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Goals:

In continuum physics, an isentropic model is often used when

entropy s is near a constant state s̄ in the process, such an

approximation s→ s̄, is called the Isentropic Approximation.

We want to discuss Isentropic Approximation with mathematical

perspectives. Because, when candles are blown out, the song

starts:
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Happy Birthday, Piero!!!



1. Introduction: (i) Basic Quantities

• Specific Volume : v; Density : ρ

• Velocity: u; Pressure: P

• Absolute Temperature: θ

• Internal Energy: e; Specific Entropy: s
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(ii) Basic Model: Navier-Stokes-Fourier system

Basic physical principles in continuum mechanics are expressed

in terms of balance laws: mass, momentum and energy.


ρt + div(ρu) = 0, x ∈ R3, t > 0,

(ρu)t + div(ρu⊗ u) +∇P = div(S),

(ρe)t + div(ρeu) = div(q) + S : ∇u−Pdiv(u)

(ρ, u, θ)(x,0) = (ρ0, u0, θ0)(x), x ∈ R3.

(1)
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(iv) Physical settings

• Newton’s rheological law (Newtonian fluid)

S = µ(∇u+∇Tu−
2

3
div(u)I) + ηdiv(u)I (2)

µ ≥ 0 is the Shear Viscosity Coefficient;

η ≥ 0 is the Bulk Viscosity Coefficient.

• Fourier’s Law:

q = −κ∇θ. (3)

κ ≥ 0 is the heat conductivity coefficient.
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Among thermodynamical state variables ρ, P, θ, e, s, and etc.,

only two of them are independent. In most cases, (ρ, θ) (or

(ρ, s)) are convenient, and we have

P = P (ρ, θ), e = e(ρ, θ), s = s(ρ, θ).

According to the Second Law of Thermodynamics (known

as entropy law), P, e, s satisfy

• Gibbs’ relation (Maxwell’s relation)

θds = de+ Pd(
1

ρ
). (4)

This, together with internal energy equation, implies that



• Entropy balance:

(ρs)t + div(ρsu) + div(
q

θ
) =

1

θ
(S : ∇u+

κ

θ
|∇θ|2) (5)

where

σ =
1

θ
(S : ∇u+

κ

θ
|∇θ|2)

is called the entropy production rate.

The viscosity coefficients and heat conductivity coefficient are
called the Transport coefficients. Like most classical mathemat-
ical literatures, we assume them to be positive constants in this
lecture. However, a more realistic assumption is temperature-
dependent, such as Chapman-Enskog model, and Sutherland’s
formula.



(v) Compressible Euler equations

When all transport coefficients are assumed to be zero (applica-

ble in inviscid flows), the N-S-F system reduces to compressible

Euler equations


ρt + div(ρu) = 0, x ∈ R3, t > 0,

(ρu)t + div(ρu⊗ u) +∇P = 0,

(ρe)t + div(ρeu) + Pdiv(u) = 0

(ρ, u, θ)(x,0) = (ρ0, u0, θ0)(x), x ∈ R3.

(6)

6



(vi) Isentropic Approximation

In both N-S-F and Euler cases, when entropy s is near a con-

stant state s̄ in the process, using Isentropic Approximation,

that is s→ s̄, the resulting systems are Isentropic Navier-Stokes

equations or Isentropic Euler equations. For P = P (ρ), they are


ρt + div(ρu) = 0, x ∈ R3, t > 0,

(ρu)t + div(ρu⊗ u) +∇P = div(S),

(ρ, u)(x,0) = (ρ0, u0)(x), x ∈ R3.

(7)
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ρt + div(ρu) = 0, x ∈ R3, t > 0,

(ρu)t + div(ρu⊗ u) +∇P = 0,

(ρ, u)(x,0) = (ρ0, u0)(x), x ∈ R3.

(8)

We want to find a way to justify Isentropic Approximation math-

ematically.



2. Isentropic Approximation in Euler equations (Jia-Pan)

We want to offer an explicit characterization ( mathematical jus-
tification) on the isentropic approximation for the compressible
inviscid fluid flow. For this purpose, we consider the following
Cauchy problem

ρt + div(ρu) = 0, x ∈ Rd,
ρ (ut + u · ∇u) +∇p = 0,

st + u · ∇s = 0,

ρ(x,0) = ρ0(x) ≥ 0, u(x,0) = u0(x), s(x,0) = s0(x).

(9)

It is obvious that s is more convenient than θ for this pur-
pose, and we assume p(ρ, s) = ργes which is the pressure law
for polytropic gas, with the adiabatic exponent γ > 1. In many
applications, if in the thermodynamical process the specific en-
tropy has only very small changes near a constant equilibrium

8



s̄, an isentropic approximation is applied by assuming s(x, t) = s̄

which reduces (9) to the isentropic Euler equations
ρt + div(ρu) = 0, x ∈ Rd

ρ (ut + u · ∇u) +∇p̃ = 0,

ρ(x,0) = ρ0(x) ≥ 0, u(x,0) = u0(x),

(10)

where p̃(ρ) = ργes̄. Now, if one assumes

s0(x) = s̄

in (9), the solutions of (9) are expected to equal to the corre-

sponding one of (10) formally. More precisely, we will study the

limiting process from solutions of (9) to corresponding solutions

of (10) when

(s0(x)− s̄)→ 0.



2a: Main results and ideas

Our main results for Euler read as, when the solutions of (9) and

(10) are classical, then such an Isentropic approximation can be

justified with sharp error estimates. However, when the solutions

of Euler equations blow up and singularities are developed, the

expected limiting process is not true at least by the measurement

of Sobolev norms.

For the definite part, the main idea is the following observation:

In the smooth regime, the solution of isentropic Euler (10)

is a special solution of full Euler (9).
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When both (9) and (10) admit smooth solutions in Rd×[0, T ] for
some positive T , the justification of isentropic limit as (s0(x) −
s̄) → 0 can be obtained by means of the continuity depen-
dence of initial data for solutions of (9) near the initial data
(ρ0, u0, s̄). This comes along with the local well-posdeness the-
ory for smooth initial data. Therefore, the justification of isen-
tropic limit will be achieved by a careful energy method for the
symmetric hyperbolic systems. The results will be established

for solutions in the critical Besov space B
d
2+1
2,1 (Rd). On the other

hand, when singularities, say shock waves, occur in the solution,
such picture breaks down. We will show this by an explicit ex-
ample. Therefore, our results are somehow optimal for initial

data with lowest possible regularity, B
d
2+1
2,1 (Rd). This is achieved

by establishing the corresponding local wellposedness theory for

symmetric hyperbolic system in B
d
2+1
2,1 (Rd).
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2b: Explicit characterization on isentropic approximation

As in T. Makino, S. Ukai, S. Kawashima (1986), we use

w = p
(γ−1)

2γ = ρ
(γ−1)

2 e
(γ−1)s

2γ (11)

to transform Euler equations (9) into
A0(U)∂tU +

d∑
j=1

Aj(U)∂jU = 0,

U(x,0) = U0(x),

(12)

for U = (w, u1, u2, u3, s), and the matrices

A0(U) =


1 0 0

0 (γ−1)2

4γ e
−sγI3 0

0 0 1

 ,
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Aj(U) =


uj

γ−1
2 wej 0

γ−1
2 weTj

(γ−1)2

4γ e
−sγujI3 0

0 0 uj

 (j = 1,2,3).

Here, ej is the j−th row of I3.

Theorem 1.1: For some constants ρ̄ ≥ 0, s̄ and w̄ = (ρ̄)
(γ−1)

2 e
(γ−1)s̄

2γ ≥
0, if the initial data U0 = (w0, u0, s0) satisfies that U0−(w̄,0, s̄) ∈
B

5
2(R3), there exists a constant T > 0 and a unique solution

U = (w, u, s) to the problem (12) such that

U − (w̄,0, s̄) ∈ C([0, T ];B
5
2(R3)) ∩ C1([0, T ];B

3
2(R3)).

If in addition w0(x) ≥ 0 for all x ∈ R3, then w(x, t) ≥ 0 for all
(x, t) ∈ R3× [0, T ]. Equivalently, if 1 < γ ≤ 3, ρ0 ∈ C1(R3), ρ0 ≥ 0
and

U0 − (w̄,0, s̄) ∈ B
5
2(R3),



then there exists a positive number T and a unique solution

(ρ, u, s)(x, t) ∈ C1([0, T ]×R3) to problem (9) such that ρ(x, t) ≥ 0

for all (x, t) ∈ R3 × [0, T ] and

U(x, t) =

(
ρ

(γ−1)
2 e

(γ−1)s
2γ , u, s

)
(x, t)

is the solution of (12) such that

U − (w̄,0, s̄) ∈ C([0, T ];B
5
2(R3) ∩ C1([0, T ];B

3
2(R3)).



Remark: This Theorem includes the cases of initial data with

or without vacuum. For the Hs theory with s > 5
2, the case with

initial data including vacuum was given in T. Makino, S. Ukai,

S. Kawashima(1986), and the case with initial data away from

vacuum was given in A. Majda (1984).
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In order to give a precise description on the isentropic approxi-

mation for compressible Euler equations, we now assume that

s0(x)− s̄ = εφ(x) (13)

for φ(x) ∈ B
5
2(R3), and 1 > ε > 0 is the controlling parameter. As

explained in the introduction, given an initial data (ρ0, u0, s0) or

(w0, u0, s0) as in Theorem , the Cauchy problem (9) has a smooth

solution (w, u, s)(x, t) defined on R3 × [0, T ] for some positive T .

We denote this solution as Uε(x, t) = (w, u, s)(x, t). If one assigns

an initial data (ρ0, u0, s̄) or (w̃0, u0, s̄) with w̃ = w(ρ, s̄) to (9), the

unique solution of (9) on R3× [0, T ] is the same one to (10) with

initial data (ρ0, u0) or (w̃0, u0), and we denote this solution by

UI(x, t) = (wI , uI , s̄). We can now apply Theorem 1.1 to obtain

the following theorem.
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Main theorem 1.2 (Jia-Pan, 2015): Suppose 1 < γ ≤ 3,

ε ∈ (0,1], ρ0 ∈ C1(R3), ρ0 ≥ 0 and for some ρ̄ ≥ 0,

ρ
(γ−1)

2
0 − (ρ̄)

(γ−1)
2 ∈ B

5
2(R3), u0 ∈ B

5
2(R3), φ ∈ B

5
2(R3),

and

ρ
(γ−1)

2
0 e

(γ−1)(s̄+εφ)
2γ − (ρ̄)

(γ−1)
2 e

(γ−1)s̄
2γ ∈ B

5
2(R3).

Then, (10) has a unique solution

UI(x, t) = (wI , uI , s̄)(x, t),

and (9) has a unique solution

Uε(x, t) = (w, u, s)(x, t),

both defined on R3× [0, T ]. Furthermore, the following estimate



holds

sup
t∈[0,T ]

‖Uε(·, t)− UI(·, t)‖L2 ≤Cε‖φ‖L2,

where C is a positive constant depending on C1 norms of U0(x)

and T , but not on ε.

Remark: This theorem gives a precise justification with an ex-

plicit error estimate on isentropic approximation for compressible

Euler equations in the regime of smooth solutions.



2c. Some references

For compressible Euler equations in one space dimension, such

a problem was investigated by Saint-Raymond (ARMA, 2000)

for BV solutions, where the difference between solutions of isen-

tropic and full Euler equations measured by BV-norm was shown

to grow at most linearly in time. For the steady Euler flows,

similar results were obtained by Chen-Geng-Zhang (SIMA 2009)

and by Liu-Zhang (CPAA 2008) . It remains an interesting open

problem on how to offer a (physically and mathematically) sound

explanation on the isentropic approximation for physically admis-

sible weak solutions for compressible Euler equations.
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3. Failure of Isentropic Approximation

In previous sections, the justification for isentropic limit has been
proved for classical solutions of compressible Euler equations. It
is well-known that shock waves may develop in finite time even
for generic small smooth initial data. When shock forms, the
justification of isentropic limit in previous sections breaks down.
This can be seen easily by the following example.

Consider the full compressible Euler equations in one space di-
mension

ρt + (ρu)x = 0, x ∈ R,
(ρu)t + (ρu2 + p(ρ, s))x = 0,

(ρE)t + (ρEu+ pu)x = 0

ρ(x,0) = ρ0(x) ≥ 0, u(x,0) = u0(x), s(x,0) = s̄,

(14)
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where E = 1
2u

2 + e and ρe = cv
Rp with two positive constants cv

and R, and its isentropic reduction
ρt + (ρu)x = 0, x ∈ R,
(ρu)t + (ρu2 + p(ρ, s̄))x = 0,

ρ(x,0) = ρ0(x) ≥ 0, u(x,0) = u0(x).

(15)

We remark here that unlike (9), we replaced the entropy equa-

tion by the energy conservation law in (14), since the entropy

equation is no longer valid if singularity occurs in the solutions.

It is clear that for any C1 functions ρ0 and u0, both (14) and

(15) share exactly the same C1 solution (ρ(x, t), u(x, t), s̄) up to

a maximal existence time T1 > 0. However, when this solution

blows up at (x1, T1) for some x1 ∈ R, and shocks appear in the

solution, the shock solution for (14) is different from that of

(15). Indeed, the Riemann problems of (14) and (15) with the



same Riemann data

lim
x→x1−

(ρ, u, s)(x, T1) = (ρ−, u−, s̄);

lim
x→x1+

(ρ, u, s)(x, T1) = (ρ+, u+, s̄),
(16)

are different since the former one has a variable s (entropy s

must increase across a shock wave, see Smoller (1994)), while

the latter has a constant s in the solution.

Therefore, the framework we used in justifying the isentropic

limit process in previous sections is no longer valid when singu-

larity occurs in the solutions of Euler equations. New insights and

techniques are required to offer possible description of isentropic

approximation for entropy weak solutions.



5. Isentropic Approximation: N-S-F system

We now consider the following Cauchy problem of Navier-Stokes-

Fourier system

ρt + div(ρu) = 0, (t, x) ∈ R+ × R3,
(ρu)t + div(ρu⊗ u) +∇p = div(S),
(ρe)t + div(ρeu) + pdiv(u) = S : ∇u+ κ∆θ,

lim
|x|→∞

ρ = ρ̄, lim
|x|→∞

u = 0, lim
|x|→∞

θ = θ̄,

(ρ, u, θ)
∣∣∣
t=0

= (ρ0, u0, θ0),

(17)

where we rewrite the stress tensor S = µ(∇u+(∇u)t)+ν(div(u))I

with I the identity matrix. We assume that the constant viscosity

coefficients µ > 0 and ν satisfy ν+2
3µ > 0, and the constant κ > 0

is the coefficient of heat conductivity. We also assume that the
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fluid is polytropic ideal fluids, there exist two positive constants

R, Cν such that

p(ρ, θ) = Rρθ, e = Cνθ, p(ρ, S) = Ae
S
Cνργ, (18)

where A > 0 is a constant, γ > 1 is the adiabatic exponent, S is

the entropy, and Cν = R
γ−1.



We are interested in the relationship between the solutions of

(17) and the following Cauchy problem of the corresponding

isentropic Navier-Stokes equations:

ρ̃t + div(ρ̃ũ) = 0, (t, x) ∈ R+ × R3,
(ρ̃ũ)t + div(ρ̃ũ⊗ ũ) +∇p̃ = div(S̃),

lim
|x|→∞

ρ̃ = ρ̄, lim
|x|→∞

ũ = 0

(ρ̃, ũ)
∣∣∣
t=0

= (ρ0, u0),

(19)

with the pressure p̃ = Ae
S̄
Cν ρ̃γ, for a positive constant S̄.
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5.1 Perspectives: time asymptotics

Because:

• 1. Isentropic NS (19) does not satisfy the 2nd law of Ther-

modynamics. From the entropy equations of (17) that the

nontrivial solution of (19) is not a solution of (17) with ini-

tial constant entropy S̄. Therefore, it is not appropriate to

use the perspective of continuous dependence of initial data

to justify the isentropic approximation when S(x, t)→ S̄.

• Isentropic NS (19) does not satisfy the 1st law of Thermo-

dynamics. Only an energy inequality holds.
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Therefore:

Instead, we try to compare them time asymptotically. We will

offer a possible explanation time asymptotically in the sense that

the isentropic solution is a better approximation to the

solution of N-S-F than the constant equilibrium when time

is large.

Therefore, it is necessary to find out optimal lower and upper

bounds of decay rates for the isentropic solutions, the N-S-F

solutions, and their difference.
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5.2 Outline of main steps

• Global existences of both isentropic NS and NSF, energy

method, by A. Matsumura and T. Nishida (1979)

• Optimal decay rates (lower and upper bounds) for both isen-

tropic NS and NSF. This includes linear decay plus faster

decay of nonlinear remainders

• Compare the isentropic NS with NSF time asymptotically.
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5.3 Small data theory for NSF: Global regularity

For multi-dimensional Navier-Stokes-Fourier system (17), the

Hs(s ≥ 3) global existence with the initial perturbation small

in Hs ∩ L1 are obtained in whole space first by A. Matsumura

and T. Nishida in 1979. This is obtained by the local theory

and uniform a priori estimates. We will show how to obtain the

uniform estimates by basic energy method.

Letting n = ρ − ρ̄, u = u − 0, and q = θ − θ̄, we rewrite (17) in

the perturbation form as
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nt + ρ̄div(u) = −ndiv(u)− u · ∇n, (t, x) ∈ R+ × R3,
ut +R1∇n+R∇q − µ̄∆u− (µ̄+ ν̄)∇div(u) = f,
qt +R2div(u)− κ̄∆q = g,

lim
|x|→∞

n = 0, lim
|x|→∞

q = 0,

(n, u, q)
∣∣∣
t=0

= (ρ0 − ρ̄, u0, θ0 − θ̄),

(20)
where µ̄ = µ

ρ̄, ν̄ = ν
ρ̄, κ̄ = κ

Cν ρ̄
, R1 = Rθ̄

ρ̄ , R2 = Rθ̄
Cν

, and

f = −u · ∇u− µ̄ n
n+ρ̄∆u− (µ̄+ ν̄) n

n+ρ̄∇div(u)−R q
n+ρ̄∇n+R1

n
n+ρ̄∇n,

g = −u · ∇q − κ̄ n
n+ρ̄∆q − R

Cν
qdiv(u) + 1

Cν
S:∇u
n+ρ̄ .

(21)

Using standard energy method, one can prove (c.f. Matsumura-
Nishida (1979))



Theorem 5.1 Assume that (n0, u0, q0) ∈ H3(R3), then there

exists constant δ0 > 0 such that if

‖n0‖H3 + ‖u0‖H3 + ‖q0‖H3 ≤ δ0, (22)

then the problem (20) admits a unique global solution (n(t), u(t), q(t))

satisfying that for all t ≥ 0,

‖(n, u, q)(t)‖2
H3 +

∫ t
0

(
‖∇n(τ)‖2

H2 + ‖(∇u,∇q)(τ)‖2
H3

)
dτ

≤ C‖(n0, u0, q0)‖2
H3,

(23)

where C > 0 is a positive constant independent of time.

Similar results hold for isentropic NS equations (19).



5.4: Optimal Decay rates of Isentropic NS equations

We now consider the perturbation problem for (19). Define

ñ = ρ̃− ρ̄, m̃ = ρ̃ũ, then we rewrite (19) as

(ñ)t + div(m̃) = 0, (t, x) ∈ R+ × R3,
(m̃)t + α∇ñ− µ̄∆m̃− (µ̄+ ν̄)∇div(m̃) = F̃ ,

lim
|x|→∞

ñ = 0, lim
|x|→∞

m̃ = 0,

(ñ, m̃)
∣∣∣
t=0

= (ρ0 − ρ̄, ρ0u0),

(24)

where µ̄ = µ
ρ̄, ν̄ = ν

ρ̄, α = p̃′(ρ̄) = γAe
S̄
Cν ρ̄γ−1, and

F̃ = div(
[
m̃⊗m̃
ñ+ρ̄ + µ̄∇( ñm̃ñ+ρ̄)

]
)

−∇
[
(µ̄+ ν̄)div( ñm̃ñ+ρ̄) + (p̃(ñ+ ρ̄)− p̃(ρ̄)− αñ)

]
.

(25)
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Theorem 5.2: Assume that (n0,m0) ∈ L1(R3) ∩ H3(R3) with

δ0 =: ‖(n0,m0)‖L1(R3)∩H3(R3) is sufficiently small. Then there is

a unique global classical solution Ũ = (ñ, m̃) ∈ C([0,∞);H3(R3))

of the isentropic system (24). Furthermore if in addition (n0,m0)

satisfies ∫
R3
n0(x)dx 6= 0, or

∫
R3
m0(x)dx 6= 0, (26)

then for k = 0,1,2, it holds that

C−1(1 + t)−
3
4−

k
2 ≤ ‖∂kx(ñ, m̃)(t)‖L2(R3) ≤ C(1 + t)−

3
4−

k
2, (27)

where C,C−1 are positive constants independent of time.

Remark: M. Schonbek (1986, 1991) for incompressible NS; H.

Li, A. Matsumura, G. Zhang (2010) for NS-Poisson.

23



5.5 Optimal decay rates for compressible N-S-F system

Similar to the Isentropic case with much more complicated cal-
culations, we have

Theorem 5.3: Assume that initial data (n0,m0, q0) ∈ L1(R3) ∩
H3(R3) with δ0 =: ‖(n0,m0, q0)‖L1(R3)∩H3(R3) is sufficiently small.
Then there is a unique global classical solution U = (n,m, q) ∈
C([0,∞);H3(R3)) of the non-isentropic system (17). If in addi-
tion (n0,m0, q0) satisfies∫

R3
n0(x)dx 6= 0,

∫
R3
m0(x)dx 6= 0, or

∫
R3
q0(x)dx 6= 0, (28)

then for k = 0,1,2, it holds that

C−1(1 + t)−
3
4−

k
2 ≤ ‖∂kx(n,m, q)(t)‖L2(R3) ≤ C(1 + t)−

3
4−

k
2, (29)

where C,C−1 are positive constants independent of time.
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5.6 Justification of Isentropic Approximation

We now compare the solutions (n,m, q) and thus (n,m, S) of
(17), and (ñ, m̃) of (19). Recall,

(ρs)t + div(ρsu) + div(
q

θ
) =

1

θ
(S : ∇u+

κ

θ
|∇θ|2) (30)

Indeed, we are able to derive the following estimates

Theorem 5.4: Assume that initial value (n0,m0) ∈ L1(R3) ∩
H3(R3) with δ0 =: ‖(n0,m0)‖L1(R3)∩H3(R3) is sufficiently small

and S0 = S̄ with S̄ = Cν ln Rθ̄
Aρ̄γ−1. If the initial data are subject to

(26) and (28), then (ne,me) = (n−ñ,m−m̃) ∈ C([0,∞);H3(R3)),
satisfies for k = 0,1,2, that

‖∂kxne(t)‖L2(R3) < ‖(∂
k
xn, ∂

k
xñ)(t)‖L2(R3),

‖∂kxme(t)‖L2(R3) < ‖(∂
k
xm, ∂

k
xm̃)(t)‖L2(R3).

(31)
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More precisely, for s(x, t) = S(x, t) − S̄, it holds for k = 0,1,2

that

‖∂kxs(t)‖L2(R3) . δ2
0(1 + t)−

3
4−

k
2 + δ0(1 + t)−

5
4−

k
2,

‖∂3
xs(t)‖L2(R3) . δ0(1 + t)−

7
4,

(32)

and for some sufficiently large N0 > 0 and arbitrary small ε > 0,

it holds that

‖∂kx(ne,me)(t)‖L2(R3)

. (δ0 + 1
1+N0

+ N0

(1+N0)
7
4

)δ0(1 + t)−
3
4−

k
2

+δ0(1 + t)−
5
4−

k
2+2ε.

(33)



Theorem 5.4 clearly shows that the isentropic solution (ñ, m̃) is

a better approximation to (n,m, S) of the compressible Navier-

Stokes-Fourier system (17) than the constant equilibrium (ρ̄, m̄, S̄)

for large time.
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6. Summary

• For Euler, in the regime of smooth solutions, the isentropic
approximation is justified with the perspective of continuous
dependence of initial data. The weak solution case remains
open.

• For N-S-F, when initial data is small smooth near a con-
stant equilibrium, the isentropic approximation is justified
time asymptotically in the sense that the isentropic solu-
tions are better approximations to the NSF solutions than the
constant equilibrium time asymptotically. Joint with Y. Cao
and Y. Li, we justified the case with temperature-dependent
transport coefficients. All other cases are open.
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