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Boltzmann equation and fluid dynamics:

Harold Grad Asymptotic theory of the Boltzmann equation,
Phys. Fluids 6 (1963), 147–181.

• In the study of Boltzmann - fluid relationship, it is crucial to
study Singular layers
• Shock layer: Nonlinearity of fluid motion.
• Boundary layer: Boundary condition between gas and

other materials.
• Initial layer: Variation of initial values.
• Physically natural setups often involve coupling of singular

layers, e.g., Coupling of shock and initial layers, Coupling
of shock and boundary layers, Coupling of boundary and
initial layers, etc.



Boltzmann equation

∂t f(x , t , ξ) + ξ · ∂x f(x , t , ξ) =
1
k

Q(f, f)(x , t , ξ),

collision operator:

Q(g,h) ≡ 1
2

∫
R3×S2

(ξ−ξ∗)·Ω≥0

(
− g(ξ)h(ξ∗)− h(ξ)g(ξ∗)

+ g(ξ′)h(ξ′∗) + h(ξ′)g(ξ′∗)
)
B(ξ − ξ∗,Ω)dξ∗dΩ;{

ξ′ = ξ − [(ξ − ξ∗) · Ω] Ω,

ξ′∗ = ξ∗ + [(ξ − ξ∗) · Ω] Ω.

Hard sphere: B(ξ − ξ∗,Ω) = (ξ − ξ∗) · Ω.



Macroscopic Variables , moments of the distribution function:

ρ(x , t) =

∫
R3

f(x , t , ξ)dξ density,

ρv(x , t) =

∫
R3

ξf(x , t , ξ)dξ momentum,

ρE(x , t) ≡
∫
R3

1
2
|ξ|2f(x , t , ξ)dξ =

1
2
ρ|v |2(x , t) + ρe(x , t),

ρe(x , t) ≡
∫
R3

1
2
|ξ − v |2f(x , t , ξ)dξ internal energy,

Pij ≡
∫
R3

(ξi−vi)(ξj−vj)f(x , t , ξ)dξ, P ≡
(
Pij
)

i,j=1,2,3, stress tensor,

q ≡
∫
R3

(ξ − v)
|ξ − v |2

2
f(x , t , ξ)dξ, heat flow.



Collision Invariants

The interacting law{
ξ′ = ξ − [(ξ − ξ∗) · Ω] Ω,

ξ′∗ = ξ∗ + [(ξ − ξ∗) · Ω] Ω.

comes from the microscopic conservation laws for each
collision: of number of particles, 1 + 1 = 1 + 1, of momentum,
ξ + ξ∗ = ξ′ + ξ′∗, and of energy, |ξ|2 + |ξ∗|2 = |ξ′|2 + |ξ′∗|2. This
microscopic conservation laws yield the macroscopic
conservation laws

∫
R3

 1
ξ

1
2 |ξ|

2

Q(f, f)(x , t , ξ)dξ = 0,

 conservation of mass
conservation of momentum

conservation of energy


Collision invariants: 1, ξ, |ξ|2



Conservation Laws
Integrate the Boltzmann equation times (1, ξ, |ξ|2)T to yield

∂tρ+ ∂x · (ρv) = 0, conservation of mass,
∂t (ρv) + ∂x · (ρv ⊗ v + P) = 0, conservation of momentum,
∂t (ρE) + ∂x · (ρvE + Pv + q) = 0, conservation of energy.

• For x ∈ R3, this is an under-determined system of 5
equations for 13 unknowns. The Boltzmann equation is
essentially a system of infinite number of partial differential
equations.

• In most part of the gas region, the Boltzmann equation can
be accurately approximated by some finite dimensional
fluid dynamics equations.

• The study of singular layers is needed for the boundary
values and boundary condition for the fluid dynamics
equations.



H-Theorem

Integrate the Boltzmann equation times 1 + log f to yield the
important H-Theorem

Ht +∇x ·H =
1

4k

∫
R3

∫
R3

∫
S2

+

log
ff∗
f′f′∗

[f′f′∗−ff∗]BdΩ(α)dξ∗dξ≤0,

H = H(x , t) =

∫
R3

f log fdξ, H = H(x , t) =

∫
R3

ξf log fdξ.

The inequality becomes an equality if and only if the state is in
thermal equilibrium:

f(x , t , ξ) =
ρ(x , t)

(2πRθ(x , t))3/2 e−
|ξ−v(x,t)|2

2Rθ(x,t) ≡ M(ρ,v ,θ), Maxwellian.

Here θ is the temperature defined by the ideal gas relation
p = Rρθ.



Boltzmann Equation and Fluid Dynamics

• On the 5-dimensional thermal equilibrium manifold
{M(ρ,v ,θ), ρ, θ ∈ R+, v ∈ R3}, Q(M,M) = 0,
• the conservation laws become the Euler equations in gas

dynamics:

∂tρ+ ∂x · (ρv) = 0,
∂t (ρv) + ∂x · (ρv ⊗ v + pI) = 0,
∂t (ρE) + ∂x · (ρvE + pv) = 0,

• and thermodynamics applies:

ρs = −
∫
R3

M(ρ,v ,θ) log M(ρ,v ,θ)dξ, entropy.



Boltzmann Equation and Euler equations
The H-Theorem⇒
• A space homogeneous Boltzmann solution ∂t f = 1

k Q(f, f)
tends to the thermal equilibrium manifold.
• On the equilibrium manifold the Boltzmann equation is

reduced to the Euler equations in gas dynamics.

M1

M2M

Q = 0
M3

H − Theorem

Euler equations

equilibrium manifold



Boltzmann Equation and Fluid Dynamics

The solutions of the Boltzmann equation ∂t f + ξ · ∇x f = 1
k Q(f, f)

tends to a neighborhood of the equilibrium manifold, where the
Fluid Dynamics phenomena, such as the the viscous, heat
conducting, and thermal creep effects, occur.

M1

M2M

Q = 0
M3

H − Theorem

equilibrium manifold

fluid dynamics



Grad 1963: Singular Layers

• Boundary layer: due to boundary condition.
• Shock layer: due to fluid nonlinearity.
• Initial layer: Due to variation of initial values.

M1 M2

Q = 0
M3

shock layer

boundary layer

M− M+

initial layer

equilibrium
manifold



Coupling of Singular Layers
• For most of the physical region (x , t), the Boltzmann

equation can be well approximated by fluid-like equations
• Singular layers of the Boltzmann equation are constructed

to connect to the fluid-like region in order to obtain global
picture in the physical space.
• Physically natural setups often involve coupling of singular

layers, e.g., Coupling of shock and initial layers, Coupling
of shock and boundary layers, Coupling of boundary and
initial layers, etc.



Example 1. Rayleigh’s Problem

Coupling of Intial layer and Boundary Layer.

ft + ξ1fx = 1
k Q(f, f),

f(x , y ,0) = M(ρ, (0,0), θ), x > 0,−∞ < y <∞,
f(0, y , t) = M(ρ, (0,V ), θ), −∞ < y <∞, ξ1 > 0.

t

x

y

V

Rayleigh’s problem: Initial data

f =M(ρ,(0,0),θ)

f =M(θ,(0,V ),θ)

Goal: Comparison with classical fluid dynqmics.



Coupling of Initial and Boundary Layers:
Coupling of initial and boundary layers: Rayleigh’s Problem:

t

x

x

y

y

V

V/2

V

k

k

kt−1/2

kt1/2
kt1/2

For small time, in the initial layer, gas flows at speed V/2
around the boundary, due to the diffuse reflection boundary
condition.



Rayleigh’s Problem:

t

x

x

y

y

V

V/2

V

k

k

kt−1/2

kt1/2
kt1/2

After initial-boundary coupling, a decay at rate t−1/2 for the
boundary slip, followed by fluid diffusion wave at rate t1/2.



Rayleigh’s Problem:

• Classical fluid dynamics:
Lord.Rayleigh, Phil. Mag. Ser. 6, 21 (1911) 647.
• Modern fluid dynamics: viewed from kinetic theory, Laplace

transform, asymptotic expansion, solution behavior:
Sone, Y, Kinetic Theory Analysis of Linearized Rayleigh
Problem. J. Phys. Soc. Jpn. 19, pp. 1463-1473 (1964)
• ⇒ Hilbert expansion with boundary by Sone 1969, 1971.
• Laplace transform, existence of solutions:

Cercignani, C.; Sernagiotto, F. The method of elementary
solutions for time-dependent problems in linearized kinetic
theory. Ann. Physics 30 (1964), 154-167.
• Open problem: To understand analytically the coupling of

initial and boundary layers.



Green’s function G(x , t , ξ; ξ∗)
For study of coupling of singular layers, strongly quantitative
method, such as the Green’s function approach, is needed.

Gt + ξ · ∇xG = LG, x ∈ R,
G(x ,0, ξ; ξ∗) = δ(x)δ(ξ − ξ∗)

L : linearized collision operator around a Maxwelian M.
.

G(x , t , ξ; ξ∗): The dispersion around the ambient Maxwellian M
of particles starting at origin and with speed ξ∗.

ξ∗

x-space

M

MM

M



Linearized Boltzmann Equation
Perturbation around Maxwellian M: f = M +

√
Mg.

gt + ξ · ∇xg =
1
k

Lg, Linear Boltzmann equation,

Lg =
2Q(
√

Mg,M)√
M

, Linear collision operator,

kernel(L) = span{1, ξ, |ξ|2}
√

M, tangent to equilibrium manifold.

Macro-projection P0: projection onto kernel of L.
Micro-projection P1 = I− P0, g = P0g + P1g = g0 + g1.

M1

M2

M

M3

equilibrium
manifoldkernel of L

g

g1

g0

Q = 0



Euler Characteristics

Macro-projection of the linear Boltzmann equation:

(P0g)t +∇x · P0ξP0g = 0, linear Euler equations.

1-D Euler characteristics

P0ξ1Ej = λjEj , λ1 = v − c, λ2 = v , λ3 = v + c.

Sound speed for monatomic gases c =
√

5θ
3 . (E1,E2,E3)

orthogonal, the macro-projections:

P0g =
3∑

j=1

(g,Ej)Ej =
3∑

j=1

(g0,Ej)Ej =
3∑

j=1

g0jE.



Collision operator

For hard spheres, Hilbert:

Lg =
(
− ν(ξ) + K

)
g =

(
− ν(ξ) + K2 − K1

)
g,

ν(ξ) =
2ρ0
√

Rθ0√
2π

(
e−
|c|2

2 +
(
|c|+ 1

|c|
) ∫ |c|

0
e−

y2

2 dy
)
,

Kjg(ξ) =

∫
R3

Kj(ξ, ξ∗)g(ξ∗)dξ∗, j = 1,2,

K1(ξ, ξ∗) =
ρ0√

2πRθ0
|c − c∗|e−

|c|2
4 e−

|c∗|2
4 ,

K2(ξ, ξ∗) =
2ρ0√
2πRθ0

|c∗ − c|−1e
− (|c|2−|c∗|2)2

8|c−c∗|2 e−
|c−c∗|2

8 ,

c ≡ (ξ − v0)/
√

2Rθ0, c∗ ≡ (ξ∗ − v0)/
√

2Rθ0.



1-D Green’s function{
Gt + ξ1∂xG = LG, x ∈ R,
G(x ,0, ξ; ξ∗) = δ1(x)δ3(ξ − ξ∗).

.

G(x , t ; ξ, ξ∗) =
3∑

j=1

1√
4πAj(t + 1)

e
−

(x−λj t)
2

4Aj (t+1) Ej ⊗ 〈Ej | fluid part

+ e−
ν(ξ∗)

k tδ1(x − ξ∗1t)δ3(ξ − ξ∗) particle-like
+ Remainder,

Ai ≡ −k(P1ξ1Ei ,L−1P1ξ1Ei), Navier-Stokes dissipation coefficients.

• fluid part: away from boundary and initial time.
• particl-like: initial and boundary layers.
• Remainder: smoother and decaying faster. Liu-Yu 2004,

Liu-Yu 2006.



1-D Green’s function

t

x

x = λ1t x = λ2t
x = λ3t

x = ξ∗t

fluid waves

particle wave

Leading waves for 1-D Green’s function



3-D Green’s function

t

x

Huygen wave
thermal and vortex waves

particle wave

Leading waves for 3-D Green’s function

x = ξ∗t

|x| = ct



Example 2. Riemann Problem
Coupling of Shock and Initial Layers.

ft + ξ1fx =
1
k

Q(f, f), f(x ,0) =

{
M(ρ−,v−,θ−), x < 0,
M(ρ+,v+,θ+), x > 0.

(ρ−, v−, θ−) (ρ+, v+, θ+)

(ρ+, v+, θ+)(ρ−, v−, θ−)

Euler shock

t

x

For the Boltzmann solution, the coupling of initial and shock
layers induces several time scales. Yu 2014



Coupling of Shock and Initial Layers.

ft + ξ1fx =
1
k

Q(f, f), f(x ,0) =

{
M(ρ−,v−,θ−), x < 0,
M(ρ+,v+,θ+), x > 0.

The coupling induces four layers.

t

x
M(ρ−,v−,θ−) M(ρ+,v+,θ+)

kinetic layer
t = k

formation of nonlinear fluid waves

time-asymptotic state

t = kε−2

t = kε−2 log ε

viscous fluid layer



Initial Layer, I

For small time and weak shocks, linearization, around
M− = M(ρ−,v−,θ−), is accurate:

gt + ξ1gx = 1
k L(g),

g(x ,0, ξ) =

{
0, x < 0,
g+ = ∇ρ,v ,θM− · (ρ+ − ρ−, v+ − v−, θ+ − θ−), x > 0.

The phenomena is hyperbolic and dominated by particle-like
propagator e−

ν(ξ∗)
k tδ1(x − ξ∗1t)δ3(ξ − ξ∗) of the Green’s

function:

f(x , t , ξ)=̃

{
M(ρ−,v−,θ−), ξ1 >

x
t ,

M(ρ−,v−,θ−) + e−
ν(ξ∗)

k tg+(ξ), ξ1 <
x
t .



Initial Layer, I

t

x

t = k

kinetic layer
hyperbolic
scale

viscous fluid layer
(x, t)

dx
dt = ξ1∗, ξ1 <

x
t

0 g+(ξ)

x
t

Macroscopic variables such as the density is

ρ(x , t)=̃ρ− +

∫ x/t

−∞

(∫
R2

g+(ξ)dξ2dξ3

)
dξ1.



Initial Layer, II

t

x
M(ρ−,v−,θ−) M(ρ+,v+,θ+)

kinetic layer

t = k

t = kε−2

parabolic scale

hyperbolic scale

(x− λ2t)
2 ≤ kt(x− λ1t)

2 ≤ kt

kε−1

viscous fluid layer
x2

t

x
t

The width of Boltzmann shock is kε−1 for shock of strength ε. It
takes time

(kε−1)2 = kt ⇒ t = kε−2

to reach this width.



Initial Layer, III
t

x
M(ρ−,v−,θ−) M(ρ+,v+,θ+)

kinetic layer
t = k

formation of nonlinear fluid waves

time-asymptotic state

t = kε−2

t = kε−2 log ε

viscous fluid layer

x = σt

Burgers shock

• Hoff - Liu, 1989: Approximate the Boltzmann shock by
Burgers shock and use Hopf-Cole transformation to show
that the Burgers shock formation time is kε−2 log ε.
• Yu, 2013: After time kε−2 log ε, study time-asymptotic

stability of Boltzmann shock using the fluid part of the
Green’s function.



Example 3. Stationary Layers
Coupling of Knudsen-type layer and fluid-like waves.

• Knudsen boundary layer: Width proportional to the mean
free path k .
• Fluid-like waves: Width k/ε, ε strength of the fluid wave.
• Coupling occurs when one of the Euler characteristics is

near zero. Wave patterns for transonic condensation:

x

p

Knudsen-type
layer

fluid-like expansion wave

fluid-like compression wave



Knudsen Boundary Layers
Near the smooth boundary, the boundary layer is locally
1-dimensional near the boundary. Thus consider stationary
Boltzmann equation with the gas region x > 0:

ξ1fx =
1
k

Q(f, f), x > 0.

For this transport equation, the most direct problem is to
prescribe the boundary values b+ for characteristics pointing to
the gas region, ξ1 > 0,

f(0, ξ) = b+(ξ), ξ1 > 0.

The Knudsen boundary layer tends to a Maxwellian so that it
can connect the boundary values to the fluid-like flows:

f(x , ξ)→ M∞(ξ) as x →∞.



Knudsen Layers

The boundary value problem is solvable when the boundary
values b+(ξ) satisfies certain n+ conditions, n+ the number of
positive Euler characteristics for the Maxwellian M∞(ξ). The
width of the Knudsen layer is of the order of the mean free path
k .

x

p

Knudsen

layer

M∞

b+

k

e.g. Coron, Golse, Sulem 1988.



Knudsen Boundary Layers

• Knudsen layer at x = 0:


ξ1gx = 1

k L(g), x > 0,
g(0, ξ) = b+(ξ), ξ1 > 0,
g(x , ξ)→ 0 as x →∞.

• flux conservation: (ξ1g(x),Ej) = 0, ⇒ macro part g0 in
terms of micro part g1, effective when λj , j = 1,2,3, are
away from zero:

g0j(x) =
(ξ1g1(x),Ej)

λj
, j = 1,2,3.

• Linear version of H-Theorem (g,Lg) ≤ −ν0((1 + |ξ|)g1,g1).
• Weighted energy estimate using above yields the linear

spectral gap for Knudsen layer:

(g,g)(x) = e−αx , as x →∞, α=̃ min{|λj |, j = 1,2,3}.



Degeneracy of Nonlinear Knudsen Layers
Linear spectral gap α=̃ min{|λj |, j = 1,2,3}, dynamical system
approach yields exponentially decaying Knudsen layers for full
Boltzmann equation ξ1f = Q(f, f), but with the validity
neighborhood of the size of α.

signed Mach number
transonic
condensation

condensation
evaporation

transonic
evaporation

: sizes of neighborhood for Knudsen layer

λ3 = 0 λ2 = 0 λ1 = 0

Mach = v∞
c∞

Mach = −1 Mach = 0 Mach = 1

Knudsen

layer

M∞k



Knudsen-like Layer and Fluid-type wave
For a neighborhood of definite size around λj = 0, j = 1,2,3,
there are Knudsen-fluid layers. For transonic condensation, the
fluid-like waves are compression and expansion waves.

transonic
condensation

condensation
evaporation

transonic
evaporation

: sizes of neighborhood for Knudsen-fluid layer

Mach

Mach = −1 Mach = 0 Mach = 1

x

p

Expansion wave

Compression wave

Knudsen-type
layer

M∞

M∞

M∞

M∞

M∞

M∞



Green’s Function Approach
To study this resonance and bifurcation phenomena, one
considers all the stationary Boltzmann flows. Quantitative
estimates are necessary for the strongly nonlinear phenomena,
The Green’s function approach is used through time-asymptotic
analysis:
Multiply the linear Boltzmann equation ξ1fx = 1

k L(f) (with given
data b at x = 0) by the Green’s function G and integrate over
x , t > 0 to obtain the Green’s identity

f(x) =

∫ t

0
G(x , t − τ)[ξ1b]dτ +

∫ ∞
0

G(x − y , t)f(y)dy

Use time-asymptotic approach and the explicit form of the
Green’s function to analyze∫ ∞

0
G(x , t − τ)[ξ1b]dτ boundary integral operator.



Global diagram of trajectories, Liu-Yu, 2013

Trajectories for transonic condensation.

M−M+

Sone Manifold Bifurcation Manifold

compression
waves

shock profileexpansion
waves

Knudsen-type layersKnudsen
layers

Knudsen
layers



M∞

p∞

T∞
1

0

−1

3-dim supersonic condensation
2-dim subsonic
condensation

1-dim subsonic
evaporation Far field temperature

Far field Mach number

Far field pressure

Strongly nonlinear bifurcation diagram

• Kyoto School 1980-2000, asymptotic analysis and
computations.
• , Liu-Yu 2013, Green’s function approach, Center manifold

reduction. Fluid nonlinearity.



Happy 70th Birthday, Piero.


