Poiseuille Time Periodic Flows in Space-Periodic Pipes.

Hugo Beirão da Veiga

Department of Mathematics-Pisa University (Italy)
Lisbon Academy of Sciences-Portugal
In collaboration with
Jiaqi Yang
Northwestern Polytechnical Univ., Xi'an
International Conference on Partial Differential Equations and Applications In honor of the the 70th birthday of

Pierangelo Marcati
L’Aquila, June 19-24, 2023.

The Problem.

A supply of water, variable according to a daily time table, is provided.

The T-time periodic total flux $g(t)$ is well known, by construction.
But $g(x, 0, t)$ is chaotic and unknown (and without practical interest).
Atlang distances the flowtends to forget the uointhinise dintuib...tion of the
velocity at the entrance and merely remembers the total flux, tending to
become pointwisely T-periodic.

The Problem.

A supply of water, variable according to a daily time table, is provided.

The T-time periodic total flux $g(t)$ is well known, by construction. But $g(x, 0, t)$ is chaotic and unknown (and without practical interest).

At long distances the flow tends to forget the pointwise distribution of the
velocity at the entrance and merely remembers the total flux, tending to
become pointwisely T-periodic.

The Problem.

A supply of water, variable according to a daily time table, is provided.

The T-time periodic total flux $g(t)$ is well known, by construction. But $g(x, 0, t)$ is chaotic and unknown (and without practical interest).

At long distances the flow tends to forget the pointwise distribution of the velocity at the entrance and merely remembers the total flux, tending to become pointwisely T-periodic.

So we face the problem of the existence of fully developed flows (Poiseuille flows) in infinite tubes $z \in(-\infty,+\infty)$, in correspondence to given T-periodic real functions $g(t)$.
For a long time solutions were known merely in particular cases as the Womersley flow.

So we face the problem of the existence of fully developed flows (Poiseuille flows) in infinite tubes $z \in(-\infty,+\infty)$, in correspondence to given T-periodic real functions $g(t)$.
For a long time solutions were known merely in particular cases as the Womersley flow.

In a 2008 contribution G.P. Galdi wrote that the problem of the flow of a viscous liquid in an unbounded piping system, under a given time-periodic flow-rate, has been "discovered" only in 2005, thanks to H.B.V. reference [3], Arch. Ration. Mech. Anal., 2005 (denoted in the sequel simply by ARMA).

So we face the problem of the existence of fully developed flows (Poiseuille flows) in infinite tubes $z \in(-\infty,+\infty)$, in correspondence to given T-periodic real functions $g(t)$.
For a long time solutions were known merely in particular cases as the Womersley flow.

In a 2008 contribution G.P. Galdi wrote that the problem of the flow of a viscous liquid in an unbounded piping system, under a given time-periodic flow-rate, has been "discovered" only in 2005, thanks to H.B.V. reference [3], Arch. Ration. Mech. Anal., 2005 (denoted in the sequel simply by ARMA).

According to Galdi and Robertson, [14], there are two ways of determining a Poiseuille periodic flow, namely, by prescribing either the axial pressure gradient Γ or the flow rate $g(t)=\int_{\Sigma_{z}} v_{z}(x, z, t) d x$. In the first event, the problem reduces to solving a heat equation with the prescribed time-periodic forcing term Γ, and so its resolution becomes a simple exercise.

If, conversely, we prescribe $g(t)$, then the problem becomes complicated, a fact that was emphasized and detailed in the 2005 ARMA's paper of H.B.V. who showed that the problem of determining \boldsymbol{v} and Γ can be reduced to solving a non-standard parabolic equation involving a non-local term of the solution.

If, conversely, we prescribe $g(t)$, then the problem becomes complicated, a fact that was emphasized and detailed in the 2005 ARMA's paper of H.B.V. who showed that the problem of determining v and Γ can be reduced to solving a non-standard parabolic equation involving a non-local term of the solution.
Moreover it is shown that this equation has one and only one solution, and so the problem is completely solved.
Furthermore, very interesting applications of the above result are given, in particular the resolution of the so-called "Leray's problem".

If, conversely, we prescribe $g(t)$, then the problem becomes complicated, a fact that was emphasized and detailed in the 2005 ARMA's paper of H.B.V. who showed that the problem of determining \boldsymbol{v} and Γ can be reduced to solving a non-standard parabolic equation involving a non-local term of the solution.
Moreover it is shown that this equation has one and only one solution, and so the problem is completely solved.
Furthermore, very interesting applications of the above result are given, in particular the resolution of the so-called "Leray's problem".

Actually, our proofs have not to do with the typical proofs of existence of time periodic solutions by appealing for fixed points of a map from a variable initial data to the value of the corresponding solution at a time T.

If, conversely, we prescribe $g(t)$, then the problem becomes complicated, a fact that was emphasized and detailed in the 2005 ARMA's paper of H.B.V. who showed that the problem of determining \boldsymbol{v} and Γ can be reduced to solving a non-standard parabolic equation involving a non-local term of the solution.
Moreover it is shown that this equation has one and only one solution, and so the problem is completely solved.
Furthermore, very interesting applications of the above result are given, in particular the resolution of the so-called "Leray's problem".

Actually, our proofs have not to do with the typical proofs of existence of time periodic solutions by appealing for fixed points of a map from a variable initial data to the value of the corresponding solution at a time T.

It is worth noting that Galdi and Robertson simplified the proof developed in the ARMA's paper by introducing a significant relationship between flow rate and axial pressure gradient, which depends only on the cross-section.

A New Contribution

Let's pass to the extension of the results to pipes of varying cross section. As emphasized by Galdi and Robertson, generalized Poiseuille flows are also important in the study of motions in "bent" pipes or in pipes of a varying cross-section, which appears in many problems of real life.

In collaboration with Jiaqi Yang (Northwestern Polytechnical University, Xi'an, China), we have extended the above results to space periodic pipes by nroving the existence of fullv-develnned solutions that simultanenusly exh ibit The general architecture of our proof is rather complex

A New Contribution

Let's pass to the extension of the results to pipes of varying cross section.
As emphasized by Galdi and Robertson, generalized Poiseuille flows are also important in the study of motions in "bent" pipes or in pipes of a varying cross-section, which appears in many problems of real life.

In collaboration with Jiaqi Yang (Northwestern Polytechnical University, Xi'an, China), we have extended the above results to space periodic pipes by proving the existence of fully-developed solutions that simultaneously exhibit temporal and spatial periodicity, J. Math. Physics, in the press.

A New Contribution

Let's pass to the extension of the results to pipes of varying cross section.
As emphasized by Galdi and Robertson, generalized Poiseuille flows are also important in the study of motions in "bent" pipes or in pipes of a varying cross-section, which appears in many problems of real life.

In collaboration with Jiaqi Yang (Northwestern Polytechnical University, Xi'an, China), we have extended the above results to space periodic pipes by proving the existence of fully-developed solutions that simultaneously exhibit temporal and spatial periodicity, J. Math. Physics, in the press.

The general architecture of our proof is rather complex. So we present just a sketch of the general structure of the proof.

Notation and Main Results.

$\Lambda=(n+1)$-dimensional infinite pipe, L-periodic in the $z=x_{n+1}$ direction.

$\Sigma_{z}=$ Orthogonal cross section at the level z.
is the reference's pipe element (cell) normalized by $\left|\Lambda_{0, L}\right|=1 . S_{0, L}=$ Lateral
boundary of $\Lambda_{0 . L}$
Norms, scalar products, and other quantities of z-periodic functions in \wedge are defined in $\wedge_{0 . L}$

Notation and Main Results.

$\Lambda=(n+1)$-dimensional infinite pipe, L-periodic in the $z=x_{n+1}$ direction.

$$
x=\left(x_{1}, x_{2}, \cdots, x_{n}\right), \quad z=x_{n+1} .
$$

$\Sigma_{z}=$ Orthogonal cross section at the level z.

$$
\begin{equation*}
\Lambda_{0, L}=\{(x, z) \in \Lambda: z \in(0, L)\}, \tag{0.1}
\end{equation*}
$$

is the reference's pipe element (cell) normalized by $\left|\Lambda_{0, L}\right|=1 . S_{0, L}=$ Lateral boundary of $\Lambda_{0, L}$.

Notation and Main Results.

$\Lambda=(n+1)$-dimensional infinite pipe, L-periodic in the $z=x_{n+1}$ direction.

$$
x=\left(x_{1}, x_{2}, \cdots, x_{n}\right), \quad z=x_{n+1} .
$$

$\Sigma_{z}=$ Orthogonal cross section at the level z.

$$
\begin{equation*}
\Lambda_{0, L}=\{(x, z) \in \Lambda: z \in(0, L)\}, \tag{0.1}
\end{equation*}
$$

is the reference's pipe element (cell) normalized by $\left|\Lambda_{0, L}\right|=1 . S_{0, L}=$ Lateral boundary of $\Lambda_{0, L}$.
Norms, scalar products, and other quantities of z-periodic functions in Λ are defined in $\Lambda_{0, L}$.

We look for solutions $\boldsymbol{v}(x, z, t)$ with time-periodic total flux

$$
\int_{\Sigma_{z}} v_{z}(x, z, t) d x=g(t)
$$

which should be simultaneously T-periodic with respect to time and L-periodic with respect to z. For convenience $T=2 \pi$.

We look for solutions $\boldsymbol{v}(x, z, t)$ with time-periodic total flux

$$
\int_{\Sigma_{z}} v_{z}(x, z, t) d x=g(t)
$$

which should be simultaneously T-periodic with respect to time and L-periodic with respect to z. For convenience $T=2 \pi$.

Notation:
Lower symbols \# means T-time periodicity. Lower symbols $*$ means L-space-periodicity.

We look for solutions $\boldsymbol{v}(x, z, t)$ with time-periodic total flux

$$
\int_{\Sigma_{z}} v_{z}(x, z, t) d x=g(t)
$$

which should be simultaneously T-periodic with respect to time and L-periodic with respect to z. For convenience $T=2 \pi$.

Notation:

Lower symbols \# means T-time periodicity. Lower symbols * means L-space-periodicity.

$$
(\phi, \psi)=: \int_{\Lambda_{0, L}} \phi(\underline{x}) \cdot \psi(\underline{x}) d \underline{x} ; \quad\|\phi\|^{2}=(\phi, \phi) ; \quad((\phi, \psi))=(\nabla \phi, \nabla \phi) .
$$

We look for solutions $\boldsymbol{v}(x, z, t)$ with time-periodic total flux

$$
\int_{\Sigma_{z}} v_{z}(x, z, t) d x=g(t)
$$

which should be simultaneously T-periodic with respect to time and L-periodic with respect to z. For convenience $T=2 \pi$.

Notation:

Lower symbols \# means T-time periodicity. Lower symbols * means L-space-periodicity.

$$
\begin{gathered}
(\phi, \psi)=: \int_{\Lambda_{0, L}} \phi(\underline{x}) \cdot \psi(\underline{x}) d \underline{x} ; \quad\|\phi\|^{2}=(\phi, \phi) ; \quad((\phi, \psi))=(\nabla \phi, \nabla \phi) . \\
\mathbb{H}(\Lambda)=\left\{\boldsymbol{u} \in L_{*}^{2}(\Lambda): \nabla \cdot \boldsymbol{u}=0, \quad(\boldsymbol{u} \cdot \mathbf{n}) \mid s=0\right\}
\end{gathered}
$$

We look for solutions $\boldsymbol{v}(x, z, t)$ with time-periodic total flux

$$
\int_{\Sigma_{z}} v_{z}(x, z, t) d x=g(t)
$$

which should be simultaneously T-periodic with respect to time and L-periodic with respect to z. For convenience $T=2 \pi$.

Notation:

Lower symbols \# means T-time periodicity. Lower symbols * means L-space-periodicity.

$$
\begin{gathered}
(\phi, \psi)=: \int_{\Lambda_{0, L}} \phi(\underline{x}) \cdot \psi(\underline{x}) d \underline{x} ; \quad\|\phi\|^{2}=(\phi, \phi) ; \quad((\phi, \psi))=(\nabla \phi, \nabla \phi) . \\
\mathbb{H}(\Lambda)=\left\{\boldsymbol{u} \in L_{*}^{2}(\Lambda): \nabla \cdot \boldsymbol{u}=0, \quad(\boldsymbol{u} \cdot \mathbf{n}) \mid s=0\right\}, \\
\mathbb{V}(\Lambda)=\left\{\boldsymbol{u} \in H_{0, *}^{1}(\Lambda): \nabla \cdot \boldsymbol{u}=0\right\}, \quad\|\cdot\|_{\mathbb{V}}=\|\cdot\|_{1} .
\end{gathered}
$$

We look for solutions $\boldsymbol{v}(x, z, t)$ with time-periodic total flux

$$
\int_{\Sigma_{z}} v_{z}(x, z, t) d x=g(t)
$$

which should be simultaneously T-periodic with respect to time and L-periodic with respect to z. For convenience $T=2 \pi$.

Notation:

Lower symbols \# means T-time periodicity. Lower symbols * means L-space-periodicity.

$$
\begin{gathered}
(\phi, \psi)=: \int_{\Lambda_{0, L}} \phi(\underline{x}) \cdot \psi(\underline{x}) d \underline{x} ; \quad\|\phi\|^{2}=(\phi, \phi) ; \quad((\phi, \psi))=(\nabla \phi, \nabla \phi) . \\
\mathbb{H}(\Lambda)=\left\{\boldsymbol{u} \in L_{*}^{2}(\Lambda): \nabla \cdot \boldsymbol{u}=0,\left.\quad(\boldsymbol{u} \cdot \mathbf{n})\right|_{S}=0\right\} \\
\mathbb{V}(\Lambda)=\left\{\boldsymbol{u} \in H_{0, *}^{1}(\Lambda): \nabla \cdot \boldsymbol{u}=0\right\}, \quad\|\cdot\|_{\mathbb{V}}=\|\cdot\|_{1} \\
\mathbb{V}_{2}(\Lambda)=\mathbb{V}(\Lambda) \cap H^{2}(\Lambda)
\end{gathered}
$$

We look for solutions $\boldsymbol{v}(x, z, t)$ with time-periodic total flux

$$
\int_{\Sigma_{z}} v_{z}(x, z, t) d x=g(t)
$$

which should be simultaneously T-periodic with respect to time and L-periodic with respect to z. For convenience $T=2 \pi$.

Notation:

Lower symbols \# means T-time periodicity. Lower symbols * means L-space-periodicity.

$$
\begin{gathered}
(\phi, \psi)=: \int_{\Lambda_{0, L}} \phi(\underline{x}) \cdot \psi(\underline{x}) d \underline{x} ; \quad\|\phi\|^{2}=(\phi, \phi) ; \quad((\phi, \psi))=(\nabla \phi, \nabla \phi) . \\
\mathbb{H}(\Lambda)=\left\{\boldsymbol{u} \in L_{*}^{2}(\Lambda): \nabla \cdot \boldsymbol{u}=0, \quad(\boldsymbol{u} \cdot \mathbf{n}) \mid s=0\right\} \\
\mathbb{V}(\Lambda)=\left\{\boldsymbol{u} \in H_{0, *}^{1}(\Lambda): \nabla \cdot \boldsymbol{u}=0\right\}, \quad\|\cdot\|_{\mathbb{v}}=\|\cdot\|_{1} . \\
\mathbb{V}_{2}(\Lambda)=\mathbb{V}(\Lambda) \cap H^{2}(\Lambda) .
\end{gathered}
$$

One has (Helmholtz) $\quad L_{*}^{2}(\Lambda)=\mathbb{H}(\Lambda) \oplus \mathbb{H}^{\perp}(\Lambda), \quad \mathbb{P}^{*}: L_{*}^{2}(\Lambda) \rightarrow \mathbb{H}(\Lambda)$.

Theorem

Let a T-periodic function $g \in H_{\#}^{1}\left(\mathbb{R}_{t}\right)$ be given. There is a unique solution $\boldsymbol{v} \in L_{\#}^{2}\left(\mathbb{R}_{t} ; H_{0, *}^{1}(\Lambda)\right)$ of the double periodic evolution Stokes problem

$$
\begin{cases}\frac{\partial v}{\partial t}-\nu \Delta \boldsymbol{v}+\nabla p=0 & \text { in } \wedge \tag{0.2}\\ \nabla \cdot \boldsymbol{v}=0 & \text { in } \wedge, \\ \boldsymbol{v}=0 & \text { on } S, \\ \int_{\Sigma_{z}} v_{z} d \Sigma_{z}=g(t), & \end{cases}
$$

for which $\boldsymbol{v}^{\prime} \in L_{\#}^{2}\left(\mathbb{R}_{t} ; L_{*}^{2}(\Lambda)\right)$.
Furthermore $\left.\left.\boldsymbol{v} \in L_{\#}^{2}\left(\mathbb{R}_{t} ; H_{*}^{2}(\Lambda)\right)\right) \cap C_{\#}\left(\mathbb{R}_{t} ; H_{0, *}^{1}(\Lambda)\right)\right)$.
The result holds under suitable T-periodic external forces.

In the case of pipes with a fixed section Σ the solution of the evolution Stokes problem still solves the evolution Navier-Stokes problem. This situation is not true if the section depends on z.
a classical fixed point argument.

Theorem

There is a positive constant $c(v)$ such that the result in Theorem 1 holds for the Navier-Stokes equations if

In the case of pipes with a fixed section Σ the solution of the evolution Stokes problem still solves the evolution Navier-Stokes problem. This situation is not true if the section depends on z. However the proof still lies in the study of the Stokes problem. The extension to the Navier-Stokes equations is obtained by a classical fixed point argument.

In the case of pipes with a fixed section Σ the solution of the evolution Stokes problem still solves the evolution Navier-Stokes problem. This situation is not true if the section depends on z. However the proof still lies in the study of the Stokes problem. The extension to the Navier-Stokes equations is obtained by a classical fixed point argument.

Theorem

There is a positive constant $c(\nu)$ such that the result in Theorem 1 holds for the Navier-Stokes equations if

$$
\begin{equation*}
\|g\|_{H_{\#}^{1}\left(\mathbb{R}_{t}\right)}<\frac{1}{4 c^{2}(\nu)} . \tag{0.3}
\end{equation*}
$$

The Stokes problem.

The L-space-periodic stationary Stokes problem

$$
\begin{cases}-\Delta \mathbf{v}+\nabla p=\mathbf{f} & \text { in } \Lambda \tag{0.4}\\ \nabla \cdot \mathbf{v}=0 & \text { in } \Lambda, \\ \mathbf{v}=0 & \text { on } \partial \Lambda\end{cases}
$$

is written in a suitable abstract formulation

$$
\begin{equation*}
\mathcal{A}_{H} \mathbf{v}=\mathbf{f} \tag{0.5}
\end{equation*}
$$

where the Stokes operator

$$
\mathcal{A}_{H}: \mathbb{V}_{2}(\Lambda) \rightarrow \mathbb{H}
$$

is an isomorphism.

Proposition

Given $\mathbf{f} \in \mathbb{H}$ there is a unique solution $\boldsymbol{v} \in \mathbb{V}_{2}(\Lambda)$ of the L-space-periodic stationary Stokes problem (0.4) in its formulation (0.5).

Lemma

Pressure's Structure Result: If the double periodic evolution Stokes problem (0.2) is solvable, then necessarily

$$
\begin{equation*}
p(x, z, t)=-\psi(t) z+p_{0}(t)+\tilde{p}(x, z, t), \tag{1.1}
\end{equation*}
$$

where $p_{0}(t)$ and $\psi(t)$ are arbitrary functions, and $\tilde{p}(x, z, t)$ is a z-periodic function. Decomposition (1.1) is unique up to $p_{0}(t)$.

By appealing to (1.1) we replace the first equation (0.2) by

Lemma

Pressure's Structure Result: If the double periodic evolution Stokes problem (0.2) is solvable, then necessarily

$$
\begin{equation*}
p(x, z, t)=-\psi(t) z+p_{0}(t)+\tilde{p}(x, z, t), \tag{2.1}
\end{equation*}
$$

where $p_{0}(t)$ and $\psi(t)$ are arbitrary functions, and $\tilde{p}(x, z, t)$ is a z-periodic function. Decomposition (1.1) is unique up to $p_{0}(t)$.

By appealing to (1.1) we replace the first equation (0.2) by

$$
\begin{equation*}
\frac{\partial \boldsymbol{v}}{\partial t}-\nu \Delta \boldsymbol{v}+\nabla \tilde{p}=\psi(t) \mathbf{e}_{z} \quad \text { in } \Lambda, \tag{2.2}
\end{equation*}
$$

where $\mathbf{e}_{z}=\nabla z$ is the unit vector in the z-direction.

Lemma

Pressure's Structure Result: If the double periodic evolution Stokes problem (0.2) is solvable, then necessarily

$$
\begin{equation*}
p(x, z, t)=-\psi(t) z+p_{0}(t)+\tilde{p}(x, z, t), \tag{3.1}
\end{equation*}
$$

where $p_{0}(t)$ and $\psi(t)$ are arbitrary functions, and $\tilde{p}(x, z, t)$ is a z-periodic function. Decomposition (1.1) is unique up to $p_{0}(t)$.

By appealing to (1.1) we replace the first equation (0.2) by

$$
\begin{equation*}
\frac{\partial \boldsymbol{v}}{\partial t}-\nu \Delta \boldsymbol{v}+\nabla \tilde{p}=\psi(t) \mathbf{e}_{z} \quad \text { in } \Lambda \tag{3.2}
\end{equation*}
$$

where $\mathbf{e}_{z}=\nabla z$ is the unit vector in the z-direction. Next we eliminate the unknown $\psi(t)$ from equation (1.2):

$$
\left\{\begin{array}{l}
\frac{d v}{d t}+\nu \mathcal{A}_{H} \mathbf{v}-\nu\left(\mathcal{A}_{H} \mathbf{v}, \mathbf{e}\right) \mathbf{e}=\frac{L}{\left\|\mathbf{e}_{z}\right\|} g^{\prime}(t) \mathbf{e}, \tag{3.3}\\
\int_{\Sigma_{z}} v_{z} d \Sigma_{z}=g(t)
\end{array}\right.
$$

where $\mathbf{e}=\frac{\mathbb{P e}_{z}}{\left\|\mathbb{P e}_{z}\right\|}$. The elliptic part vanishes for $\mathcal{A}_{H} \mathbf{v}=\mathbf{e}$, and coerciveness fails (a force parallel to z is the strongest one against space-periodic flows).

The following "negative" result will be crucial.

Proposition

One has

$$
\begin{equation*}
\mathbf{e} \notin \mathbb{V}(\wedge) \tag{3.4}
\end{equation*}
$$

The following "negative" result will be crucial.

Proposition

One has

$$
\begin{equation*}
\mathrm{e} \notin \mathbb{V}(\wedge) \tag{3.4}
\end{equation*}
$$

Define $\mathbf{w} \in D\left(\mathcal{A}_{H}\right)$ as the unique solution of the equation

$$
\begin{equation*}
\mathcal{A}_{H} \mathbf{w}=\mathbf{e} . \tag{3.5}
\end{equation*}
$$

The following "negative" result will be crucial.

Proposition

One has

$$
\begin{equation*}
\mathbf{e} \notin \mathbb{V}(\wedge) \tag{3.4}
\end{equation*}
$$

Define $\mathbf{w} \in D\left(\mathcal{A}_{H}\right)$ as the unique solution of the equation

$$
\begin{equation*}
\mathcal{A}_{H} \mathbf{w}=\mathbf{e} . \tag{3.5}
\end{equation*}
$$

We look for solutions $\boldsymbol{v} \in L_{\#}^{2}\left(\mathbb{R}_{t} ; D\left(\mathcal{A}_{H}\right)\right)$ of the Stokes evolution problem (1.3) in Fourier series form

$$
\begin{equation*}
\boldsymbol{v}(t)=\mathbf{a}_{0}+\sum_{k=1}^{\infty} \mathbf{a}_{k} \cos k t+\sum_{k=1}^{\infty} \mathbf{b}_{k} \sin k t \tag{3.6}
\end{equation*}
$$

where the unknowns \mathbf{a}_{k} and \mathbf{b}_{k} will be looked for in $D\left(\mathcal{A}_{H}\right)=\mathbb{V}_{2}(\Lambda)$.

The following "negative" result will be crucial.

Proposition

One has

$$
\begin{equation*}
\mathrm{e} \notin \mathbb{V}(\Lambda) \tag{3.4}
\end{equation*}
$$

Define $\mathbf{w} \in D\left(\mathcal{A}_{H}\right)$ as the unique solution of the equation

$$
\begin{equation*}
\mathcal{A}_{H} \mathbf{w}=\mathbf{e} . \tag{3.5}
\end{equation*}
$$

We look for solutions $\boldsymbol{v} \in L_{\#}^{2}\left(\mathbb{R}_{t} ; D\left(\mathcal{A}_{H}\right)\right)$ of the Stokes evolution problem (1.3) in Fourier series form

$$
\begin{equation*}
\boldsymbol{v}(t)=\mathbf{a}_{0}+\sum_{k=1}^{\infty} \mathbf{a}_{k} \cos k t+\sum_{k=1}^{\infty} \mathbf{b}_{k} \sin k t \tag{3.6}
\end{equation*}
$$

where the unknowns \mathbf{a}_{k} and \mathbf{b}_{k} will be looked for in $D\left(\mathcal{A}_{H}\right)=\mathbb{V}_{2}(\Lambda)$.
The data $g \in L_{\#}^{2}\left(\mathbb{R}_{t}\right)$ is written in the Fourier series form

$$
\begin{equation*}
g(t)=p_{0}+\sum_{k=1}^{\infty} p_{k} \cos k t+\sum_{k=1}^{\infty} q_{k} \sin k t \tag{3.7}
\end{equation*}
$$

where the data p_{k} and the q_{k} are furnished by $g(t)$.

Substitution of equations (3.6) and (3.7) in equation (1.3), and orthogonality, leads to the k-infinite sequence of systems, $k \geq 1$,

$$
\left\{\begin{array}{l}
k \mathbf{b}_{k}+\nu \mathcal{A}_{H} \mathbf{a}_{k}-\nu\left(\mathcal{A}_{H} \mathbf{a}_{k}, \mathbf{e}\right) \mathbf{e}=k \frac{L}{\left\|\mathbb{P} \mathbf{e}_{\|}\right\|} q_{k} \mathbf{e}, \tag{3.8}\\
-k \mathbf{a}_{k}+\nu \mathcal{A}_{H} \mathbf{b}_{k}-\nu\left(\mathcal{A}_{H} \mathbf{b}_{k}, \mathbf{e}\right) \mathbf{e}=-k \frac{L}{\left\|\mathbb{P} \mathbf{e}_{z}\right\|} p_{k} \mathbf{e},
\end{array}\right.
$$

and to $\mathcal{A}_{H} \mathbf{a}_{0}-\left(\mathcal{A}_{H} \mathbf{a}_{0}, \mathbf{e}\right) \mathbf{e}=0$.

The systems (3.8) have all the same form

Substitution of equations (3.6) and (3.7) in equation (1.3), and orthogonality, leads to the k-infinite sequence of systems, $k \geq 1$,

$$
\left\{\begin{array}{l}
k \mathbf{b}_{k}+\nu \mathcal{A}_{H} \mathbf{a}_{k}-\nu\left(\mathcal{A}_{H} \mathbf{a}_{k}, \mathbf{e}\right) \mathbf{e}=k \frac{L}{\|\mathbb{P} \mathbf{e}\|} q_{k} \mathbf{e}, \tag{3.8}\\
-k \mathbf{a}_{k}+\nu \mathcal{A}_{H} \mathbf{b}_{k}-\nu\left(\mathcal{A}_{H} \mathbf{b}_{k}, \mathbf{e}\right) \mathbf{e}=-k \frac{L}{\left\|\mathbb{P} \mathbf{e}_{z}\right\|} p_{k} \mathbf{e},
\end{array}\right.
$$

and to $\mathcal{A}_{H} \mathrm{a}_{0}-\left(\mathcal{A}_{H} \mathrm{a}_{0}, \mathbf{e}\right) \mathbf{e}=0$.
We prove that this last equation implies $\mathbf{a}_{0}=\tilde{c} \mathbf{w}$, for some constant \tilde{c}.
The systems (3.8) have all the same form

Hence we start by studying this system for an arbitrary, fixed, triad

Substitution of equations (3.6) and (3.7) in equation (1.3), and orthogonality, leads to the k-infinite sequence of systems, $k \geq 1$,

$$
\left\{\begin{array}{l}
k \mathbf{b}_{k}+\nu \mathcal{A}_{H} \mathbf{a}_{k}-\nu\left(\mathcal{A}_{H} \mathbf{a}_{k}, \mathbf{e}\right) \mathbf{e}=k \frac{L}{\left\|\mathbb{P} \mathbf{e}^{*}\right\|} q_{k} \mathbf{e} \tag{3.8}\\
-k \mathbf{a}_{k}+\nu \mathcal{A}_{H} \mathbf{b}_{k}-\nu\left(\mathcal{A}_{H} \mathbf{b}_{k}, \mathbf{e}\right) \mathbf{e}=-k \frac{L}{\left\|\mathbb{P} \mathbf{e}_{z}\right\|} p_{k} \mathbf{e},
\end{array}\right.
$$

and to $\mathcal{A}_{H} \mathrm{a}_{0}-\left(\mathcal{A}_{H} \mathrm{a}_{0}, \mathbf{e}\right) \mathbf{e}=0$.
We prove that this last equation implies $\mathbf{a}_{0}=\tilde{c} \mathbf{w}$, for some constant \tilde{c}.
The systems (3.8) have all the same form

$$
\left\{\begin{array}{l}
k \boldsymbol{v}+\nu \mathcal{A}_{H} \mathbf{u}-\nu\left(\mathcal{A}_{H} \mathbf{u}, \mathbf{e}\right) \mathbf{e}=k \frac{L}{\left\|\mathbb{P} \mathbf{e}_{\boldsymbol{z}}\right\|} q \mathbf{e}, \tag{3.9}\\
-k \mathbf{u}+\nu \mathcal{A}_{H} \mathbf{v}-\nu\left(\mathcal{A}_{H} \mathbf{v}, \mathbf{e}\right) \mathbf{e}=-k \frac{L}{\left\|\mathbb{P} \mathbf{e}_{z}\right\|} p \mathbf{e}
\end{array}\right.
$$

Hence we start by studying this system for an arbitrary, fixed, triad (k, p, q).

We prove the following result.

Theorem

Consider the system (3.9), where $k \geq 1, p$ and q are fixed. This problem has one and only one solution $(\boldsymbol{u}, \boldsymbol{v}) \in D\left(\mathcal{A}_{H}\right) \times D\left(\mathcal{A}_{H}\right)$. Moreover,

$$
\begin{equation*}
\left\|\mathcal{A}_{H} \boldsymbol{u}\right\|^{2}+\left\|\mathcal{A}_{H} \boldsymbol{v}\right\|^{2} \leq \tilde{C}\left(1+\left(\frac{L}{\nu\left\|\mathbb{P} \mathbf{e}_{z}\right\|}\right)^{2} k^{2}\right)\left(p^{2}+q^{2}\right) . \tag{3.10}
\end{equation*}
$$

We prove the following result.

Theorem

Consider the system (3.9), where $k \geq 1, p$ and q are fixed. This problem has one and only one solution $(\boldsymbol{u}, \boldsymbol{v}) \in D\left(\mathcal{A}_{H}\right) \times D\left(\mathcal{A}_{H}\right)$. Moreover,

$$
\begin{equation*}
\left\|\mathcal{A}_{H} \boldsymbol{u}\right\|^{2}+\left\|\mathcal{A}_{H} \boldsymbol{v}\right\|^{2} \leq \tilde{C}\left(1+\left(\frac{L}{\nu\left\|\mathbb{P} \mathbf{e}_{z}\right\|}\right)^{2} k^{2}\right)\left(p^{2}+q^{2}\right) . \tag{3.10}
\end{equation*}
$$

The quite long and tricky proof is based on the approximation of the problem with a sequence of problems in increasing finite dimensional spaces V_{m}, with appeal to a special basis. We assume the above result. Some remarks on the proof would be shown below.

Recall that we look for solutions of (0.2) under the form

$$
\boldsymbol{v}(t)=\mathbf{a}_{0}+\sum_{k=1}^{\infty} \mathbf{a}_{k} \cos k t+\sum_{k=1}^{\infty} \mathbf{b}_{k} \sin k t .
$$

Hence

$$
\begin{equation*}
\mathcal{A}_{H} \boldsymbol{v}(t)=\tilde{c} \mathbf{e}+\sum_{k=1}^{\infty}\left(\mathcal{A}_{H} \mathbf{a}_{k}\right) \cos k t+\sum_{k=1}^{\infty}\left(\mathcal{A}_{H} \mathbf{b}_{k}\right) \sin k t . \tag{3.11}
\end{equation*}
$$

Recall that we look for solutions of (0.2) under the form

$$
\boldsymbol{v}(t)=\mathbf{a}_{0}+\sum_{k=1}^{\infty} \mathbf{a}_{k} \cos k t+\sum_{k=1}^{\infty} \mathbf{b}_{k} \sin k t
$$

Hence

$$
\begin{equation*}
\mathcal{A}_{H} \boldsymbol{v}(t)=\tilde{c} \mathbf{e}+\sum_{k=1}^{\infty}\left(\mathcal{A}_{H} \mathbf{a}_{k}\right) \cos k t+\sum_{k=1}^{\infty}\left(\mathcal{A}_{H} \mathbf{b}_{k}\right) \sin k t \tag{3.11}
\end{equation*}
$$

$\mathcal{A}_{H} \mathbf{a}_{0}=\tilde{c} \mathbf{e}$ follows from $\mathbf{a}_{0}=\tilde{c} \boldsymbol{w}$.

Recall that we look for solutions of (0.2) under the form

$$
\boldsymbol{v}(t)=\mathbf{a}_{0}+\sum_{k=1}^{\infty} \mathbf{a}_{k} \cos k t+\sum_{k=1}^{\infty} \mathbf{b}_{k} \sin k t
$$

Hence

$$
\begin{equation*}
\mathcal{A}_{H} \boldsymbol{v}(t)=\tilde{c} \mathbf{e}+\sum_{k=1}^{\infty}\left(\mathcal{A}_{H} \mathbf{a}_{k}\right) \cos k t+\sum_{k=1}^{\infty}\left(\mathcal{A}_{H} \mathbf{b}_{k}\right) \sin k t \tag{3.11}
\end{equation*}
$$

$\mathcal{A}_{H} \mathbf{a}_{0}=\tilde{c} \mathbf{e}$ follows from $\mathbf{a}_{0}=\tilde{c} \boldsymbol{w}$. Below we prove that \tilde{c} is uniquely determined.

The Theorem 4 applies to each of the k-systems (3.8) and shows that the coefficients \mathbf{a}_{k} and \mathbf{b}_{k} in (3.8) are uniquely determined, and that for each $k \in \mathbb{N}$ one has the fundamental regularity estimates

$$
\begin{equation*}
\left\|\mathcal{A}_{H} \mathbf{a}_{k}\right\|^{2}+\left\|\mathcal{A}_{H} \mathbf{b}_{k}\right\|^{2} \leq \tilde{C}\left(1+\left(\frac{k L}{\nu\left\|\mathbb{P} \mathbf{e}_{z}\right\|}\right)^{2}\right)\left(p_{k}^{2}+q_{k}^{2}\right) \tag{3.12}
\end{equation*}
$$

where $T=2 \pi$. Next, by equation (3.12), one gets the estimate

The Theorem 4 applies to each of the k-systems (3.8) and shows that the coefficients \mathbf{a}_{k} and \mathbf{b}_{k} in (3.8) are uniquely determined, and that for each $k \in \mathbb{N}$ one has the fundamental regularity estimates

$$
\begin{equation*}
\left\|\mathcal{A}_{H} \mathbf{a}_{k}\right\|^{2}+\left\|\mathcal{A}_{H} \mathbf{b}_{k}\right\|^{2} \leq \tilde{C}\left(1+\left(\frac{k L}{\nu\left\|\mathbb{P} \mathbf{e}_{Z}\right\|}\right)^{2}\right)\left(p_{k}^{2}+q_{k}^{2}\right) \tag{3.12}
\end{equation*}
$$

By appealing to (3.11), and orthogonality, it follows that
$\|\boldsymbol{v}\|_{L_{\#}^{2}\left(\mathbb{R}_{t} ; \mathcal{A}_{H}\right)}^{2}=\int_{0}^{T}\left(\mathcal{A}_{H} \boldsymbol{v}(t), \mathcal{A}_{H} \boldsymbol{v}(t)\right) d t=\tilde{c}^{2} T+\frac{T}{2} \sum_{k=1}^{\infty}\left(\left\|\mathcal{A}_{H} \mathbf{a}_{k}\right\|^{2}+\left\|\mathcal{A}_{H} \mathbf{b}_{k}\right\|^{2}\right)$,
where $T=2 \pi$.

So we have proved the v

The Theorem 4 applies to each of the k-systems (3.8) and shows that the coefficients \mathbf{a}_{k} and \mathbf{b}_{k} in (3.8) are uniquely determined, and that for each $k \in \mathbb{N}$ one has the fundamental regularity estimates

$$
\begin{equation*}
\left\|\mathcal{A}_{H} \mathbf{a}_{k}\right\|^{2}+\left\|\mathcal{A}_{H} \mathbf{b}_{k}\right\|^{2} \leq \tilde{C}\left(1+\left(\frac{k L}{\nu\left\|\mathbb{P} \mathbf{e}_{z}\right\|}\right)^{2}\right)\left(p_{k}^{2}+q_{k}^{2}\right) . \tag{3.12}
\end{equation*}
$$

By appealing to (3.11), and orthogonality, it follows that

$$
\begin{equation*}
\|\boldsymbol{v}\|_{L_{\#}^{2}\left(\mathbb{R}_{t} ; \mathcal{A}_{H}\right)}^{2}=\int_{0}^{T}\left(\mathcal{A}_{H} \boldsymbol{v}(t), \mathcal{A}_{H} \boldsymbol{v}(t)\right) d t=\tilde{c}^{2} T+\frac{T}{2} \sum_{k=1}^{\infty}\left(\left\|\mathcal{A}_{H} \mathbf{a}_{k}\right\|^{2}+\left\|\mathcal{A}_{H} \mathbf{b}_{k}\right\|^{2}\right), \tag{3.13}
\end{equation*}
$$

where $T=2 \pi$. Next, by equation (3.12), one gets the estimate

$$
\begin{equation*}
\|\boldsymbol{v}\|_{L_{\#}^{2}\left(\mathbb{R}_{t} ; D\left(\mathcal{A}_{H}\right)\right)}^{2} \leq T \tilde{C}^{2}+\frac{\tilde{C} T}{2} \sum_{k=1}^{\infty}\left(p_{k}^{2}+q_{k}^{2}\right)+\frac{\tilde{C} T}{2} \sum_{k=1}^{\infty}\left(\frac{L}{\nu\left\|\mathbb{P} \mathbf{e}_{z}\right\|}\right)^{2} k^{2}\left(p_{k}^{2}+q_{k}^{2}\right) \tag{3.14}
\end{equation*}
$$

The Theorem 4 applies to each of the k-systems (3.8) and shows that the coefficients \mathbf{a}_{k} and \mathbf{b}_{k} in (3.8) are uniquely determined, and that for each $k \in \mathbb{N}$ one has the fundamental regularity estimates

$$
\begin{equation*}
\left\|\mathcal{A}_{H} \mathbf{a}_{k}\right\|^{2}+\left\|\mathcal{A}_{H} \mathbf{b}_{k}\right\|^{2} \leq \tilde{C}\left(1+\left(\frac{k L}{\nu\left\|\mathbb{P} \mathbf{e}_{z}\right\|}\right)^{2}\right)\left(p_{k}^{2}+q_{k}^{2}\right) . \tag{3.12}
\end{equation*}
$$

By appealing to (3.11), and orthogonality, it follows that

$$
\begin{equation*}
\|\boldsymbol{v}\|_{L_{\#}^{2}\left(\mathbb{R}_{t} ; \mathcal{A}_{H}\right)}^{2}=\int_{0}^{T}\left(\mathcal{A}_{H} \boldsymbol{v}(t), \mathcal{A}_{H} \boldsymbol{v}(t)\right) d t=\tilde{c}^{2} T+\frac{T}{2} \sum_{k=1}^{\infty}\left(\left\|\mathcal{A}_{H} \mathbf{a}_{k}\right\|^{2}+\left\|\mathcal{A}_{H} \mathbf{b}_{k}\right\|^{2}\right), \tag{3.13}
\end{equation*}
$$

where $T=2 \pi$. Next, by equation (3.12), one gets the estimate

$$
\begin{equation*}
\|\boldsymbol{v}\|_{L_{\#}^{2}\left(\mathbb{R}_{t} ; D\left(\mathcal{A}_{H}\right)\right)}^{2} \leq T \tilde{C}^{2}+\frac{\tilde{C} T}{2} \sum_{k=1}^{\infty}\left(p_{k}^{2}+q_{k}^{2}\right)+\frac{\tilde{C} T}{2} \sum_{k=1}^{\infty}\left(\frac{L}{\nu\left\|\mathbb{P} \mathbf{e}_{z}\right\|}\right)^{2} k^{2}\left(p_{k}^{2}+q_{k}^{2}\right) \tag{3.14}
\end{equation*}
$$

So we have proved the very main estimate

$$
\begin{equation*}
\|\boldsymbol{v}\|_{L_{\#}^{2}\left(\mathbb{R}_{t} ; D\left(\mathcal{A}_{H}\right)\right)}^{2} \leq+C\|g\|_{L_{\#}^{2}\left(\mathbb{R}_{t}\right)}^{2}+\frac{C}{\nu^{2}}\left\|g^{\prime}\right\|_{L_{\#}^{2}\left(\mathbb{R}_{t}\right)}^{2} . \tag{3.15}
\end{equation*}
$$

REMARKS ON THE PROOF OF MAIN THEOREM:

We find an increasing sequence of strictly positive, real eigenvalues λ_{j} of \mathcal{A}_{H}, and corresponding normalized eigenfunctions $\boldsymbol{w}_{j} \in \mathbb{H}(\Lambda), j=1,2, \cdots$,

$$
\begin{equation*}
\mathcal{A}_{H} \boldsymbol{w}_{j}=\lambda_{j} \boldsymbol{w}_{j} . \tag{3.16}
\end{equation*}
$$

of the truncated equations (3.9), namely
for each

REMARKS ON THE PROOF OF MAIN THEOREM:

We find an increasing sequence of strictly positive, real eigenvalues λ_{j} of \mathcal{A}_{H}, and corresponding normalized eigenfunctions $\boldsymbol{w}_{j} \in \mathbb{H}(\Lambda), j=1,2, \cdots$,

$$
\begin{equation*}
\mathcal{A}_{H} \boldsymbol{w}_{j}=\lambda_{j} \boldsymbol{w}_{j} . \tag{3.16}
\end{equation*}
$$

We set $V_{m}=\operatorname{span}\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{m}\right\}$ and look for m-approximate solutions

$$
\begin{equation*}
\boldsymbol{u}_{m}=\sum_{j=1}^{m} \alpha_{j} \boldsymbol{w}_{j}, \quad \boldsymbol{v}_{m}=\sum_{i=1}^{m} \beta_{j} \boldsymbol{w}_{j} \tag{3.17}
\end{equation*}
$$

of the truncated equations (3.9), namely

$$
\left\{\begin{array}{l}
\left(k \boldsymbol{v}_{m}+\nu \mathcal{A}_{H} \boldsymbol{u}_{m}-\nu\left(\mathcal{A}_{H} \boldsymbol{u}_{m}, \mathbf{e}\right) \mathbf{e}, \phi\right)=\frac{L}{\left\|\mathbb{P} \mathbf{e}_{z}\right\|} q_{k}(\mathbf{e}, \phi), \tag{3.18}\\
\left(-k \mathbf{u}_{m}+\nu \mathcal{A}_{H} \boldsymbol{v}_{m}-\nu\left(\mathcal{A}_{H} \boldsymbol{v}_{m}, \mathbf{e}\right) \mathbf{e}, \phi\right)=-\frac{L}{\left\|\mathbb{P} \mathbf{e}_{z}\right\|} p_{k}(\mathbf{e}, \phi),
\end{array}\right.
$$

for each $\phi \in V_{m}$.

Suitable calculations show that (3.18) is equivalent to the $2 m$ dimensional system

$$
\left\{\begin{array}{l}
k \beta_{l}+\nu \sum_{j=1}^{m}\left[\delta_{j l}-\left(\boldsymbol{w}_{j}, \mathbf{e}\right)\left(\mathbf{e}, \boldsymbol{w}_{l}\right)\right] \lambda_{j} \alpha_{j}=k \frac{L}{\left\|\mathbb{P} \mathbf{e}_{z}\right\|} q\left(\mathbf{e}, \boldsymbol{w}_{l}\right), \tag{3.19}\\
-k \alpha_{l}+\nu \sum_{j=1}^{m}\left[\delta_{j l}-\left(\boldsymbol{w}_{j}, \mathbf{e}\right)\left(\mathbf{e}, \boldsymbol{w}_{l}\right)\right] \lambda_{j} \beta_{j}=-k \frac{L}{\left\|\mathbb{P} \mathbf{e}_{z}\right\|} p\left(\mathbf{e}, \boldsymbol{w}_{l}\right),
\end{array}\right.
$$

where I runs from 1 to m.

Suitable calculations show that (3.18) is equivalent to the $2 m$ dimensional system

$$
\left\{\begin{array}{l}
k \beta_{l}+\nu \sum_{j=1}^{m}\left[\delta_{j l}-\left(\boldsymbol{w}_{j}, \mathbf{e}\right)\left(\mathbf{e}, \boldsymbol{w}_{l}\right)\right] \lambda_{j} \alpha_{j}=k \frac{L}{\left\|\mathbb{P} \mathbf{e}_{2}\right\|} q\left(\mathbf{e}, \boldsymbol{w}_{l}\right), \tag{3.19}\\
-k \alpha_{l}+\nu \sum_{j=1}^{m}\left[\delta_{j l}-\left(\boldsymbol{w}_{j}, \mathbf{e}\right)\left(\mathbf{e}, \boldsymbol{w}_{l}\right)\right] \lambda_{j} \beta_{j}=-k \frac{L}{\left\|\mathbb{P} \mathbf{e}_{z}\right\|} p\left(\mathbf{e}, \boldsymbol{w}_{l}\right),
\end{array}\right.
$$

where I runs from 1 to m. We interpret (3.19) as a system on the unknown $2 m$-dimensional column vector

$$
X=\left(\lambda_{1} \alpha_{1}, \ldots, \lambda_{m} \alpha_{m}, \lambda_{1} \beta_{1}, \ldots, \lambda_{m} \beta_{m}\right)=:\left(X_{1}, X_{2}\right)
$$

Suitable calculations show that (3.18) is equivalent to the $2 m$ dimensional system

$$
\left\{\begin{array}{l}
k \beta_{l}+\nu \sum_{j=1}^{m}\left[\delta_{j l}-\left(\boldsymbol{w}_{j}, \mathbf{e}\right)\left(\mathbf{e}, \boldsymbol{w}_{l}\right)\right] \lambda_{j} \alpha_{j}=k \frac{L}{\left\|\mathbb{P} \mathbf{P}_{2}\right\|} q\left(\mathbf{e}, \boldsymbol{w}_{l}\right), \tag{3.19}\\
-k \alpha_{l}+\nu \sum_{j=1}^{m}\left[\delta_{j l}-\left(\boldsymbol{w}_{j}, \mathbf{e}\right)\left(\mathbf{e}, \boldsymbol{w}_{l}\right)\right] \lambda_{j} \beta_{j}=-k \frac{L}{\left\|\mathbb{P} \mathbf{e}_{z}\right\|} p\left(\mathbf{e}, \boldsymbol{w}_{l}\right),
\end{array}\right.
$$

where I runs from 1 to m. We interpret (3.19) as a system on the unknown $2 m$-dimensional column vector

$$
X=\left(\lambda_{1} \alpha_{1}, \ldots, \lambda_{m} \alpha_{m}, \lambda_{1} \beta_{1}, \ldots, \lambda_{m} \beta_{m}\right)=:\left(X_{1}, X_{2}\right)
$$

Set $\gamma_{j l}=\delta_{j l}-\left(\boldsymbol{w}_{j}, \mathbf{e}\right)\left(\mathbf{e}, \boldsymbol{w}_{l}\right), j, I=1, \ldots, m$, and denote by M the corresponding $m \times m$ matrix.

Suitable calculations show that (3.18) is equivalent to the $2 m$ dimensional system

$$
\left\{\begin{array}{l}
k \beta_{l}+\nu \sum_{j=1}^{m}\left[\delta_{j l}-\left(\boldsymbol{w}_{j}, \mathbf{e}\right)\left(\mathbf{e}, \boldsymbol{w}_{l}\right)\right] \lambda_{j} \alpha_{j}=k \frac{L}{\left\|\mathbb{P} \mathbf{P}_{2}\right\|} q\left(\mathbf{e}, \boldsymbol{w}_{l}\right), \tag{3.19}\\
-k \alpha_{l}+\nu \sum_{j=1}^{m}\left[\delta_{j l}-\left(\boldsymbol{w}_{j}, \mathbf{e}\right)\left(\mathbf{e}, \boldsymbol{w}_{l}\right)\right] \lambda_{j} \beta_{j}=-k \frac{L}{\left\|\mathbb{P} \mathbf{e}_{z}\right\|} p\left(\mathbf{e}, \boldsymbol{w}_{l}\right),
\end{array}\right.
$$

where I runs from 1 to m. We interpret (3.19) as a system on the unknown $2 m$-dimensional column vector

$$
X=\left(\lambda_{1} \alpha_{1}, \ldots, \lambda_{m} \alpha_{m}, \lambda_{1} \beta_{1}, \ldots, \lambda_{m} \beta_{m}\right)=:\left(X_{1}, X_{2}\right)
$$

Set $\gamma_{j l}=\delta_{j l}-\left(\boldsymbol{w}_{j}, \mathbf{e}\right)\left(\mathbf{e}, \boldsymbol{w}_{l}\right), j, I=1, \ldots, m$, and denote by M the corresponding $m \times m$ matrix. We prove that the $2 m \times 2 m$ matrix \mathcal{M} of the system (3.19) is positive definite if and only if M is positive definite.

Let $\overline{\mathbf{e}}=\left(e_{1}, \ldots, e_{m}, 0,0,0, \ldots\right)$ denote the orthogonal projection (in $\left.\mathbb{H}\right)$ of \mathbf{e} onto V_{m}. One has

$$
\sum_{j, l=1}^{m} \gamma_{j l} \xi_{j} \xi_{l}=|\xi|^{2}-\sum_{j, l=1}^{m}\left(\xi_{j} \boldsymbol{e}_{j}\right)\left(\xi_{l} \boldsymbol{e}_{l}\right) \geq\left(1-\|\overline{\mathbf{e}}\|^{2}\right)|\xi|^{2}
$$

for each $\xi \in \mathbb{R}^{m}$.
we have proved that the approximating m-problem (3.19), for each fixed k admits one and only one solution (

REMARK: The strict positivity of M holds since e $\notin \mathbb{V}$. However, if we try to
pass to the limit as $m \rightarrow \infty$ we could not obtain a suitable estimate since $\|\overline{\mathbf{e}}\|$ converges to 1 as m goes to infinity.

Let $\overline{\mathbf{e}}=\left(e_{1}, \ldots, e_{m}, 0,0,0, \ldots\right)$ denote the orthogonal projection (in $\left.\mathbb{H}\right)$ of \mathbf{e} onto V_{m}. One has

$$
\sum_{j, I=1}^{m} \gamma_{j l} \xi_{j} \xi_{l}=|\xi|^{2}-\sum_{j, l=1}^{m}\left(\xi_{j} \boldsymbol{e}_{j}\right)\left(\xi_{l} \boldsymbol{e}_{l}\right) \geq\left(1-\|\overline{\mathbf{e}}\|^{2}\right)|\xi|^{2}
$$

for each $\xi \in \mathbb{R}^{m}$.
Note that $\mathbf{e} \notin V_{m}$ since $\mathbf{e} \notin \mathbb{V}$. Since $\|\mathbf{e}\|=1$, it follows that $\|\overline{\mathbf{e}}\|<1$. Hence we have proved that the approximating m-problem (3.19), for each fixed k, admits one and only one solution (α, β) in $V_{m} \times V_{m}$.
pass to the limit as $m \rightarrow \infty$ we could not obtain a suitable estimate since $\|\bar{e}\|$

Let $\overline{\mathbf{e}}=\left(e_{1}, \ldots, e_{m}, 0,0,0, \ldots\right)$ denote the orthogonal projection (in $\left.\mathbb{H}\right)$ of \mathbf{e} onto V_{m}. One has

$$
\sum_{j, I=1}^{m} \gamma_{j l} \xi_{j} \xi_{l}=|\xi|^{2}-\sum_{j, l=1}^{m}\left(\xi_{j} \boldsymbol{e}_{j}\right)\left(\xi_{l} \boldsymbol{e}_{l}\right) \geq\left(1-\|\overline{\mathbf{e}}\|^{2}\right)|\xi|^{2}
$$

for each $\xi \in \mathbb{R}^{m}$.
Note that $\mathbf{e} \notin V_{m}$ since $\mathbf{e} \notin \mathbb{V}$. Since $\|\mathbf{e}\|=1$, it follows that $\|\overline{\mathbf{e}}\|<1$. Hence we have proved that the approximating m-problem (3.19), for each fixed k, admits one and only one solution (α, β) in $V_{m} \times V_{m}$.

REMARK: The strict positivity of M holds since $\mathbf{e} \notin \mathbb{V}$. However, if we try to pass to the limit as $m \rightarrow \infty$ we could not obtain a suitable estimate since $\|\overline{\mathbf{e}}\|$ converges to 1 as m goes to infinity.

Multiplication of the first m equations (3.19) by $\lambda_{l} \alpha_{l}$, of the last m equations by $\lambda_{l} \beta_{l}$, summation for $I=1, \cdots, m$, followed by a sequence of suitable arguments, and related calculations, lead to the (apparently bad estimate)

$$
\begin{align*}
& \left\|\mathcal{A}_{H} \boldsymbol{u}_{m}\right\|^{2}+\left\|\mathcal{A}_{H} \boldsymbol{v}_{m}\right\|^{2} \leq \\
& \left(\frac{L k}{2 \nu\left\|\mathbb{P} \mathbf{e}_{z}\right\|}\right)^{2}\left(p^{2}+q^{2}\right)+2\left[\left(\mathcal{A}_{H} \boldsymbol{u}_{m}, \mathbf{e}\right)^{2}+\left(\mathcal{A}_{H} \boldsymbol{v}_{m}, \mathbf{e}\right)^{2}\right] . \tag{3.20}
\end{align*}
$$

Multiplication of the first m equations (3.19) by $\lambda_{l} \alpha_{l}$, of the last m equations by $\lambda_{l} \beta_{l}$, summation for $I=1, \cdots, m$, followed by a sequence of suitable arguments, and related calculations, lead to the (apparently bad estimate)

$$
\begin{align*}
& \left\|\mathcal{A}_{H} \boldsymbol{u}_{m}\right\|^{2}+\left\|\mathcal{A}_{H} \boldsymbol{v}_{m}\right\|^{2} \leq \\
& \left(\frac{L k}{2 \nu\left\|\mathbb{P} \mathbf{e}_{z}\right\|}\right)^{2}\left(p^{2}+q^{2}\right)+2\left[\left(\mathcal{A}_{H} \boldsymbol{u}_{m}, \mathbf{e}\right)^{2}+\left(\mathcal{A}_{H} \mathbf{v}_{m}, \mathbf{e}\right)^{2}\right] . \tag{3.20}
\end{align*}
$$

However, by exploiting the peculiarities of the vector \mathbf{e}, we prove that

$$
\begin{align*}
& C_{1}^{4}\left[\left(\mathcal{A}_{H} \mathbf{u}_{m}, \mathbf{e}\right)^{2}+\left(\mathcal{A}_{H} \mathbf{v}_{m}, \mathbf{e}\right)^{2}\right] \\
& \leq 16\left[1+\left(\frac{C_{0}}{C_{1}}\right)^{2}\left(\frac{L}{\left\|\mathbb{P} \mathbf{e}_{z}\right\|}\right)^{2}\left(\frac{k}{\nu}\right)^{2}\right]\left(p^{2}+q^{2}\right) . \tag{3.21}
\end{align*}
$$

Thanks to this estimate and to (3.20) we show that

$$
\left\|\mathcal{A}_{H} \boldsymbol{u}_{m}\right\|^{2}+\left\|\mathcal{A}_{H} \boldsymbol{v}_{m}\right\|^{2} \leq \tilde{C}\left(1+\left(\frac{L}{\nu\left\|\mathbb{P} \mathbf{e}_{z}\right\|}\right)^{2} k^{2}\right)\left(p^{2}+q^{2}\right),
$$

which is just the main estimate (3.10) with \boldsymbol{u} and \boldsymbol{v} replaced by \boldsymbol{u}_{m} and \boldsymbol{v}_{m}, and p and q by p_{k} and q_{k}, respectively.

Thanks to this estimate and to (3.20) we show that

$$
\left\|\mathcal{A}_{H} \boldsymbol{u}_{m}\right\|^{2}+\left\|\mathcal{A}_{H} \boldsymbol{v}_{m}\right\|^{2} \leq \tilde{C}\left(1+\left(\frac{L}{\nu\left\|\mathbb{P} \mathbf{e}_{z}\right\|}\right)^{2} k^{2}\right)\left(p^{2}+q^{2}\right),
$$

which is just the main estimate (3.10) with \boldsymbol{u} and \boldsymbol{v} replaced by \boldsymbol{u}_{m} and \boldsymbol{v}_{m}, and p and q by p_{k} and q_{k}, respectively.
From this estimate the weak convergence in $D\left(\mathcal{A}_{H}\right) \times D\left(\mathcal{A}_{H}\right)$ of the pair ($\boldsymbol{u}_{m}, \boldsymbol{v}_{m}$) to a solution ($\boldsymbol{u}, \boldsymbol{v}$) of (3.9) follows.

To end, we prove that \tilde{c} must be given by

Thanks to this estimate and to (3.20) we show that

$$
\left\|\mathcal{A}_{H} \boldsymbol{u}_{m}\right\|^{2}+\left\|\mathcal{A}_{H} \boldsymbol{v}_{m}\right\|^{2} \leq \tilde{C}\left(1+\left(\frac{L}{\nu\left\|\mathbb{P} \mathbf{e}_{z}\right\|}\right)^{2} k^{2}\right)\left(p^{2}+q^{2}\right),
$$

which is just the main estimate (3.10) with \boldsymbol{u} and \boldsymbol{v} replaced by \boldsymbol{u}_{m} and \boldsymbol{v}_{m}, and p and q by p_{k} and q_{k}, respectively.
From this estimate the weak convergence in $D\left(\mathcal{A}_{H}\right) \times D\left(\mathcal{A}_{H}\right)$ of the pair ($\boldsymbol{u}_{m}, \boldsymbol{v}_{m}$) to a solution ($\boldsymbol{u}, \boldsymbol{v}$) of (3.9) follows.

To end, we prove that \tilde{c} must be given by

$$
\begin{equation*}
\tilde{c}=\frac{L p_{0}}{\left\|\mathbb{P} \mathbf{e}_{z}\right\|(\boldsymbol{w}, \mathbf{e})} \tag{3.22}
\end{equation*}
$$

Thanks to this estimate and to (3.20) we show that

$$
\left\|\mathcal{A}_{H} \boldsymbol{u}_{m}\right\|^{2}+\left\|\mathcal{A}_{H} \boldsymbol{v}_{m}\right\|^{2} \leq \tilde{C}\left(1+\left(\frac{L}{\nu\left\|\mathbb{P} \mathbf{e}_{z}\right\|}\right)^{2} k^{2}\right)\left(p^{2}+q^{2}\right),
$$

which is just the main estimate (3.10) with \boldsymbol{u} and \boldsymbol{v} replaced by \boldsymbol{u}_{m} and \boldsymbol{v}_{m}, and p and q by p_{k} and q_{k}, respectively.
From this estimate the weak convergence in $D\left(\mathcal{A}_{H}\right) \times D\left(\mathcal{A}_{H}\right)$ of the pair ($\boldsymbol{u}_{m}, \boldsymbol{v}_{m}$) to a solution ($\boldsymbol{u}, \boldsymbol{v}$) of (3.9) follows.

To end, we prove that \tilde{c} must be given by

$$
\begin{equation*}
\tilde{c}=\frac{L p_{0}}{\left\|\mathbb{P} \mathbf{e}_{z}\right\|(\boldsymbol{w}, \mathbf{e})} \tag{3.22}
\end{equation*}
$$

The last step consists in proving the UNIQUENESS of the solution. In the absence of a suitable coercivity estimate, uniqueness is proved by a specific direct proof.

Concerning the extension to the Navier-Stokes equations, we have considered the Stokes evolution problem also under the effect of a suitable external force \mathbf{f}. The next two steps consist in replacing the external force \mathbf{f} by $-\boldsymbol{w} \cdot \nabla \boldsymbol{w}$ and in proving the Theorem 2 by a contraction's map argument applied to the map $\boldsymbol{w} \rightarrow \boldsymbol{v}$.

Some main related references

In [14] G.P.Galdi and A.M.Robertson give a proof of the main result in the ARMA's paper by introducing a significant relationship between flow rate and axial pressure gradient, which depends only on the cross-section.
n [5], we have extended the main result in the ARMA's paper to slip boundary conditions.

Some main related references

In [14] G.P.Galdi and A.M.Robertson give a proof of the main result in the ARMA's paper by introducing a significant relationship between flow rate and axial pressure gradient, which depends only on the cross-section.

In [5], we have extended the main result in the ARMA's paper to slip boundary conditions.

Some main related references

In [14] G.P.Galdi and A.M.Robertson give a proof of the main result in the ARMA's paper by introducing a significant relationship between flow rate and axial pressure gradient, which depends only on the cross-section.

In [5], we have extended the main result in the ARMA's paper to slip boundary conditions.

In [13], G.P. Galdi and C.R. Grisanti succeed in extending the theory to non-Newtonian fluids (shear-thinning and shear-thickening cases).

Menciassi, and E. Sinibaldi, concerning exact solutions to the inverse Whmercley nrohlem

Some main related references

In [14] G.P.Galdi and A.M.Robertson give a proof of the main result in the ARMA's paper by introducing a significant relationship between flow rate and axial pressure gradient, which depends only on the cross-section.

In [5], we have extended the main result in the ARMA's paper to slip boundary conditions.

In [13], G.P. Galdi and C.R. Grisanti succeed in extending the theory to non-Newtonian fluids (shear-thinning and shear-thickening cases).

The Leray's problem considered in the ARMA's paper was thoroughly studied and extended in reference [7] by L.C. Berselli and M. Romito for almost periodic flows, a very interesting result, predict in ARMA's reference [3].

Some main related references

In [14] G.P.Galdi and A.M.Robertson give a proof of the main result in the ARMA's paper by introducing a significant relationship between flow rate and axial pressure gradient, which depends only on the cross-section.

In [5], we have extended the main result in the ARMA's paper to slip boundary conditions.

In [13], G.P. Galdi and C.R. Grisanti succeed in extending the theory to non-Newtonian fluids (shear-thinning and shear-thickening cases).

The Leray's problem considered in the ARMA's paper was thoroughly studied and extended in reference [7] by L.C. Berselli and M. Romito for almost periodic flows, a very interesting result, predict in ARMA's reference [3].

Challenging results were obtained in [8] by L.C. Berselli, P. Miloro, A. Menciassi, and E. Sinibaldi, concerning exact solutions to the inverse Womersley problem.

Some main related references

In [14] G.P.Galdi and A.M.Robertson give a proof of the main result in the ARMA's paper by introducing a significant relationship between flow rate and axial pressure gradient, which depends only on the cross-section.

In [5], we have extended the main result in the ARMA's paper to slip boundary conditions.

In [13], G.P. Galdi and C.R. Grisanti succeed in extending the theory to non-Newtonian fluids (shear-thinning and shear-thickening cases).

The Leray's problem considered in the ARMA's paper was thoroughly studied and extended in reference [7] by L.C. Berselli and M. Romito for almost periodic flows, a very interesting result, predict in ARMA's reference [3].

Challenging results were obtained in [8] by L.C. Berselli, P. Miloro, A. Menciassi, and E. Sinibaldi, concerning exact solutions to the inverse Womersley problem.

Concerning blood flow, we quote here our JMF pioneering 2004 paper [2].

Very interesting problems, but mathematically quite distinct, have been studied by M. Chipot, N. Klovienė, K. Pileckas and S. Zube in [9], by K. Kaulakyté, N. Klovienė, M. Skujus in [11], and by L.V. Kapitanski in [15].

A final remark.

A careful analysis of the structure of the proofs easily convince us that they can be extended to the case where the z-axis is replaced by an arbitrary, sufficiently regular, L-periodic parametric curve $\underline{x}=\underline{\gamma}(z), \underline{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{n+1}\right)$.
\qquad
consider the pipe generated by the motion of a given n-dimensional flat,

A final remark.

A careful analysis of the structure of the proofs easily convince us that they can be extended to the case where the z-axis is replaced by an arbitrary, sufficiently regular, L-periodic parametric curve $\underline{x}=\underline{\gamma}(z), \underline{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{n+1}\right)$.
Let's consider a very simple case to which the above theory applies but the result obtained in this way is weaker than that expected by appealing to the above curved-axis approach. Assume that the parametric curve $\gamma(z)$ is a classical circular helix, see fig. 2 (roughly, a spring. L is the pitch) and consider the pipe generated by the motion of a given n-dimensional flat, circular, surface Σ moving orthogonally to the given curve $\underline{\gamma}(z)$. Clearly the center of the "moving" circular Σ lies on $\underline{\gamma}(z)$.

This situation fails inside that previously considered in these notes by setting $z=x_{n+1}$. In this case the surface Σ_{z} denotes the (non circular) z-section of the pipe, orthogonal to the $z=x_{n+1}$ axis.

This situation fails inside that previously considered in these notes by setting $z=x_{n+1}$. In this case the surface Σ_{z} denotes the (non circular) z-section of the pipe, orthogonal to the $z=x_{n+1}$ axis. However, the result obtained merely guarantees L-periodicity with respect to the "linear" variable x_{n+1}. In a curved-axis approach the velocity should be independent of the parameter z, in the sense that it should be translational invariant along the bent pipe (along the n coordinate lines parallel to the helix).

G．K．Batchelor，＂An Introduction to Fluid Dynamics＂，Cambridge University Press，Cambridge， 2002.
H．Beirão da Veiga，＂On the existence of strong solutions to a coupled fluid－structure evolution problem＂，Journal of Math．Fluid Mechanics， 6 （2004），21－52．
國 H．Beirão da Veiga，＂Time－periodic solutions of the Navier－Stokes equations in unbounded cylindrical domains－Leray＇s problem for periodic flows＂，Arch．Ration．Mech．Anal．，178（3）：301－325， 2005.
围 H．Beirão da Veiga，Erratum to：＂Time－periodic solutions of the Navier－Stokes equations in unbounded cylindrical domains．Leray＇s problem for periodic flows＂，Arch．Ration．Mech．and Anal．，198（2010）： 1095.

國 H．Beirão da Veiga，＂Concerning time－periodic solutions of the Navier－Stokes equations in cylindrical domains under Navier boundary conditions＂，J．Partial Diff．Eq．，19（2006）：369－376．

嗇 H．Beirão da Veiga，J．Yang，＂Fully developed，doubly periodic，viscous flows in infinite space－periodic pipes under general time－periodic total fluxes＂，J．Math．Physics．，accepted．
围 L．C．Berselli，M．Romito，＂On Leray＇s problem for almost periodic flows，J． Math．Sci．Tokyo，19：69－130， 2012.
围 L．C．Berselli，P．Miloro，A．Menciassi，E．Sinibaldi，＂Exact solution to the inverse Wormersley problem for pulsatile flows in cylindrical vessels，with applications to magnetic particle targeting＂，Appl．Math．and Computation， 219：5717－5729， 2013.
R．M．Chipot，N．Klovienė，K．Pileckas，S．Zube，＂On a non－stationary fluid flow problem in an infinite periodic pipe＂，Math．Nachr．，：1－24， 2016.
R．Dautray，J．L．Lions，＂Mathematical Analysis and Numerical Methods for Science and Technology＂，vol．6，Springer－Verlag，Berlin Heidelberg， 1993.
目 K．Kaulakyté，N．Klovienė，M．Skujus，＂Time almost－periodic Stokes problem in an infinite spatially periodic pipe＂，Lithuanian Mathematical Journal，57（2）：183－195， 2017.
G.P. Galdi, "Mathematical problems in classical and non-Newtonian fluid mechanics. Hemodynamical flows", 121-273, Oberwolfach Semin., 37, Birkhauser, Basel, 2008.
R. G.P. Galdi, C.R. Grisanti, "Womersley flow of generalized Newtonian liquid", Proceedings Royal Soc. Edinburgh ,146A, 671-692, 2016.
围 G.P. Galdi, A.M. Robertson, "The relation between flow rate and axial pressure gradient for time-periodic Poiseuille flow in a pipe", J.Math. Fluid Mech., 7:215-223, 2005.
L.V. Kapitanski, "Stationary solutions of the Navier-Stokes equations in periodic tubes", J. Sov.Math., 28(5):689-695, 1985.
L. Tartar, "Topics in nonlinear analysis". Publications Mathematiques d'Orsay 78.13, Universite de Paris-Sud 1978.
: R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis", North-Holland Publishing Company, 1979.
囯 J.R. Womersley, "Method for the calculation of the velocity, rate of flow and viscous drag in arteries when the pressure gradient is known", J. Physiol., 127: 553-556, 1955.

