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Figure: UMI National Congress, Pavia 2019
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Figure: Piero’s new appointment
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“Climate is what we expect, weather is what we get”
When we talk about climate, we mean weather averaged over space
and time so that local variations and diurnal and random
fluctuations have been eliminated

Mathematics &Climate by H. Kaper and H. Engler
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Climate models
Purposes
I Better understanding of past (and future) climate
I Better understanding the sensitivity to some relevant solar and

terrestrial parameters

Main feature
I Multi-scale nature (in both time and space)
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Energy balance models
General description
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Energy balance models
introducing diffusion

Local Energy Budget

1
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Hierarchy in the class of climate models :
I 0− D : u(t), mean Earth temperature
I 1− D : u(t, ϕ) : mean temperature on the latitude circles

around the Earth
I 2− D : u(t,m) : temperature on Earth surface (m ∈ S2)
I 3− D : General Circulation Model u(t,m, h) (coupled with

Glaceology, Celestial Mechanics, Geophysics. . .)

Figure: ϕ ∈ (−π2 ,
π
2 ) parametrizes latitude
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The Budyko (1969) and Sellers (1969) models
Temperature average on the Earth u satisfies

variation of u = +absorbed energy −reflected energy +diffusion

hence a reaction-diffusion equation of the form

c(t, x)ut − diffusion = Ra − Re

where

I c(t, x) : heat capacity,
I Ra = absorbed solar radiation, = QS(t, x)β(u) :

Q : Solar constant,
S(t, x) : distribution of solar radiation,
β(u) : ”planetary coalbedo” (= the fraction absorbed according
the average temperature),

I Re = : emitted radiation (depends on the amount of
greenhouse gases, clouds and water vapor in the atmosphere,
increases with u)
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EBMs : absorbed solar radiation
Albedo
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EBMs : absorbed solar radiation
Co-albedo and insolation function

Ra(t, x) = β
(
u(t, x)

)
Q(t, x) :

I Q : high-frequency solar radiation
I β(u) = 1− α(u) : co-albedo (fraction of absorbed energy)

will be assumed to be piecewise linear

β(u) =


β− for all u ≤ T−

β− + (β+ − β−) u−T−
T+−T− for all u ∈ [T−,T+]

β+ for all u ≥ T+

for suitable constants T+ > T− > 0 and β+ > β− > 0
I α : albedo (fraction of reflected energy) ;

α nonincreasing, from α+ to α− (ice reflects more than
non-iced surfaces),
Sellers : α(u) smooth / Budyko : α(u) discontinuous,
Bhattacharya-Ghil-Vulis (1982) : α(u,memory effect) ;
(memory effect : interesting to take into account the long
response times of the ice sheets to temperature changes).
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EBMs : diffusion and emitted radiation

I diffusion = div (k(...)∇u) :

k = k0 positive constant, and averaging along the parallels,
x = sin(latitude) : 1D model, degenerate parabolic equation
(and possibly quasilinear) :

k0((1− x2)ux)x , x ∈ (−1, 1);

Sellers (1969), Ghil (1976) : 1D, k(u),
Stone (1972) : k(x ,∇u) = k1(x)|∇u| (manifold, rotating
atmosphere),
Diaz (1993) : k(x ,∇u) = k1(x)|∇u|p−2 (manifold) ;

I emitted radiation :

Sellers : Re = σu4 / Budyko : Re = a + bu,

(where σ : Stefan-Boltzmann constant ).
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EBMs : multistability of climate
Snow-ball and warm state

Even the simple ODE

u′(t) = β(u(t))− σu4

has been used to prove the
multistability of climate

Evolution
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EBMs : an overview

Main features

I 1− D : degenerate diffusion coefficient

I 2− D : on a manifold

I with nonlinear source terms, and possibly quasilinear

I possibly with discontinuous coefficients (Budyko)

I possibly with non local terms (memory)

What has been studied :

I existence and stability of multiple steady states (Ghil (1976))

I existence of solutions, uniqueness/non uniqueness (in
prescribed classes) (Diaz (1993), Hetzer (1996, 2011))

I dynamics, long-time behavior (Hetzer (1991))

I free boundary value problem : snow lines (Diaz (1993))

I coeffs : uniqueness, inverse problems (Ghil et al (2014))
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II. Sellers model with memory : well-posedness
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1D Sellers climate model with memory


ut − (ρ0(1− x2)ux)x = r(t)q(x)β(u)− ε(u)|u|3u + f(H),

ρ0(1− x2)ux = 0, x = ±1,

u(s, x) = u0(s, x), s ∈ [−τ, 0],

where

I 1-D parametrization x = sin(ϕ) ∈ (−1, 1) with ϕ = the
latitude

I absorbed energy

I emitted energy

I memory term : to account for long response times of ice
sheets to temperature changes (Ghil et al 1982, 2014)

H(t, x,u) =

∫ 0

−τ
k(s, x)u(t + s, x) ds.
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An inverse problem for the Sellers model

I Goal : study an inverse problem that consists in recovering
the insolation function q(x) in the Sellers model with memory
using partial measurements of the solution,

I Difficulties : degeneracy + nonlinearity + nonlocal,

I Results :
well-posedness,
uniqueness result under pointwise measurements,
Lipschitz stability under localized measurements.



19/49

Sellers model : precise assumptions

I ρ(x) = ρ0(1− x2), ρ0 > 0, x ∈ (−1, 1),

I β ∈ C2(R), β, β′, β′′ ∈ L∞(R), β(·) ≥ β1 > 0,

I q ∈ L∞(I ),

I r ∈ C1(R), r , r ′ ∈ L∞(R), r(·) ≥ r1 > 0,

I ε ∈ C2, ε, ε′, ε′′ ∈ L∞(R), ε(·) ≥ ε1 > 0,
I memory term :

kernel k ∈ C 1([−τ, 0]× [−1, 1],R),
nonlinearity f ∈ C2(R), f , f ′, f ′′ ∈ L∞(R).



20/49

1D Sellers model : functional setting

I energy space : I = (−1, 1)

V =
{

w ∈ L2(I ) : w ∈ ACloc(I ),
√
ρwx ∈ L2(I )

}
⊂ Lp(I ) ,∀p ≥ 1

I operator A : D(A) ⊂ L2(I )→ L2(I ) in the following way :{
D(A) := {u ∈ V : ρux ∈ H1(I )}
Au := (ρ0(1− x2)ux)x , u ∈ D(A) :

(A,D(A)) is a self-adjoint operator and it is the infinitesimal
generator of an analytic and compact semigroup {etA}t≥0 in
L2(I ) that satisfies

|||etA|||L(L2(I )) ≤ 1.

(Campiti-Metafune-Pallara (1998))
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1D Sellers model : definition of mild solution{
u̇(t) = Au(t) + G (t,u) + F(u(t)) t ∈ [0,T ]

u(s) = u0(s) s ∈ [−τ, 0],
(1)

with

G (t,u) = local source terms, F(u(t)) = memory term

Definition

Given u0 ∈ C ([−τ, 0]; V ), a function

u ∈ H1(0,T ; L2(I )) ∩ L2(0,T ; D(A)) ∩ C ([−τ,T ]; V )

is called a mild solution of (1) on [0,T ] if u(s) = u0(s) for all
s ∈ [−τ, 0], and if for all t ∈ [0,T ], we have

u(t) = etAu0(0) +

∫ t

0
e(t−s)A

(
G (s,u) + F(u(s))

)
ds
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Memory Sellers model : well-posedness result

{
u̇(t) = Au(t) + G (t,u) + F(u(t)) t ∈ [0,T ]

u(s) = u0(s) s ∈ [−τ, 0],
(1)

Theorem (C-Malfitana-Martinez (2018))

Let u0 be such that

u0 ∈ C ([−τ, 0]; V ) and u0(0) ∈ D(A) ∩ L∞(I ).

Then, for all T > 0, (1) has a unique mild solution on [0,T ].

Proof :

I local existence (fixed point, contraction)

I uniqueness (Gronwall’s lemma),

I global existence
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Memory Sellers model : local existence
Functional setting :
I the space of functions

XR :=
{

v ∈ C ([−τ, t∗]; V ) |

{
‖v(t)‖V ≤ R ∀t ∈ [−τ, t∗],
v(t) = u0(t) ∀t ∈ [−τ, 0],

}
,

I and the associated application

Γ : XR ⊂ C ([−τ, t∗]; V )→ C ([−τ, t∗]; V )

defined by Γ(u)(t) := u0(t) for t ∈ [−τ, 0], and

Γ(u)(t) := etÃu0(0) +

∫ t

0
e(t−s)Ã

[
G̃ (s, u(s)) + F (u(s))

]
ds

for t ∈ [0, t∗] (and Ã = A− Id strictly dissipative) :

Γ well-defined, Γ(XR) ⊂ XR and Γ contraction of t∗ > 0 small.
Essential tool (Pazy) :

|||(−Ã)1/2etÃ|||L(L2(I )) ≤
c√
t
.
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Memory Sellers model : uniqueness

u, ũ solutions on [0,T0] : the difference w = u − ũ solves
wt − (ρwx)x = G (t, u)− G (t, ũ) + f (H)− f (H̃),

ρwx = 0, t ∈ (0,T0), x = ±1,

w(s, x) = 0, s ∈ [−τ, 0], x ∈ (−1, 1),

and then

W (T ′) :=

∫ T ′

0
‖w(T )‖2

L2(−1,1) dT

is nondecreasing and satisfies (integration by parts, estimates)

W (T ′) ≤ C

∫ T ′

0
W (T ) dT .

Gronwall =⇒ W = 0 =⇒ w = 0 =⇒ u = ũ.
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Memory Sellers model : global existence
Maximal existence time :

T ∗(u0) := sup{T ≥ 0 s.t. (1) has a mild solution on [0,T ]},
Then

u0 ∈ C ([−τ, 0]; V ), u0(0) ∈ D(A)∩L∞(I ) =⇒ T ∗(u0) = +∞ :

based on the following boundedness property :

Theorem

Consider u0 ∈ C ([−τ, 0]; V ) and u0(0) ∈ D(A) ∩ L∞(I ), T > 0
and u a mild solution of (1) defined on [0,T ]. Let us denote

M1 :=

( ||q||L∞(I )||r ||L∞(R)||β||L∞(R) + ||f ||L∞(R)

ε1

) 1
4

and M := max{||u0(0)||L∞(I ),M1}. Then u satisfies

||u||L∞((0,T )×I ) ≤ M.
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III. Sellers model : reconstruction of insolation
function
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1D Memory Sellers model : uniqueness/stability of the
insolation function ?


ut − (ρ(x)ux)x = r(t)q(x)β(u)− ε(u)|u|3u + f (H)

ρ(x)ux = 0, x ∈ ∂I ,

u(s, x) = u0(s, x), s ∈ [−τ, 0], x ∈ I

(S)


ũt − (ρ(x)ũx)x = r(t)q̃(x)β(ũ)− ε(ũ)|ũ|3ũ + f (H̃)

ρ(x)ũx = 0, x ∈ ∂I

ũ(s, x) = ũ0(s, x), s ∈ [−τ, 0], x ∈ I

(S̃)

u = ũ on a ”small” set =⇒ q = q̃ ?

u − ũ ”small on a small set” =⇒ q − q̃ small ?
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Motivation for inverse problems (Roques et al 2014)

I Goal of the Energy Balance Models (with Memory) : toy
models to understand the evolution of climate

I With suitable tuning of the parameters : EBMs simulations
give reasonable results for the observed present climate
(North-Mengel-Short (1983))

I Once fitted, EBM(M) can be used to estimate the temporal
response patterns to various scenarios (climate change).

I BUT in practice, parameters cannot be measured directly
(intertwined effects of several physical processes). So, one
takes measurements of the solution and uses such
measurements to reconstruct parameters (Yamamoto-Zou
(2001), Roques et al (2014)).
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Inverse source problem for the linear heat equation
Various approaches and results

I ”Simple” models (constant coefficients/depending only on x
or only on t...) : elegant and sharp techniques :

Fourier series (moment method, biorthogonal families),
Laplace transform,
Volterra integral equations...

 sharp results (explicit formula of the solution...)
Cannon 1968, Lorenzi-Sinestrari (1988), Lorenzi (1989...),
Bukhgeim (1993), Gentili (1991), Grasselli (1992), Yamamoto
(1993), Janno-Wolfersdorf (1996), Choulli-Yamamoto
(2006)...

I nonlinear models (or coefficients in x and t) : local/global
Carleman estimates  uniqueness, Holder/Lipschitz stability :
Bukhgeim/Klibanov 1981, Klibanov (1992), Isakov (1990,
1998...), Imanuvilov/Yamamoto (1998)

I Use of analyticity properties  uniqueness under
measurements at one point (in 1− D) (Roques-Cristofol
(2010), Roques-Checkroun-Cristofol-Soubeyrand-Ghil (2014))



30/49

Inverse source problem for evolution equations
Literature on the subject

Founding papers using GCE :
Puel/Yamamoto 1996 + 1997 (linear wave equation)

Imanuvilov/Yamamoto 1998 (linear heat equation)

More on Lipschitz stability for parabolic equations :
Yamamoto/Zou 2001 (simultaneous reconstruction of 2 quantities)
Cristofol/Gaitan/Ramoul 2006 (systems)
Benabdallah/Dermenjian/Le Rousseau 2007 + Benabdallah/Gaitan/Le
Rousseau 2009 (discontinuous diffusion coefficient)
C/Tort/Yamamoto 2010 (degenerate diffusion coefficient)
Ignat/Pazoto/Rosier 2012 (networks)

Lipschitz stability for other types of equations :
Hyperbolic equations : Imanuvilov/Yamamoto 2001,
Komornik/Yamamoto 2002, Bellassoued/Yamamoto 2006, Liu/Triggiani
2011

Schrodinger equation : Baudouin/Puel 2002, Mercado/Osses/Rosier

2008, Liu/Triggiani 20111 ...
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Uniqueness under pointwise measurements
Assumptions

(H1) admissible initial conditions

U (pt) = C 1,2([−τ, 0]× [−1, 1])

(H2) admissible coefficients

Q(pt) := {q is Lipschitz-continuous and piecewise analytic on I}

(H3) admissible memory kernels

∃δ ∈ (0, τ) such that k(s, ·) ≡ 0 ∀s ∈ [−δ, 0]
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Uniqueness under pointwise measurements
Main result

Theorem (C-Malfitana-Martinez)

Consider

I two insolation functions q, q̃ ∈ Q(pt)

I an initial condition u0 = ũ0 ∈ U (pt)

Assume that

I the memory kernel is admissible

I r and β are positive

If u and ũ are the solutions of (S) and (S̃), respectively, and there exists x0 ∈ I
and T > 0 such that

∀t ∈ (0,T ), u(t, x0) = ũ(t, x0), and ux(t, x0) = ũx(t, x0),

then q ≡ q̃ on (−1, 1)

𝑥

𝑡 𝑇

−𝜏

0

−1 1𝑥0

This extends a result by Roques-Checkroun-Cristofol-Soubeyrand-Ghil (2014)
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1D Memory Sellers model : Lipschitz stability
Set-up


ut − (ρ(x)ux)x = r(t)q(x)β(u)− ε(u)|u|3u + f (H)

ρ(x)ux = 0, x ∈ ∂I ,

u(s, x) = u0(s, x), s ∈ [−τ, 0], x ∈ I

(S)


ũt − (ρ(x)ũx)x = r(t)q̃(x)β(ũ)− ε(ũ)|ũ|3ũ + f (H̃)

ρ(x)ũx = 0, x ∈ ∂I ,

ũ(s, x) = ũ0(s, x), s ∈ [−τ, 0], x ∈ I

(S̃)

Goal : to prove that

‖q − q̃‖ ≤ C ‖u − ũ‖
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1D Memory Sellers model : Lipschitz stability
Assumptions

I admissible initial conditions : given M > 0,

U (loc)
M =

{
u0 ∈ C([−τ, 0]; V∩L∞(−1, 1)) : u0(0) ∈ D(A), Au0(0) ∈ L∞(I ),

sup
t∈[−τ,0]

(
‖u0(t)‖V + ‖u0(t)‖L∞

)
+ ‖Au0(0)‖L∞(I ) ≤ M

}
I admissible coefficients : given M ′ > 0,

Q(loc)
M′ := {q ∈ L∞(I ) : ‖q‖L∞(I ) ≤ M ′}

I admissible memory kernels : the same support condition

∃δ ∈ (0, τ) such that k(s, ·) ≡ 0 ∀s ∈ [−δ, 0]
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1D Memory Sellers model : Lipschitz stability
Main result

Theorem (C–Malfitana–Martinez (2018))

Let 0 ≤ t0 < T ′ < T , let M,M ′ > 0,
and suppose

0 < T ′ < δ

Then there exists
C(t0,T

′,T ,M,M ′) > 0 such that, for

all u0, ũ0 ∈ U (loc)
M and all q, q̃ ∈ Q(loc)

M′ ,

the solutions u and ũ of (S) and (S̃),
respectively, satisfy

‖q − q̃‖2
L2(I ) ≤ C

(
‖u(T ′)− ũ(T ′)‖2

D(A)

+ ‖ut − ũt‖2
L2((t0,T )×(a,b)) + ‖u0 − ũ0‖2

C([−τ,0];V )

)
𝑥

𝑡 𝑇

−𝜏

0

−1 1

𝑇′

𝑥0 𝑏𝑎

𝑡0

Extension of Tort–Vancostenoble (2012)
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1D Memory Sellers model : Lipschitz stability
Main tools for proof

I to reduce the problem to some (non standard) inverse source
problem for a linear equation

I to follow the method by Imanuvilov-Yamamoto (1998) for inverse
source problems

I to use adapted Global Carleman Estimates for degenerate parabolic
equations C – Martinez-Vancostenoble (2008)

I appeal to maximum principles to deal with nonlinear terms
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1D Memory Sellers model : Lipschitz stability
Steps 1 and 2 of the proof

Step 1 to identify the problem satisfied by the difference w = u − ũ as
wt − (ρwx)x = K∗ + K + K̃ + K h, t > 0, x ∈ (−1, 1),

ρwx = 0, x = ±1,

w(s, x) = u0(s, x)− ũ0(s, x), s ∈ [−τ, 0], x ∈ (−1, 1),

where

K∗(t, x) = r(t)(q(x)− q̃(x))β(u), K (t, x) = r(t)q̃(x)(β(u)−β(ũ)),

K̃ = −ε(u)|u|3u + ε(ũ)|ũ|3ũ, K h = f (H)− f (H̃)

Step 2 K∗ satisfies (Imanuvilov-Yamamoto (1998))

∃C0 > 0 s.t.∀t, x ,
∣∣∣∂K∗

∂t
(t, x)

∣∣∣ ≤ C0|K∗(T ′, x)|

(this follows from the fact that ut ∈ L∞((0,T )× I ))
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1D Memory Sellers model : Lipschitz stability
Carleman estimate and conclusion

Step 3 Carleman estimate for z := wt : there exists a smooth weight function
θ : (t0,T )→ (0,∞), with θ(t)→∞ as t ↓ t0 and T ↑ T , such that∫ T

t0

∫ 1

−1

(
R3θ3(1− x2)z2 + Rθ(1− x2)z2

x +
1

Rθ
z2
t

)
e−2Rσ

≤ C

∫ T

t0

∫ 1

−1

(K∗t )2e−2Rσ + C

∫ T

t0

∫ b

a

R3θ3z2e−2Rσ
)

+ C‖w(T ′)‖2
L2(I ) + C‖u0 − ũ0‖2

C([−τ,0],V )

Step 4 to estimate ‖q − q̃‖ we use an upper bound for

K∗(T ′) = r(T ′)(q(x)− q̃(x))β(u)

= z(T ′)− (ρwx)x(T ′)− K(T ′)− K̃(T ′)− K h(T ′)

that is∫ 1

−1

|K∗(T ′)|2e−2Rσ(T ′)dx ≤ C‖w(T ′)‖2
D(A)+

+C

∫ 1

−1

(
|z(T ′)|2︸ ︷︷ ︸

(CE)

+ |K(T ′)|2 + |K̃(T ′)|2︸ ︷︷ ︸
C‖w(T ′)‖2

L2(I )

+ |K h(T ′)|2︸ ︷︷ ︸
C‖u0−ũ0‖2

C([−τ,0],V )

)
e−2Rσ(T ′)dx
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IV. Ongoing research : EBMs with vertical
component



40/49

EBMs with vertical component
joint work with V. Lucarini, P. Martinez, C. Urbani, J. Vancostenoble

Ta : temperature of an atmosphere layer

Ts : surface temperature of the Earth

γa
[
∂Ta
∂t
− ka

∂
∂x

(
(1− x2) ∂Ta

∂x

)]
= −λ(Ta − Ts) + εaσB |Ts |3Ts − 2εaσB |Ta|3Ta +Ra

γs
[
∂Ts
∂t
− ks

∂
∂x

(
(1− x2) ∂Ts

∂x

)]
= −λ(Ts − Ta)− σB |Ts |3Ts + εaσB |Ta|3Ta +Rs

(1− x2) ∂Ta
∂x |x=±1

= 0 = (1− x2) ∂Ts
∂x |x=±1

Ta(0, x) = T
(0)
a (x), Ts(0, x) = T

(0)
s (x)

Exchange of energy between the layers :

I linear term : non-radiative vertical exchanges of energy due to the action
of the geophysical fluids

I nonlinear term : emission of infrared radiation by one level being captured
by the other layer

Relevant constants :

I λ ≥ 0 : coupling parameter for vertical exchanges

I εa ∈ [0, 1] : absorptivity (depends on greenhouse gases CO2, CH4)
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Well-posedness of the ODE problem

(2LEBM)



γa
∂Ta
∂t

= −λ(Ta − Ts) + εaσB |Ts |3Ts − 2εaσB |Ta|3Ta +Ra,

γs
∂Ts
∂t

= −λ(Ts − Ta)− σB |Ts |3Ts + εaσB |Ta|3Ta +Rs ,

Ta(0) = T
(0)
a , Ts(0) = T

(0)
s

Assumptions :

I λ ≥ 0, q > 0, σB > 0, εa ∈ (0, 2)

I βa, βs : R→ R globally Lipschitz, βa ≥ 0 and βs > 0, and

Ra = qβa(Ta), Rs = qβs(Ts).

I T
(0)
a ≥ 0, T

(0)
s ≥ 0

Proposition

(2LEMB) has unique solution, defined and bounded for any t ∈ [0,+∞).
Moreover

∀ t ∈ (0,+∞), Ta(t) > 0 and Ts(t) > 0.
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Asymptotic behaviour of solutions

Definition

A C 1 system of ODE on Rn d
dt

xi = Fi (x1, . . . , xn) = Fi (x), i = 1, . . . , n is
competitive if

∂

∂xj
Fi (x) ≤ 0 i 6= j

and cooperative if the reverse inequalities hold.

For εa ∈ (0, 2) and λ ≥ 0

Ts 7→
1

γa

[
λTs + εaσB |Ts |3Ts − λTa − 2εaσB |Ta|3Ta +Ra(Ta)

]
Ta 7→

1

γs

[
λTa − σB |Ts |3Ts − λTs + εaσB |Ta|3Ta +Rs(Ts)

]
are nondecreasing on [0,+∞)

=⇒ our system is cooperative

=⇒ [Smith] any initial condition (T
(0)
a ,T

(0)
s ) converges to an equilibrium.
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Case λ = 0 and Ra = 0

Equilibrium points are solutions ofεaσBT 4
s − 2εaσBT 4

a = 0,

−σBT 4
s + εaσBT 4

a +Rs(Ts) = 0

that is equivalent to solve

σB(1− εa
2

)T 4
s = qβs(Ts)

=⇒ one, two or three possible equilibria

qβs,−

qβs,+

T 7→σB(1− εa
2 )T4

T∗s,1

qβs

qβs,−

qβs,+

T 7→σB(1− εa
2 )T4

T∗s,2T∗s,1

qβs

qβs,−

qβs,+

T 7→σB(1− εa
2 )T4

T∗s,1T
∗
s,2T
∗
s,3

qβs

depending on parameters σB , εa, q.
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Nature of the equilibrium points (λ = 0, Ra = 0)

One equilibrium : (T ∗a,1,T
∗
s,1)

asymptotically stable

Ta

Ts

T∗s,1

C2

C1

Three equilibria : (T ∗a,1,T
∗
s,1),

(T ∗a,3,T
∗
s,3) asymptotically

exponentially stable, (T ∗a,2,T
∗
s,2)

unstable

Ta

Ts C1

P
eq
1

P
eq
2

P
eq
3 C2

Ta,threshol

Ts,threshold
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Case λ > 0 and Ra = 0

Equilibrium points are solutions of−λ(Ta − Ts) + εaσB |Ts |3Ts − 2εaσB |Ta|3Ta = 0,

−λ(Ts − Ta)− σB |Ts |3Ts + εaσB |Ta|3Ta + qβ(Ts) = 0.

Lemma

I There exists at least one warm and one cold equilibrium.

I There exists at most five equilibria.

I Fixed λ > 0 and εa ∈ (0, εa,0) (with εa,0 > 1.99), there exist at
most three equilibrium points.

I Any warm (resp. a cold) equilibrium is asymptotically exponentially
stable.
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Dependence of equilibria on εa

Proposition

Fixed λ ≥ 0, let (T
eq,ε∗a
a ,T

eq,ε∗a
s ) be an asymptotically exponentially

stable warm [resp. cold] equilibrium point with εa = ε∗a .

Then, there exists a unique asymptotically exponentially stable warm
[resp. cold] equilibrium (T eq,εa

a ,T eq,εa
s ) for εa close to ε∗a and the

following monotonicity property holds :

I εa 7→ T eq,εa
s is increasing : the surface temperature of the

equilibrium increases as εa increases ;

I εa 7→ T eq,εa
a is increasing if ε∗a ∈ (1, 2) : the atmosphere

temperature of the equilibrium increases as εa increases.
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Dependence of equilibria on εa and λ

Proposition

Fixed εa ∈ (0, 2), let (T eq,λ∗

a ,T eq,λ∗

s ) be an asymptotically exponentially
stable warm [resp. cold] equilibrium with λ = λ∗ ≥ 0.

Then, there exists a unique asymptotically exponentially stable
equilibrium point (T eq,λ

a ,T eq,λ
s ) for λ close to λ∗ and the following

monotonicity properties are satisfied :

I λ 7→ T eq,λ
s is decreasing : the surface temperature of the equilibrium

decreases as λ increases ;

I λ 7→ T eq,λ
a is

increasing if εa ∈ (0, 1),
decreasing if εa ∈ (1, 2).

Hence, the atmosphere temperature of an equilibrium is monotone
with respect to λ, and monotonicity depends on εa.
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Future work directions

I Inverse problems for parameter reconstruction (εa, λ, q)

I Analysis of the PDE system

I Extension to a variable solar radiation Q(t, x) = r(t)q(x),
with r positive and periodic - allowing for seasonal cycle - and
q the latitudinal-dependent insolation function

I Extension to a space-dependent absorptivity εa(x)
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Happy Birthday Piero !
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