > 0 (density) are physical
constants.
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A first conservation result

Faraco and Lindberg (2020) proved that there exists a Leray–Hopf
solution of this problem.

Moreover, they proved that if a weak solution u and B of ideal
MHD (namely, when ν = 0 and η = 0 and the boundary conditions
reduce to (u · n)|Γ = 0 and (B · n)|Γ = 0 on Γ) exists and is the
weak limit of Leray–Hopf solutions of (9) as ν → 0 and η → 0,
then the following quantity

Z (B(t)) =

∫
Ω
B(t) · A(t)−

∫
∂Ω

(AΣ(t)× n) · AH(t) (10)

is conserved in time.
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Orthogonal decomposition

To understand the result we need some notation.
The space V can be decomposed in two orthogonal subspaces

V = VΣ ⊕H ,
where

VΣ =
{
w ∈ V

∣∣ ∫
Σj

w · nj = 0 for j = 1, · · · , g
}
.

Thus B(t) ∈ V can be written as

B(t) = BΣ(t) + BH(t) , BΣ(t) ∈ VΣ , BH(t) ∈ H .
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Orthogonal decomposition (cont’d)

We denote by A(t) any vector potential of B(t) and by AH(t) the
unique vector potential of BH(t) belonging to VΣ ∩ H(curl; Ω).
It can be proved that

BH(t) = BH
0 [conservation of the harmonic component]

[A consequence of this result is the conservation of the fluxes∫
Σj

B(t) · nj for each j = 1, . . . , g .]

Therefore AH(t) = AH
0 and we set

AΣ(t) = A(t)− AH
0 .

so that A(t) = AΣ(t) + AH
0 .
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Helicity conservation (Ω simply-connected)

A couple of remarks: if Ω is simply-connected, and therefore
H(m) = {0},

from (7) we know that the helicity of B is given by
H(B(t)) =

∫
Ω B(t) · A(t);

we have BH(t) = 0 and AH(t) = 0, therefore from (10) it
follows that

∫
Ω B(t) · A(t) is conserved.

In other words, if Ω is simply-connected the helicity of B is
conserved.

What about the multiply-connected case?

A. Valli Taylor’s conjecture



Introduction and physical remarks
The helicity and the Biot–Savart operator

MHD equations
The helicity of a domain

Helicity conservation

Starting from (10), to prove that the Taylor conjecture is true it is
enough to show that

Z (B(t))− Z (B0) = H(B(t))− H(B0) .

Therefore we have to show that

−
∫
∂Ω

(AΣ(t)× n) · AH(t) +

∫
∂Ω

(AΣ
0 × n) · AH

0

is equal to

−
g∑

j=1

(∮
γj

A(t)·tj
)(∫

Σj

B(t)·nj
)

+

g∑
j=1

(∮
γj

A0 ·tj
)(∫

Σj

B0 ·nj
)
.
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Helicity conservation (cont’d)

The crucial point is the representation formula∫
∂Ω

(q×n)·p =

g∑
j=1

(∮
γj

q·tj
)(∮

γ′j

p·t′j
)
−

g∑
j=1

(∮
γ′j

q·t′j
)(∮

γj

p·tj
)
,

which is valid for vector fields w ∈ X , namely, belonging to
H(curl; Ω) and satisfying (curlw · n)|Γ = 0 on Γ.

The following results are easily obtained (just remember that
γ′j = ∂Σj and use the Stokes theorem):∮

γ′j
AH(t) · t′j =

∫
Σj

BH(t) · nj =
∫

Σj
BH

0 · nj∮
γ′j
AΣ(t) · t′j =

∫
Σj

BΣ(t) · nj = 0 .
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Helicity conservation (cont’d)

Thus:

−
∫
∂Ω(AΣ(t)× n) · AH(t) +

∫
∂Ω(AΣ

0 × n) · AH
0

= −
∑g

j=1

( ∮
γj
AΣ(t) · tj

)( ∫
Σj

BH
0 · nj

)
+
∑g

j=1

( ∮
γj
AΣ

0 · tj
)( ∫

Σj
BH

0 · nj
)

=
∑g

j=1

( ∮
γj

(AΣ
0 − AΣ(t)) · tj

)( ∫
Σj

BH
0 · nj

)
=
∑g

j=1

( ∮
γj

(A0 − A(t)) · tj
)( ∫

Σj
BH

0 · nj
)
,

as AH(t) = AH
0 .
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Helicity conservation (cont’d)

A remark: we have proved that∫
∂Ω

(AΣ(t)× n) · AH(t) =

g∑
j=1

(∮
γj

AΣ(t) · tj
)(∫

Σj

BH
0 · nj

)
.

Therefore if B ∈ V ∩H(m)⊥, so that
∫

Σj
B(t) · nj = 0 for each

j = 1, . . . , g , we have
∫

Σj
BH

0 · nj =
∫

Σj
B0 · nj = 0 and thus∫

∂Ω(AΣ(t)× n) ·AH(t) = 0. Hence in (10) the conserved quantity
is
∫

Ω B(t) · A(t), that is the helicity of B when B ∈ V ∩H(m)⊥

(see (7)).

However, the assumption B ∈ V ∩H(m)⊥ is not physically justified
(just think at the flux of B across the section of a tokamak).

The correct physical assumption on B must be simply B ∈ V .
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Helicity conservation (cont’d)

Thus let us go on with our proof. We easily have

−
∑g

j=1

( ∮
γj
A(t) · tj

)( ∫
Σj

B(t) · nj
)

+
∑g

j=1

( ∮
γj
A0 · tj

)( ∫
Σj

B0 · nj
)

=
∑g

j=1

( ∮
γj

(A0 − A(t)) · tj
)( ∫

Σj
BH

0 · nj
)
,

and we have finally shown that

0 = Z (B(t))− Z (B0) = H(B(t))− H(B0) ,

therefore the conservation of the helicity is proved.
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Helicity conservation (cont’d)

Note that, as a by-product, we have proved that

Z (B(t)) = H(B(t)) +

g∑
j=1

(∮
γj

AH
0 · tj

)(∫
Σj

BH
0 · nj

)
,

and this clearly says that the conservation of Z (B(t)) is equivalent
to the conservation of the helicity H(B(t)).

[To tell all the truth, this says that Faraco and Lindberg (2020) did
not realize to have proved the conservation result also without
requiring

∫
Σj

B(t) · nj = 0 for each j = 1, . . . , g ...]
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The helicity of a domain

The helicity of a domain Ω is defined as

HΩ = sup
v∈V,‖v‖L2(Ω)=1

|H(v)| . (11)

As a consequence of the fact that the projected Biot–Savart
operator B̂S is self-adjoint and compact, the helicity of Ω can be
represented as

HΩ = |σΩ
max| ,

where σΩ
max is the eigenvalue of B̂S in Ω of maximum absolute

value.
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Explicit value of the helicity

The geometrical domains for which the eigenvalue of maximum
absolute value of the projected Biot–Savart operator B̂S is known
are quite a few: to our knowledge, only the ball and the spherical
shell (see Cantarella et al. (2000a)).

We remind that for the ball of radius b the result is
|σΩ

max| ≈ b
4.49341 (the approximation is due to the fact that the

correct denominator is the first positive solution of the equation
x = tan x , that approximately is 4.49341).
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Numerical calculation of the helicity

Due to this lack of explicit results, it is important that an efficient
approximation method for the computation of the eigenvalues is
available.

Starting from the variational formulation (5), in Alonso Rodŕıguez
et al. (2018) edge finite elements are used for the approximation of

the spectrum of the operator B̂S , for any type of bounded domain
Ω.
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The “isoperimetric” problem

A geometrical question now arises:

for which bounded domain the helicity is the maximum among
all the bounded domains with the same volume?

This is an open problem. We have not a theoretical answer, but we
can present some numerical computations.
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The “isoperimetric” problem (cont’d)

If Ω is a torus of radii r1 = 1 and r2 = 0.5 one has
|σΩ

max| ≈ 1
4.89561 ≈ 0.20426. The helicity of a ball B having

the same volume of this torus is HB ≈ 0.23505, a larger value.

If Ω is a perforated cylinder (topologically, a torus) with
rectangular cross section given by [0.005, 1]× [−0.5, 0.5] one
has HΩ ≈ 0.20175, while for the ball B with the same volume
it holds HB ≈ 0.20219, a larger but very close value.

If Ω is a torus of radii r1 = 0.505 and r2 = 0.5 one has
HΩ ≈ 0.19073, a larger value than that of the helicity of the
ball B with the same volume, given by HB ≈ 0.18718.
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The “isoperimetric” problem (cont’d)

This goes in the direction of confirming a conjecture in Cantarella
et al. (2000b), who suggested that the domain with maximum
helicity among all the domains with the same volume is not the
sphere, but a sort of “extreme solid torus, in which the hole has
been shrunk to a point”.
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https://www.youtube.com/watch?v=iH3oOVKt0WI
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The helicity of a domain (cont’d)

The proof of this result follows a well-known argument. Being
self-adjoint, the projected Biot–Savart operator has a complete
system of eigenfunctions {ωk}∞k=1, which are orthonormal in V
(or, equivalently, in (L2(Ω)3). Associated to these eigenfunctions
there is a sequence of (real) eigenvalues {σk}∞k=1. Therefore,
writing v =

∑∞
k=1 vkωk , it follows that ‖v‖2

L2(Ω) =
∑∞

k=1 v
2
k and

H(v) =
∑∞

k,j=1

∫
Ω vkωk · vj B̂S(ωj) =

∑∞
k,j=1

∫
Ω vkωk · vjσjωj

=
∑∞

k=1 v
2
kσk .
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The helicity of a domain (cont’d)

Moreover, for ‖v‖L2(Ω) = 1, we have

|H(v)| =

∣∣∣∣∣
∞∑
k=1

v2
kσk

∣∣∣∣∣ ≤ |σΩ
max|

∞∑
k=1

v2
k = |σΩ

max| ,

and also, being ωmax an eigenfunction associated to σΩ
max,

|H(ωmax)| =

∣∣∣∣∫
Ω
ωmax · B̂S(ωmax)

∣∣∣∣ = |σΩ
max|

∫
Ω
|ωmax|2 = |σΩ

max| ,

hence HΩ = |σΩ
max|.
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