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Multidimensional Euler-Poisson Equations
for Compressible Fluids

ρt +∇ · (ρv) = 0,

(ρv)t +∇ · (ρv⊗ v) +∇P + ρ∇Φ = 0,

∆Φ = κρ.

∇ = (∂x1 , . . . , ∂xd ) — Gradient with respect to x = (x1, . . . , xd) ∈ Rd

∆ = ∂2x1 + · · ·+ ∂2xd — Laplace operator with respect to x ∈ Rd

ρ — Density, v = (v1, . . . , vd) ∈ Rd — Velocity

P = P(ρ) = ρ2e ′(ρ) — Pressure with internal energy e(ρ)

For a polytropic perfect gas: P(ρ) = aργ , e(ρ) = a
γ−1ρ

γ−1, γ > 1

Φ — Gravitational potential of gaseous stars for κ = 4πg > 0 (d = 3)
Plasma electric field potential if κ < 0
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Multidimensional Euler Equations
for Compressible Fluids – Nonlocal Effect{

ρt +∇ · (ρv) = 0,

(ρv)t +∇ · (ρv⊗ v) +∇P = −κρ∇K ∗ ρ.

K = K (x, y) — Green function kernel ∼ fundamental solution

∇ = (∂x1 , . . . , ∂xd ) — Gradient with respect to x = (x1, . . . , xd) ∈ Rd

∆ = ∂2x1 + · · ·+ ∂2xd — Laplace operator with respect to x ∈ Rd

ρ — Density, v = (v1, . . . , vd) ∈ Rd – Velocity

P = P(ρ) = ρ2e ′(ρ) — Pressure with internal energy e(ρ)

For a polytropic perfect gas: P(ρ) = aργ , e(ρ) = a
γ−1ρ

γ−1, γ > 1
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Nonlinear Hyperbolic Systems of Balanced Laws

∂tU +∇ · F(U) = G (U ,∇K ∗ U , · · · )
U = (u1, · · · , um)⊤, x = (x1, · · · , xd) ∈ Rd , ∇x = (∂x1 , · · · , ∂xd )
F = (F1, · · · ,Fd) : Rm → (Rm)d is a nonlinear mapping

Hyperbolicity in D: For any ω ∈ Sd−1, U ∈ D,

(∇UF(U) · ω)m×m rj(U,ω) = λj(U,ω) rj(U,ω), 1 ≤ j ≤ m

λj(U,ω) are real

Connections and Applications:

Relaxation Theory for Hyperbolic Conservation Laws

Combustion Theory, MHD Theory, Damping/Coriolis/Quantum Effects, · · ·
Differential Geometry: Isometric Embeddings, Nonsmooth Manifolds...

Nonlocal Effects & Geometric Effects
Self-gravitational potential field (gaseous stars, ...)
Self-consistent electric potential field (plasma, semiconductor, ...)
Solutions with geometric structure
· · · · · ·
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Multidimensional Euler-Poisson Equations
for Compressible Fluids with Spherical Symmetry

ρt +∇ · (ρv) = 0,

(ρv)t +∇ · (ρv⊗ v) +∇P + ρ∇Φ = 0,

∆Φ = κρ.

Spherically Symmetric Solutions:

ρ(t, x) = ρ(t, r), v(t, x) = v(t, r)
x

r
, Φ(t, x) = Φ(t, r), r = |x|.

Then the functions (ρ,m) = (ρ, ρv) are governed by
ρt +mr = −d − 1

r
m,

mt + (
m2

ρ
+ P(ρ))r = − κρ

rd−1

∫ r

0

ρ(t, y) yd−1dy − d − 1

r

m2

ρ
.
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Nonlinear Hyperbolic Systems of Balanced Laws

∂tU +∇ · F(U) = G (U ,∇K ∗ U , · · · )
U = (u1, · · · , um)⊤, x = (x1, · · · , xd) ∈ Rd , ∇x = (∂x1 , · · · , ∂xd )

F = (F1, · · · ,Fd) : Rm → (Rm)d is a nonlinear mapping

Hyperbolicity in D: For any ω ∈ Sd−1, U ∈ D,

(∇UF(U) · ω)m×m rj(U,ω) = λj(U,ω) rj(U,ω), 1 ≤ j ≤ m

λj(U,ω) are real

Challenges: Singularities −→ Discontinuous/Wild/Singular Solutions

Shocks, Vortex Sheets, Vorticity Waves, Entropy Waves, ...

Compactness/Oscillation ⇐⇒ Weak Continuity & Uniqueness??

Cavitation/Decavitation =⇒ Degeneracy, · · ·
Concentration/Deconcentration =⇒ ∞–Propagation Speed,· · ·
· · · · · ·
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The Compressible Euler-Poisson Equations for
Self-Gravitating Newtonian Gaseous Stars

A gaseous star is modeled as a compactly supported gaseous fluid
surrounded by vacuum subject to self-gravitation.
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Euler-Poisson Equations with κ > 0
Self-Gravitational Gaseous Stars: Smooth Solutions

Chandrasekhar 1938:

γ > 2d
d+2 (e.g. γ > 6

5 for d = 3) is necessary to ensure the global
existence of finite-energy solutions with finite mass, which corresponds
to the one for the Lane-Emden solutions.
There no exist steady white dwarf star with total mass larger than the
Chandrasekhar limit Mch when γ ∈ ( 65 ,

4
3 ] for d = 3.

Goldreich-Webber 1980 (see also Deng-Xiang-Yang 2003, Fu-Lin 1998,
Makino 1992): There exist homologous self-similar collapsing solutions

when γ = 4
3 for d = 3.

Guo-Hadzic-Jang (ARMA 2021): ∃ ∞–D family of collapsing solutions.

γ ∈ (1, 43 ) (mass supercritical) & Mach number ≫ 1 =⇒ Concentration

Lei-Gu 2016, Luo-Xin-Zeng 2014, Makino 1986, · · · · · · .

Weak Solutions outside a solid ball |x| ≥ 1: Makino 1997, Xiao 2016, · · ·

Open Problem: ? ∃ Global Weak Entropy Solutions including the Origin??

Even under Self-Gravitation?
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Stationary Self-Gravitating Gaseous Stars Ω: κ > 0{
∇P(ρ) = −ρ∇Φ, ∆Φ = κρ in Ω,

ρ|∂Ω = 0.

Then Q(ρ) = ργ−1 is determined by the elliptic problem:{
∆Q = −AQ

1
γ−1 ,

Q|∂Ω = 0,
A = (γ−1)κ

γa > 0, γ > 1.

Theorem (Deng-Liu-Yang-Yao: ARMA 2002)

6
5 < γ < 2: There is a positive solution on Ω

1 < γ ≤ 6
5 and Ω is a ball: There is no positive solution

The total energy: E = 4−3γ
γ−1

∫
Ω P(ρ)dx

γ > 4
3 : the gas may expand to infinity and become a gas cloud.

γ ≤ 4
3 : the gas may collapse into a single point in finite time and

may eventually become a black hole.
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Euler-Poisson Equations for Plasma with κ < 0

Theorem (Existence Theory of Smooth Solutions)

There exist global smooth solutions around a constant neutral
background under irrotational, smooth, and localized
perturbation of the background with small amplitude.

Guo: CMP 1998

Guo-Pausader: CMP 2011

Ionescu-Pausader: IMRN 2013

Guo-Ionescu-Pausader: Ann. Math. 2016

· · · · · ·

Chen-Wang (JDE 1998): Smooth initial data with large C 1 – norm

Development of Singularities =⇒ Global weak solutions??
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Spherically Symmetric Solutions

The study of spherically symmetric solutions can date
back to the 1950s and has been motivated by many
important physical problems such as stellar dynamics
including gaseous stars and supernova formation.

Open Question: Could concentration be formed at the
origin (the density becomes a Dirac measure at the
origin), especially when a focusing spherical shock is
moving inward the origin?
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Multidimensional Isentropic Euler Equations: κ = 0{
ρt +∇x · (ρv) = 0,

(ρv)t +∇x · (ρv⊗ v) +∇xP = 0.

x = (x1, . . . , xd) ∈ Rd , ∇x — Gradient w.r.t. x ∈ Rd

ρ — Density, v = (v1, . . . , vd) ∈ Rd — Velocity,
P = P(ρ) = ρ2e ′(ρ) — Pressure with internal energy e(ρ)

For a polytropic perfect gas: P(ρ) = aργ , e(ρ) = a
γ−1ρ

γ−1, γ > 1

Spherically Symmetric Solutions:

ρ(t, x) = ρ(t, r), v(t, x) = v(t, r)
x

r
, r = |x|.

Then the functions (ρ,m) = (ρ, ρv) are governed by{
ρt +mr = −d−1

r
m,

mt + (m
2

ρ
+ P(ρ))r = −d−1

r
m2

ρ
.
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Defocusing: Expanding Spherically Symmetric Solns

G.-Q. Chen: Proc. Royal Soc. Edinburgh, 127A (1997), 243–259.

0 ≤
∫ ρ0(r)

0

√
P ′(s)

s
ds ≤ v0(r) ≤ C <∞

=⇒ Formulation of Cavitation near the origin
via Finite Difference Scheme....

* M. Slemrod: PRSE, 1996: Spherical Self-Similar Piston Problem

* F. Huang, T.-H. Li & D. Yuan 2019, · · · · · ·
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Focusing: Imploding Spherically Symmetric Solns

Guderley 1942, Courant-Fridrichs 1945, · · ·
Merle-Raphaël-Ronianski-Szeftel 2022: Singularity of Self-Similar Solutions

Rauch 1986: No BV or L∞ Bounds

Longstanding Problem: Does the concentration occur generically?
⇐⇒ Does the density develop into a measure at the origin generically?
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Spherically Symmetric Solutions for the Euler
Equations via Navier-Stokes Viscosity Limits

Theorem (Chen-Wang: ARMA 2022, Chen-Schrecker: ARMA 2018
Chen-Perepelitsa: CMP 2015)

Let the initial functions (ρ0,m0) satisfy the relative finite-energy
conditions with ρ̄ := lim

r→∞
ρ0(r) ≥ 0.

=⇒ There exists a sequence of Navier-Stokes-type approximate
solutions (ρε,mε),mε = ρεv ε, for ε > 0 such that, when ε→ 0,
there exists a subsequence of (ρε,mε) that converges
strongly almost everywhere to a finite-energy spherically
symmetric entropy solution (ρ,m) with
ρ(t, x) = ρ(t, |x|), (ρv)(t, x) = m(t, |x|) x|x| for all γ > 1.

*There EXIST entropy solutions (as zero viscosity limits) even ρ̄ > 0
with ∞–propagation speed,
but without concentration at the origin!!
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Entropy Analysis I

∂tU + ∂xF (U) = G (· · · ), U ∈ R2

Entropy-Entropy Flux Pair (η, q) if they satisfy the 2× 2 hyperbolic
system:

∇q(U) = ∇η(U)∇F (U).

For smooth solution U, ∂tη(U) + ∂xq(U) = ∇η(U)G (· · · ).

If the system is endowed with globally defined Riemann invariants

wi (U), 1 ≤ i ≤ 2, satisfying ∇wi (U) · ∇F (U) = λi (U)∇wi (U) so that

qwi = λiηwi , i = 1, 2.

That is, the entropy function η is determined by

ηw1w2 +
λ2w1

λ2 − λ1
ηw2 −

λ1w2

λ2 − λ1
ηw1 = 0.

For the Euler system, η is determined by the Euler-Poisson-Darboux equation:

ηw1w2 +
α

w2 − w1
(ηw2 − ηw1) = 0, α =

3− γ

2(γ − 1)
.
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Entropy Analysis - II{
ρt +mx = −d−1

r m, (m = ρv)

mt + (m
2

ρ + P(ρ))x = −d−1
r

m2

ρ .

Strict Hyperbolicity – fails: λ2 − λ1 = 2
√
P ′(ρ) → 0 when ρ→ 0 (vacuum)

Entropy Pair (η, q): ∇q(U) = ∇η(U)∇F (U) for U = (ρ,m)⊤

Convex Entropy: ∇2η(U) > 0 Weak Entropy: η(ρ, ρv)|ρ=0 = 0

Weak entropy pairs are represented as

ηψ(ρ, ρv) =

∫
R
χ(s)ψ(s)ds, qψ(ρ, ρv) =

∫
R
(θs + (1− θ)v)χ(s)ψ(s)ds

by C 2-functions ψ(s), where χ(s) is the weak entropy kernel:

χ(s) := [ρ2θ − (v − s)2
]λ
+
, θ =

γ − 1

2
, λ =

3− γ

2(γ − 1)

Physical Convex Entropy: Mechanical energy-energy flux pair (η∗, q∗):

η∗(ρ,m) =
1

2

m2

ρ
+ ρe(ρ), q∗(ρ,m) =

1

2

m3

ρ2
+m(e(ρ) +

P

ρ
)
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Entropy Analysis - III: Lp–Compactness Framework

Theorem (Lp-Compensated Compactness Framework)

Let a function sequence (ρε,mε)(t, r) defined on a compact domain
Ω ⋐ R+ × R+ satisfy

There exists a constant C > 0, independent of ε > 0, such that

∥ρε∥Lmax{γ+1,γ+θ}(Ω) + ∥ρε(uε)3∥L1(Ω) ≤ C ,

For any weak entropy pair generated by ψ ∈ C 2
c (R) such that the

corresponding sequence of entropy dissipation measures

∂tη
ψ(ρε,mε) + ∂rq

ψ(ρε,mε) is compact in H−1(Ω).

Then there exist both a subsequence (still denoted) (ρε,mε)(t, r) and a
measurable vector function (ρ,m)(t, r) such that

(ρε,mε)(t, r) → (ρ,m)(t, r) a.e. as ε→ 0.

Lp–Framework for General γ > 1: Chen-Perepelitsa, CPAM 2010

* DiPerna, Ding-Luo-Chen, Lions-Perthame-Souganidis-Tadmor,

Chen-LeFloch, LeFloch-Westdickenberg, · · ·
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Multidimensional Euler-Poisson Equations
ρt +∇ ·M = 0,

Mt +∇ ·
(M⊗M

ρ

)
+∇P + ρ∇Φ = 0,

∆Φ = κρ, x = (x1, . . . , xd) ∈ Rd .

ρ — Density, v = (v1, . . . , vd) ∈ Rd — Velocity, ∇x — Gradient w.r.t. x ∈ Rd

Φ — Gravitational potential of gaseous stars if κ = 4πg > 0 when d = 3

& plasma electric field potential if κ < 0

Spherically Symmetric Solutions:

ρ(t, x) = ρ(t, r), v(t, x) = v(t, r)
x

r
, Φ(t, x) = Φ(t, r), r = |x|.

Then the functions (ρ,m) = (ρ, ρv) are governed by
ρt +mr = −d−1

r
m,

mt + (m
2

ρ
+ P(ρ))r = −ρΦr − d−1

r
m2

ρ
,

Φrr +
d−1
r
Φr = κρ.
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Finite Initial Total-Energy and Total-Mass

Initial Condition:

(ρ,M)|t=0 = (ρ0(x),M0(x)) = (ρ0(|x|),m0(|x|)
x

|x|
) −→ (0, 0) as |x| → ∞.

Asymptotic Condition:

Φ(t, x) = Φ(t, |x|) −→ 0 as |x| → ∞.

Finite initial total-energy:

E0 :=


∫
Rd

(1
2

∣∣M0√
ρ0

∣∣2 + ρ0e(ρ0) +
1

2
|∇xΦ0|2

)
(x)dx <∞ for κ < 0 (plasmas),∫

Rd

(1
2

∣∣M0√
ρ0

∣∣2 + ρ0e(ρ0)
)
(x)dx <∞ for κ > 0 (gaseous stars).

Finite initial total-mass: M :=

∫
Rd

ρ0(x)dx = ωd

∫ ∞

0

ρ0(r) r
d−1dr <∞.

e(ρ) := a0
γ−1ρ

γ−1 — internal energy

ωd := 2π
d
2

Γ( d
2
)
— surface area of the unit sphere in Rd
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Spherically Symmetric Solutions for the Euler-Poisson
Equations via inviscid Navier-Stokes-Poisson-type Limits

Theorem (Chen-He-Wang-Yuan (CPAM 2023))

Let (ρ0,m0)(|x|) satisfy the finite-energy and finite-mass conditions.
=⇒ There exist Navier-Stokes-Poisson-type viscosity solutions

(ρε,mε,Φε) for ε > 0 such that, when ε→ 0, there exists
a subsequence of (ρε,mε,Φε) that converges strongly a.e.
to a finite-energy spherically symmetric entropy solution

(ρ,m,Φ)(t, r) with
ρ(t, x) = ρ(t, |x|), M(t, x) = m(t, |x|) x|x| , Φ(t, x) = Φ(t, |x|)

when (i) γ > 1 and ρ0 ∈ L
2d
d+2 (Rd) for κ < 0 (plasma);

(ii) γ > 2(d−1)
d

or γ ∈ ( 2d
d+2 ,

2(d−1)
d ] with the critical mass Mc(γ)

for κ > 0 (gaseous stars).

There exist entropy solutions (as inviscid Navier-Stokes limits)
without concentration at the origin even under self-gravitation!!
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Remarks I

The results provide the global-in-time solutions of the M-D CEPEs
with large initial data.

For κ > 0 (gaseous stars), condition: γ > 2d
d+2 (i.e., γ > 6

5 for d = 3)
is necessary to ensure the global existence of finite-energy solutions
with finite total mass, which corresponds to the one for the
Lane-Emden solutions.

Chandrasekhar (1938) showed that there is no spherically symmetric
steady solution of gaseous stars for the 3-D CEPEs with γ ∈ (1, 65 )
with finite total mass (also see S. Lin, SIMA 1997). Thus, the
conjecture is that there is no global-in-time solution even in the weak
sense in general.

For the Poisson equation, the initial condition is not needed since
∇Φ0 is indeed determined by the initial density ρ0.

When κ < 0 (plasma) and γ ∈ (1, 2d
d+2 ), the additional condition:

ρ0 ∈ L
2d
d+2 (Rd) is required to make the Poisson equations solvable.

For case κ > 0 (gaseous stars), this condition is not required
since γ > 2d

d+2 (necessary for the existence).
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Remarks II

For the steady gaseous star problem, Chandrasekhar(1938) observed
that there no exist steady white dwarf star with total mass larger than
the Chandrasekhar limit Mch when γ ∈ (65 ,

4
3 ] for d = 3.

In our results for the 3-D time-dependent problem with γ ∈ (65 ,
4
3 ],

the restriction on the total initial-mass M < Mc(γ) is also required,
which is consistent with the Chandrasekhar phenomenon.

A further fundamental question is whether concentration (the delta
measure) could be formed at some time when M > Mch.

Indeed, for the case that γ ∈ (1, 43) and the Mach number ≫ 1:
Guo-Hadzic-Jang (2021) constructed an infinite-D family of collapsing
spherically symmetric solutions of the 3-D CEPEs: The gaseous star
continuously shrinks to be one point (i.e., the delta measure).
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Main Strategies

Design an appropriate free boundary problem with
appropriate approximate initial data
stress-free boundary condition

to construct the approximate solutions (involving the initial location
b > 0 of the free boundary – a large parameter, besides the small
parameter ε > 0) for CNSPEs.

Obtain the trace estimates in the energy estimates
& adopt the Bresch-Desjardins entropy
to make uniform estimates of the approximate solutions,
independent of ε > 0 and b > 0.

Prove that the Navier-Stokes-Poisson viscosity solutions satisfy
the Lp–compensated compactness framework after first taking
b → ∞, which then ensures the strong convergence of the viscosity
solutions as ε→ 0.

Verify that the strong limit functions are finite-energy global solutions
of the compressible Euler-Poisson equations with large initial data of
spherical symmetry.
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Navier-Stokes-Poisson Approximate Solutions
Consider the following approximate free boundary problem for CNSPEs:

ρt + (ρv)r +
d−1
r ρv = 0,

(ρv)t + (ρv2 + P)r +
d−1
r ρv2 + κρ

rd−1

∫ r

b−1 ρ(t, y) y
d−1dy

= ε
(
ρ(vr +

d−1
r v)

)
r
− ε d−1

r vρr ,

for (t, r) ∈ ΩT := {(t, r) : b−1 ≤ r ≤ b(t), 0 ≤ t ≤ T} (moving domain),
with {r = b(t) : 0 < t ≤ T} as a free boundary:

b′(t) = v(t, b(t)) for t > 0, b(0) = b ≫ 1,

On the free boundary r = b(t), the stress-free boundary condition:(
P(ρ)− ϵρ(vr +

d − 1

r
v)
)
(t, b(t)) = 0 for t > 0.

On the fixed boundary r = b−1, the Dirichlet boundary condition:
v |r=b−1 = 0 for t > 0.

The initial condition: (ρ, ρv)|t=0 = (ρϵ,b0 , ρϵ,b0 v ϵ,b0 )(r) for r ∈ [b−1, b].

(ρϵ,b0 , v ϵ,b0 )(r) are smooth/compatible and 0 < C−1
ϵ,b ≤ ρϵ,b0 (r) ≤ Cϵ,b <∞.

*Duan-Li, JDE 2015: κ > 0 with γ ∈ ( 6
5
, 4
3
] =⇒ General as needed for d ≥ 2.

*Donatelli-Marcati, Nonlinearity 2008: Navier–Stokes–Poisson system with large data
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Basic Energy Estimates for the Approx. Solutions I

The approximate solution (ρ, v)(t, r) := (ρϵ,b, v ϵ,b)(t, r) satisfies
the following energy identity:∫ b(t)

b−1

(1
2
ρv2 + ρe(ρ)

)
(t, r) rd−1dr − κ

2

∫ b(t)

b−1

1

rd−1

( ∫ r

b−1

ρ(t, y) yd−1dy
)2
dr

+ ϵ

∫ t

0

∫ b(s)

b−1

(
ρv2r + (d − 1)ρ

v2

r2
)
(t, r) rd−1drds

+ (d − 1)ϵ

∫ t

0
(ρv2)(s, b(s))b(s)d−2 ds

=

∫ b

b−1

((1
2
ρ0v

2
0 + ρ0e(ρ0)

)
(r)− κ

2

1

r2(d−1)

( ∫ r

b−1

ρ0(t, y)y
d−1dy

)2)
rd−1dr ,

where ρ(t, r) is understood to be 0 for r ∈ [0, b−1] ∪ (b,∞) in the 2nd

term of the right-hand side (RHS) and the 2nd term of the left-hand side
(LHS).

There are the three cases:
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Basic Energy Estimates for the Approx. Solutions II

Case 1: If κ < 0 (plasmas) with γ > 1, then

∫ b(t)

b−1

(1
2
ρv2 + ρe(ρ)

)
(t, r) rd−1dr +

|κ|
2

∫ b(t)

b−1

1

rd−1

(∫ r

b−1

ρ(t, y) yd−1dy
)2

dr

+ ϵ

∫ t

0

∫ b(s)

b−1

(
ρv2r + (d − 1)ρ

v2

r2
)
(s, r) rd−1drds

+ (d − 1)ϵ

∫ t

0
(ρu2)(s, b(s)) bd−2(s)ds

=

∫ b

b−1

((1
2
ρ0v

2
0 + ρ0e(ρ0)

)
(r) +

|κ|
2r2(d−1)

( ∫ r

b−1

ρ0(y) y
d−1dy

)2)
rd−1dr .
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Basic Energy Estimates for the Approx. Solutions IV

Case 2: If κ > 0 (gaseous stars) with γ > 2(d−1)
d , then

1

2

∫ b(t)

b−1

(
ρv2 + ρe(ρ)

)
(t, r) rd−1dr

+ ϵ

∫ t

0

∫ b(s)

b−1

(
ρv2r + (d − 1)ρ

v2

r2
)
(s, r) rd−1drds

+ (d − 1)ϵ

∫ t

0
(ρv2)(s, b(s)) bd−2(s) ds

≤ C (M,E0),

where C (M,E0) > 0 is some positive constant depending only on the total
initial-mass M and initial-energy E0.
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Basic Energy Estimates for the Approx. Solutions III

Case 3: If κ > 0 (gaseous stars)

with γ ∈ ( 2d
d+2 ,

2(d−1)
d ] and M < Mϵ,b

c (γ), then

∫ b(t)

b−1

(1
2
ρv2 + Cd ,γρe(ρ)

)
(t, r) rd−1dr

+ ϵ

∫ t

0

∫ b(s)

b−1

(
ρv2r + (d − 1)ρ

v2

r2
)
(s, r) rd−1drds

+ (d − 1)ϵ

∫ t

0
(ρu2)(s, b(s)) bd−2(s) ds

≤
∫ b

b−1

(1
2
ρ0v

2
0 + ρ0e(ρ0)

)
(r) rd−1dr ,

where Cd ,γ > 0 is some positive constant depending only on d and γ.
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Uniform Estimates for the Approx. Solutions

The basic energy estimates lead to the following estimates:

|rd−1Φr (t, r)| ≤
M

ωd
for (t, r) ∈ [0,∞)× [0,∞),

∥Φ(t)∥
L

2d
d−2 (Rd )

+ ∥∇Φ(t)∥L2(Rd ) ≤ C (M,E0) for t ≥ 0.

BD-type entropy estimate: Given any fixed T > 0, then

ϵ2
∫ b(t)

b−1

|ρ(t, r)r |2

ρ(t, r)
rd−1dr + ϵ

∫ t

0

∫ b(s)

b−1

|(ρ
γ
2 )r |2 rd−1drds

+ P(ρ(t, b(t))) bd(t) +
1

ϵ

∫ t

0

P(ρ(s, b(s)))P ′(ρ(s, b(s))) bd(s)ds

≤ C (E0,M,T ) for all t ∈ [0,T ].

Higher integrability on the density and the velocity:∫ T

0

∫
K

(
ρ|v |3 + ρmax{γ+1,γ+θ})(t, r)drdt ≤ C (K ,M,E0,T )

for any K ⋐ [a, b(t)] and any t ∈ [0,T ].
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Expanding of Domain ΩT with Free Boundary

Given T > 0 and ϵ ∈ (0, ϵ0], there exists a positive constant

B(M ,E0,T , ϵ) > 0 such that, if b ≥ B(M ,E0,T , ϵ),

b(t) ≥ b

2
for t ∈ [0,T ].

* For the free boundary problem, a follow-up point is whether the free
boundary domain ΩT will expand to the whole space as b → ∞; otherwise,
it would not be a good approximation to the original Cauchy problem.

* We solve this difficulty by proving that

b(t) ≥ b

2
for t ∈ [0,T ].

provided b ≫ 1 for any given T .
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Existence of Global Weak Solutions of CNSPEs

Similar to the compactness arguments of Mellet-Vasseur (CPDE, 2007)
based on these uniform estimates just presented, we take the limit, b → ∞,
to obtain the global weak viscosity solutions of CNSPEs.

Let (η, q) be a weak entropy pair for any smooth compact supported
function ψ(s) on R. Then, for ϵ ∈ (0, ϵ0], the Navier-Stokes-Poisson
viscosity solutions (ρϵ,mϵ) satisfy that

∂tη(ρ
ϵ,mϵ) + ∂rq(ρ

ϵ,mϵ) is compact in H−1
loc (R2

+).

Given any T ∈ (0,∞), the following uniform bounds hold for all t ∈ [0,T ]:∫ ∞

0

ρϵ(t, r) rd−1dr =

∫ ∞

0

ρϵ0(r) r
d−1dr = M,∫ ∞

0

η∗(ρϵ,mϵ)(t, r) rd−1dr + ϵ

∫
R2
+

(ρϵ|uϵ|2)(t, r) rd−3drdt + ∥Φϵ(t)∥
L

2d
d−2 (Rd )

+

∫ ∞

0

(∫ r

0

ρϵ(t, y) yd−1dz
)
ρϵ(t, r) rdr + ∥∇Φϵ(t)∥L2(Rd ) ≤ C(M,E0),

ϵ2
∫ ∞

0

∣∣(√ρϵ(t, r))r
∣∣2rd−1dr + ϵ

∫ T

0

∫ ∞

0

∣∣((ρϵ) γ
2 )r

∣∣2rd−1drdt ≤ C(M,E0,T ).
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Entropy Analysis: Lp–Compactness Framework

Theorem (Lp-Compensated Compactness Framework)

Let a function sequence (ρε,mε)(t, r) defined on a compact domain
Ω ⋐ R+ × R+ satisfy

There exists a constant C > 0, independent of ε > 0, such that

∥ρε∥Lmax{γ+1,γ+θ}(Ω) + ∥ρε(uε)3∥L1(Ω) ≤ C .

For any weak entropy pair generated by ψ ∈ C 2
c (R) such that the

corresponding sequence of entropy dissipation measures

∂tη
ψ(ρε,mε) + ∂rq

ψ(ρε,mε) is compact in H−1(Ω).

Then there exist both a subsequence (still denoted) (ρε,mε)(t, r) and a
measurable vector function (ρ,m)(t, r) such that

(ρε,mε)(t, r) → (ρ,m)(t, r) a.e. as ε→ 0.

Lp–Framework for General γ > 1: Chen-Perepelitsa, CPAM 2010

* DiPerna, Ding-Luo-Chen, Lions-Perthame-Souganidis-Tadmor,

Chen-LeFloch, LeFloch-Westdickenberg, · · ·
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M-D Euler-Poisson Equations for White Dwarf Stars
ρt +∇ · (ρv) = 0,

(ρv)t +∇ · (ρv⊗ v) +∇P + ρ∇Φ = 0,

∆Φ = κρ.

ρ – Density, v = (v1, . . . , vd) ∈ Rd – Velocity

Φ – Self-consistent electric field potential, κ > 0.

P = P(ρ) = ρ2e′(ρ) – General pressure with internal energy e(ρ)

For a white dwarf star (Chandrasekhar 1938),

P(ρ) = A

∫ Bρ
1
3

0

σ4

√
D + σ2

dσ for ρ > 0,

where A,B and D are positive constants.

=⇒ P(ρ) ∼= ρ
5
3 as ρ→ 0, P(ρ) ∼= ρ

4
3 as ρ→ ∞.

*G.-Q. Chen, F. Huang, T.-H. Li, W. Wang, and Y. Wang:

Global Finite-Energy Solutions of the Compressible Euler-Poisson Equations
with Spherical Symmetry for White Dwarf Stars, Preprint 2023.
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Lp–Compactness Framework
for General Pressure Laws I: P(ρ)

(i) P(ρ) ∈ C 1([0,∞)) ∩ C 4(R+) and satisfies the hyperbolic and
genuinely nonlinear conditions:

P ′(ρ) > 0, 2P ′(ρ) + ρP ′′(ρ) > 0 for ρ > 0.

(ii) There exist constants γ1 ∈ (1, 3) and a1 > 0 such that

P(ρ)∼ a1ρ
γ1 as ρ∼ 0.

(iii) There exist constants γ2 ∈ (65 , γ1] and a2 > 0 such that

P(ρ)∼ a2ρ
γ2 as ρ∼∞.

*Examples: White dwarf stars, · · · .
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Lp–Compactness Framework
for General Pressure Laws II: p(ρ)

Theorem (G.-Q. Chen, F. Huang, T.-H. Li, W. Wang & Y. Wang 2023)

Let a function sequence (ρε,mε)(t, r) defined on a compact domain
Ω ⋐ R+ × R+ satisfy

There exists a constant C > 0, independent of ε > 0, such that

∥ρε∥Lγ2+1(Ω) +
∥∥ (mε)3

(ρε)2
∥∥
L1(Ω)

≤ C .

For any weak entropy pair generated by compactly supported test
function ψ ∈ C 2

c (R) such that the corresponding sequence of entropy
dissipation measures

∂tη
ψ(ρε,mε) + ∂rq

ψ(ρε,mε) is compact in W−1,1(Ω).

Then there exist both a subsequence (still denoted) (ρε,mε)(t, r) and a
measurable vector function (ρ,m)(t, r) such that

(ρε,mε)(t, r) → (ρ,m)(t, r) a.e. as ε→ 0.

*Schrecker-Schultz 2019–20
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Multidimensional Euler-Poisson Equations
with Doping Profile for Plasma

ρt +∇ · (ρv) = 0,

(ρv)t +∇ · (ρv⊗ v) +∇P + ρ∇Φ = 0,

∆Φ = κ(ρ− b(x)).

∇ = (∂x1 , . . . , ∂xd ) — Gradient with respect to x = (x1, . . . , xd) ∈ Rd

∆ = ∂2x1 + · · ·+ ∂2xd — Laplace operator with respect to x ∈ Rd

ρ — Density, v = (v1, . . . , vd) ∈ Rd — Velocity

P = P(ρ) = ρ2e′(ρ) — Pressure with internal energy e(ρ)

Φ — Self-consistent electric field potential

b(x) — Doping profile with lim|x|→∞ b(x) = ρ∗ > 0.

*G.-Q. Chen, L. He, Y. Wang and D. Yuan: Global Solutions of the Compressible
Euler-Poisson Equations with Doping Profile and Large Data of Spherical

Symmetry for Plasma Dynamics, Preprint 2023.
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Nonlinear Hyperbolic Systems of Balance Laws

∂tU +∇x · F(U) = G (U ,∇K ∗ U , · · · )
U = (u1, · · · , um)⊤, x = (x1, · · · , xd) ∈ Rd , ∇x = (∂x1 , · · · , ∂xd )
F = (F1, · · · ,Fd) : Rm → (Rm)d is a nonlinear mapping

Hyperbolicity in D: For any ω ∈ Sd−1, U ∈ D,

(∇UF(U) · ω)m×m rj(U,ω) = λj(U,ω) rj(U,ω), 1 ≤ j ≤ m

λj(U,ω) are real

Connections and Applications:

Relaxation Theory for Hyperbolic Conservation Laws

Combustion Theory, MHD Theory, Damping/Coriolis/Quantum Effects, · · ·
Differential Geometry: Isometric Embeddings, Nonsmooth Manifolds...

Nonlocal Effects & Geometric Effects
Self-gravitational potential field (gaseous stars, ...)
Self-consistent electric potential field (plasma, semiconductor, ...)
Solutions with geometric structure
· · · · · ·
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Buon Settantesimo Compleanno

Piero!
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