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Why should we care about uniqueness ?

ut + f (u)x = 0, u(0, x) = ū(x)

Glimm approximations

front tracking approximations

vanishing viscosity approximations

all converge to the same trajectory of a Lipschitz semigroup u(t) = St ū.

It is entirely clear which one is the right solution.

Proving a uniqueness result is only a matter of coming up with a good
definition, which characterizes the semigroup trajectories.
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Why is uniqueness important ?

ut + f (u)x = 0, u(0, x) = ū(x)

Approximate solutions can also be constructed by

(i) relaxation approximations

(ii) semidiscrete schemes

(iii) periodic mollifications

(iv) diffusion approximations (possibly degenerate parabolic)

(v) Backward Euler approximations

(vi) fully discrete numerical schemes (Lax-Friedrichs, Godunov, . . .)

Question. Let (un)n≥1 be a sequence of approximate solutions taking
values in the domain of the semigroup: un(t, ·) ∈ D.
Does it converge to the semigroup trajectory: un(t)→ St ū ?
What is the convergence rate ?
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An error estimate

Theorem. Let S : D × [0,∞[ 7→ D be a Lipschitz semigroup satisfying

‖Stu − Ssv‖ ≤ L · ‖u − v‖+ L′ · |t − s|

Then, for every Lipschitz continuous map w : [0,T ] 7→ D one has

∥∥w(T )− S
T

w(0)
∥∥ ≤ L ·

∫ T

0

{
lim inf
h→0+

∥∥w(t + h)− Shw(t)
∥∥

h

}
dt

= L ·
∫ T

0

[instantaneous error rate at time t] dt

T

w(0)

w(t)

w(t+h)

w(0)S

w(T)

S
h
w(t)

S w(t)

S
T−t−h

T−t

w(t+h)
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Characterization of semigroup trajectories

Question: if u = u(t, x) is a weak solution of

ut + f (u)x = 0 u(0, x) = ū(x)

what additional properties guarantee that u(t, ·) = St ū ?

NOTE: throughout the following, w.l.o.g. we assume that all wave speeds satisfy

|λ| < 1

This can always be achieved by a time rescaling: t′ = ct.
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1. Comparison with solutions to a Riemann problem

Fix (τ, ξ). Define U] = U]
(τ,ξ) as the solution of the Riemann problem

wt + f (w)x = 0, w(τ, x) =

{
u+ .

= u(τ, ξ+) if x > ξ
u−

.
= u(τ, ξ−) if x < ξ

Then we expect

lim
h→0+

1

h

∫ ξ+h

ξ−h

∣∣∣∣∣u(τ + h, x)− U]
(τ,ξ)(τ + h, x)

∣∣∣∣∣ dx = 0 (E 1)

ξ

u −

u+

t

xξ
τ

u(  , x)τ

x
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2. Comparison with solutions to a linear hyperbolic problem

Fix (τ, ξ). Define U[ = U[
(τ,ξ) as the solution of the linear Cauchy problem

wt + Ãwx = 0 w(τ, x) = u(τ, x)

with “frozen” coefficients: Ã
.

= A
(
u(τ, ξ)

)

a b  ξ

τ

τ + h
I
h

Then, choosing ξ ∈ ]a, b[ , for any h > 0 we expect

1

h

∫ b−h

a+h

∣∣∣∣∣u(τ + h, x)−U[(τ + h, x)

∣∣∣∣∣ dx = O(1) ·

(
Tot.Var. {u(τ, ·); ]a, b[ }

)2

(E2)

≈ 1

h

∫ τ+h

τ

[total amount of waves]× [error in the speed] dt
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Theorem (A.B., Arch. Rational Mech. Anal., 1995)

Let u : [0,T ] 7→ D be Lipschitz continuous w.r.t. the L1 distance.
Then u is a weak solution to the system of conservation laws

ut + f (u)x = 0

obtained as limit of front tracking approximations if and only if the estimates
(E1)-(E2) are satisfied for a.e. τ ∈ [0,T ].

∥∥u(T )− S
T

u(0)
∥∥ ≤ L ·

∫ T

0

{
lim inf
h→0+

∥∥u(τ + h)− Shu(τ)
∥∥

h

}
dτ

(E1) + (E2) =⇒ lim
h→0+

‖u(τ + h)− Shu(τ)‖L1

h
= 0

Hence u(t) = Stu(0)

x x x
τ

+ hτ

u(  ,x)τ

i−1 i
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Uniqueness of weak solutions

ut + f (u)x = 0 u(0, x) = ū(x)

introduce a suitable set of admissibility + regularity assumptions

show that these assumptions imply

lim inf
h→0+

‖u(τ + h)− Shu(τ)‖L1

h
= 0 for a.e. τ

=⇒ u(t) = St ū for all t ≥ 0
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Points of approximate jump

We say that u = u(t, x) has an approximate jump at the point (τ, ξ) ∈ R2 if
there exists vectors u+ 6= u− and a speed λ such that, setting

U(t, x)
.

=

{
u− if x < ξ + λ(t − τ)

u+ if x > ξ + λ(t − τ)

one has: lim
r→0+

1

r2

∫ r

−r

∫ r

−r

∣∣∣u(τ + t, ξ + x)− U(t, x)
∣∣∣ dxdt = 0 (1)

Moreover, we say that u is approximately continuous at the point (τ, ξ) if (1)
holds with u+ = u− (and λ arbitrary).

NOTE: the above definitions depend only on the L1 equivalence class of u

λ
.

x = 

x

t
−

u

+

uτ

ξ
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The Liu admissibility condition for hyperbolic systems
(T. P. Liu, J. Math. Anal. Appl. 1976)

u

u

+
= Su (σ)

*
i

u
1

_

u
2

i

= S (s)

Given a left state u−, let s 7→ Si (s) be the curve of right states that can be
connected to u− by a shock of the i-th family.

Call λi (s) the Rankine-Hugoniot speed of these shocks

A shock of the i-th family, connecting the states u− and u+ = Si (σ) is
Liu-admissible if

λi (s) ≥ λi (σ) for all s ∈ [0, σ]
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The Liu admissibility condition selects shocks which can be obtained as
limits of vanishing viscosity approximations

S. Bianchini, On the Riemann problem for non-conservative hyperbolic systems, Arch.
Rational Mech. Anal. 166 (2003), 1-26.
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A set of assumptions

ut + f (u)x = 0 u(0, x) = ū(x)

(A1) (Conservation Equations)

u : [0,T ] 7→ D is continuous w.r.t. the L1 distance.

The initial condition u(0, x) = ū(x) holds.

Moreover, u is a weak solution:∫ ∫ {
uϕt + f (u)ϕx

}
dxdt = 0 for all ϕ ∈ C1c

(
]0,T [×R

)
=⇒ the map t 7→ u(t, ·) is Lipschitz continuous from [0,T ] into L1(R;Rn).

(A2) (Admissibility Conditions) u satisfies the Liu admissibility conditions at
each point (τ, ξ) of approximate jump.
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(A3) (Tame Variation) For some constant C the following holds. For every
open interval ]a, b[ and every t, h > 0 one has

Tot.Var.
{

u(t + h, ·) ; ]a + h , b − h[
}
≤ C · Tot.Var.

{
u(t, ·) ; ]a, b[

}

(A4) (Tame Oscillation) For some constant C the following holds. For every
point x ∈ R and every t, h > 0 one has∣∣u(t + h, x)− u(t, x)

∣∣ ≤ C · Tot.Var.
{

u(t, ·) ; [x − h, x + h]
}

(A5) (Bounded Variation along space-like curves) There exists δ > 0 such
that, for every space-like curve

{
t = τ(x)

}
with |dτ/dx | ≤ δ a.e., the function

x 7→ u
(
τ(x), x

)
has locally bounded variation.

γ

t

t+h

xa b
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need to rule out:

u(t  )

x

u

u(t  )
1

u(t  )2

3

t
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Uniqueness results

ut + f (u)x = 0 u(0, x) = ū(x)

Theorem. Let the system be strictly hyperbolic, with each characteristic field
either linearly degenerate or genuinely nonlinear.

Every weak solution u = u(t, x) obtained as limit of front tracking
approximations satisfies all conditions (A1)–(A5).

If u : [0,T ] 7→ D satisfies (A1),(A2) and any one of the three regularity
conditions (A3), (A4), (A5) then u(t) = St ū for t ≥ 0.

Tame Variation: (A.B. & P. LeFloch, Arch. Rational Mech. Anal. 1997)

Tame Oscillation: (A.B. & P. Goatin, J. Differential Equations, 1999)

Bounded Variation along space-like curves: (A.B. & M. Lewicka, Discr. Cont.
Dyn. Syst. 2000)
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Do we need any regularity assumption ???

For a class of 2× 2 systems, without any of the regularity assumptions
(A3)–(A5), uniqueness is proved in

G.Chen, S.Krupa, and A.Vasseur, Uniqueness and weak-BV stability for 2x2
conservation laws, Arch. Rational Mech. Anal. 246 (2022), 299–332.

(Indeed, the assumption (A5) on bounded variation along space-like curves is always

satisfied)
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A direct approach, for general n × n systems

t

τ
xa bξ

Assume:

Tot.Var.
{

u(τ, ·) ; ]a, b[
}
≤ ε

the time τ is a Lebesgue point of the function

V (t) = Tot.Var.
{

u(t, ·) ;
]
a + (t − τ) , b − (t − τ)

[}
Then we again have

lim sup
h→0+

1

h

∫ b−h

a+h

∣∣∣u(τ + h, x)− U[(τ + h, x)
∣∣∣dx = O(1) · ε2
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Systems with a strictly convex entropy

ut + f (u)x = 0

Assume:

strictly hyperbolic n × n system

each characteristic field is either linearly degenerate or genuinely
nonlinear

there exists a strictly convex C2 entropy η with entropy flux q

η(v) ≥ η(u) +∇η(u) · (v − u) + c0|v − u|2

for all u, v ∈ Ω ⊂ Rn
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Lemma. For some constant C > 0 the following holds.
Let u = u(t, x) be any entropy weak solution. Then∫ b−(t−τ)

a+(t−τ)

∣∣u(t, x)− u(τ, x)
∣∣ dx ≤ C (t − τ) · Tot.Var.

{
u(τ, ·) ; ]a, b[

}
.

t

xa b
τ

NOTE: if the Tame Variation condition holds, then∫ b−(t−τ)

a+(t−τ)

∣∣u(t, x)− u(τ, x)
∣∣ dx

≤ C ′
∫ t

τ

Tot.Var.
{

u(s, ·) ;
]
a + (t − τ) , b − (t − τ)

[}
ds

≤ C (t − τ) · Tot.Var.
{

u(τ, ·) ; ]a, b[
}
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Proving uniqueness without regularity assumptions

ut + f (u)x = 0 (1)

Theorem (A.B., G.Guerra, 2023)

Let (1) be a strictly hyperbolic n × n system, where each characteristic field is
either genuinely nonlinear or linearly degenerate, and which admits a strictly
convex entropy η(·).

Then every entropy-weak solution u : [0,T ] 7→ D, taking values within the
domain of the semigroup, coincides with a semigroup trajectory.
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Proof. 1. By the structure theorem for BV functions, there is a null set of times
N ⊂ [0,T ] such that every (τ, ξ) ∈ [0,T ]× R, with τ /∈ N , is either a point of
approximate continuity, or a point of approximate jump of the function u.

2. For every couple of rational points ξ, ζ ∈ Q, the scalar function

W ξ,ζ(t)
.

=

{
Tot.Var.

{
u(t) ; ]ξ + t , ζ − t[

}
if ξ + t < ζ − t ,

0 otherwise,

is bounded and measurable (indeed, it is lower semicontinuous)

=⇒ a.e. t ∈ [0,T ] is a Lebesgue point.

Denote by N ′ ⊂ [0,T ] the null set of all times t which are NOT Lebesgue for at
least one of the countably many functions W ξ,ζ .

ξ ζ x

t
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The theorem is proved by showing that

For every τ ∈ [0,T ] \ (N ∪N ′) and ε > 0, one has

lim sup
h→0+

1

h

∥∥∥u(τ + h)− Shu(τ)
∥∥∥

L1
≤ ε

y
τ

yyy ’

k−1 k
y
k−1 kk

x

k

" "

J (t)
t

Choose points y0 < y1 < · · · < yN , with N ≤ Cε−1, so that

Tot.Var.
{

u(τ, ·) ; ]yk−1, yk [
}
≤ ε for all k

Choose additional points y ′k < yk < y ′′k such that

y ′k + τ ∈ Q, y ′′k − τ ∈ Q

Tot.Var.
{

u(τ, ·) ; ]y ′k , yk [
}
< ε2, Tot.Var.

{
u(τ, ·) ; ]yk , y

′′
k [
}
< ε2
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y
τ

yyy ’

k−1 k
y
k−1 kk

x

k

" "

J (t)
t

To estimate
∥∥∥u(t)− St−τu(τ)

∥∥∥
L1

, three types of integrals need to be considered:

(I) For each y ∈
{

y0, y
′′
0 , y

′
1, y1, y

′′
1 , . . . , y

′
N , yN

}
, the integral of∣∣u(t, ·)− U](t, ·)

∣∣ over the interval

Jy (t)
.

=
[
y − (t − τ) , y + (t − τ)

]
is o(t − τ)

(II) The integral of
∣∣u(t, x)− U[(t, x)

∣∣ over the interval

Jk(t) =
[
y ′′k−1+(t−τ) , y ′k−(t−τ)

]
is O(1) · ε2(t − τ) + o(t − τ)

(III) The integral of
∣∣u(t, x)− u(τ, x)

∣∣ over the intervals{
J ′k(t) =

[
y ′k + (t − τ) , yk − (t − τ)

]
J ′′k (t) =

[
yk + (t − τ) , y ′′k − (t − τ)

] is O(1) · ε2(t − τ)
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Since the same estimates hold for semigroup trajectories, and N ≤ Cε−1

we conclude

lim sup
h→0+

1

h

∥∥∥u(τ + h)− Shu(τ)
∥∥∥

L1
= O(1) · ε for a.e. τ ∈ [0,T ]

=⇒ u(t, ·) = St ū for all t ∈ [0,T ]
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Convergence of approximate solutions

ut + f (u)x = 0 u(0, x) = ū(x)

A general class of ε-approximate solutions

Fix a time step ε = ∆t

Two properties are assumed:

(AL) Approximate Lipschitz continuity:

‖u(τ, ·)− u(τ ′, ·)‖L1 ≤ M |τ − τ ′| τ, τ ′ ∈ εN .
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(Pε) Approximate conservation law and approximate entropy inequality:

For every strip [τ, τ ′]× R with τ, τ ′ ∈ εN , and every test function
ϕ ∈ C1c (R2), there holds∣∣∣∣∣
∫

u(τ, x)ϕ(τ, x) dx −
∫

u(τ ′, x)ϕ(τ, x) dx +

∫ τ ′

τ

∫ {
uϕt + f (u)ϕx

}
dx dt

∣∣∣∣∣
≤ ε‖ϕ‖W 1,∞ · (τ ′ − τ)

Moreover, given a uniformly convex entropy η with flux q, assuming ϕ ≥ 0,
one has the entropy inequality∫
η(u(τ, x))ϕ(τ, x) dx −

∫
η(u(τ ′, x))ϕ(τ ′, x) dx +

∫ τ ′

τ

∫ {
η(u)ϕt + q(u)ϕx

}
dxdt

≥ − ε‖ϕ‖W 1,∞ · (τ ′ − τ)

A.B., M.T.Chiri, W.Shen, A posteriori error estimates for numerical solutions to
hyperbolic conservation laws. Arch. Rational Mech. Anal. 241 (2021), 357–402.
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Uniform convergence rate

ut + f (u)x = 0 u(0, x) = ū(x) (CP)

Corollary (A.B., G.Guerra, 2023).

Consider an n × n strictly hyperbolic system, endowed with a strictly
convex entropy which selects the Liu admissible shocks, and which
generates a Lipschitz semigroup S : D × R+ 7→ D

Then, given T > 0 and an interval [−R,R], there exists a function
ε 7→ %(ε) with the following properties.

(i) % is continuous, nondecreasing, with %(0) = 0.

(ii) If t 7→ uε(t) ∈ D is an ε-approximate solution to (CP) supported on
[−R,R], then∥∥uε(t)− St ū

∥∥
L1 ≤ %(ε) for all t ∈ [0,T ]
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compactness + uniqueness =⇒ uniform convergence rate

Proof. If the conclusion fails, there exists a sequence of εn-approximate solutions
(un)n≥1, with εn ↓ 0 but

sup
t∈[0,T ]

∥∥un(t)− St ū
∥∥

L1 ≥ δ0 > 0 for all n ≥ 1.

By compactness, taking a subsequence we have the L1-convergence un(t)→ u(t)
for all t ∈ [0,T ].

But then the limit function u would be an entropy solution distinct from St ū.
This contradicts the uniqueness theorem.
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Rate of convergence

ut + f (u)x = 0, u(0, x) = ū(x)

In the setting of the Corollary, we have∥∥uε(t)− St ū
∥∥

L1 ≤ %(ε) for all t ∈ [0,T ]

The function %(ε) is a universal rate of convergence of ε-approximate
solutions, taking values in the domain of the semigroup

Problem 1.

Give upper and lower estimates on the function %(·).

Guess:
√
ε | ln ε| ≤ %(ε) ≤ ???
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Uniqueness for general n × n hyperbolic systems
(no genuine nonlinearity, no entropy)

Theorem (A.B., C. De Lellis, 2023)

Consider a strictly hyperbolic n × n system of conservation laws

ut + f (u)x = 0

Let S : D × R+ 7→ D be the semigroup of vanishing viscosity solutions.

Then every weak solution u : [0,T ] 7→ D,

whose shocks satisfy the Liu admissibility conditions,

coincides with a semigroup trajectory.

Theorem (S.Bianchini, A.B., Annals of Math. 2005)

Every trajectory of the semigroup generated by vanishing viscosity approximations
is a weak solution satisfying the Liu admissibility conditions.
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Proof. 1. Observe that u = u(t, x) is a BV functions of two variables.

Let N ⊂ [0,T ] be a null set of times such that, for every τ /∈ N and ξ ∈ R, the
point (τ, ξ) is either a point of approximate continuity, or a point of approximate
jump of u

2. The set of points of approximate jump is countably rectifiable.
Indeed, there exists countably many Lipschitz functions (φk)k≥1 such that

all points of approximate jump are contained in the set{
(t, x) ; x = φk(t) for some k

}
∣∣φk(t)− φk(s)

∣∣ ≤ |t − s| for all s, t ∈ [0, 1], k ≥ 1

x x

tt
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3. Consider the countable set of good Lipschitz functions {ψj ; j ≥ 1} containing
all functions φk together with the functions ξ + t, ξ − t, for all ξ ∈ Q.

For every couple of integers i , j ≥ 1, the scalar function

Wij(t)
.

=

{
Tot.Var.

{
u(t) ; ]ψi (t) , ψj(t)[

}
if ψi (t) < ψj(t)

0 otherwise

is bounded and measurable (indeed, it is lower semicontinuous)

=⇒ a.e. t ∈ [0,T ] is a Lebesgue point.

Denote by N ′ ⊂ [0,T ] the null set of all times t which are NOT Lebesgue for at
least one of the countably many functions Wij .

Assuming τ /∈ N ∪N ′, we claim

lim sup
h→0+

1

h

∥∥∥u(τ + h)− Shu(τ)
∥∥∥

L1
= 0
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k−1 kk
’’

k−1
yy y = y

τ
x

k
t

J (t)
φ

Given ε > 0, by induction on k , we construct points

y0 ≤ y ′0 < y1 ≤ y ′1 < y2 ≤ y ′2 < · · · < yN ≤ y ′N

with the following properties.

(i) Either yk = y ′k = φ`(τ) for some j , or else yk < y ′k and

y ′k + τ ∈ Q, yk − τ ∈ Q

(ii) Tot.Var.
{

u(τ, ·) ; ]yk−1, y
′
k [
}
< 2ε
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k−1 kk
’’

k−1
yy y = y

τ
x

k
t

J (t)
φ

Claim: lim sup
h→0+

1

h

∥∥∥u(τ + h)− Shu(τ)
∥∥∥

L1
= O(1) · ε

Two types of integrals need to be estimated:

(I) For each k such that yk = y ′k the integral of
∣∣u(t, ·)− U](t, ·)

∣∣ over the
interval [

yk − (t − τ) , yk + (t − τ)
]

is o(t − τ)

(II) The integral of
∣∣u(t, x)− U[(t, x)

∣∣ over the intervals

Jk(t) =
[
yk−1+(t−τ) , y ′k−(t−τ)

]
is O(1) · ε2(t − τ) + o(t − τ)

This proves the claim, because N ≤ 2Tot.Var.{u(τ)}/ε.
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Universal convergence rate for general n × n systems ?

To prove the existence of a universal rate of convergence for approximate
solutions to general n × n systems (without any entropy), we would need to
quantify

“by how much the Liu conditions are not satisfied”

This leads to

Question 2.
Does it make sense to say that, in an approximate solution, the Liu condition is
satisfied “ε-approximately” ?
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Let u = u(t, x) be a (possibly smooth) approximate solution to

ut + f (u)x = 0 , u(0, x) = ū(x)

ε-approximate entropy condition:

Given a convex entropy η with flux q, for every interval [τ, τ ′]
and every test function ϕ ∈ C1c (R2) with ϕ ≥ 0, one has∫
η(u(τ, x))ϕ(τ, x) dx−

∫
η(u(τ ′, x))ϕ(τ ′, x) dx +

∫ τ ′

τ

∫ {
η(u)ϕt +q(u)ϕx

}
dxdt

≥ − ε‖ϕ‖W 1,∞ · (τ ′ − τ)

ε-approximate Liu condition:

? ? ?

NOTE: as ε→ 0, in the limit this should reduce to the Liu condition.
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Happy birthday Piero !
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