
RECOVERY OF HYPERBOLIC CONSERVATION
LAWS BY SPACE-TIME OPTIMIZATION

Yann Brenier,
CNRS, Laboratoire de Mathématiques d’Orsay,

Université Paris-Saclay
(in association with the CNRS-INRIA -emerging- team "PARMA")

International Conference on Partial Differential Equations
in honor of the 70th birthday of PIERANGELO MARCATI

GSSI, L’Aquila, June 19-24, 2023

YB (CNRS, Orsay) HypOp Space-time GSSI 20 Giugno 2023 1 / 18



PIERO URBI ET ORBI

YB (CNRS, Orsay) HypOp Space-time GSSI 20 Giugno 2023 2 / 18



SUMMARY

In Y.B. CMP ’18, we managed to solve the IVP by
space-time CONVEX MINIMIZATION for the class of
ENTROPIC SYSTEMS OF CONSERVATION LAWS.

More recently, in Y.B. CRAS ’22, we extended this
method to the EINSTEIN equation in vacuum, but,
since there is (apparently) no convex entropy, we can
no longer perform convex minimization. So, we just
recover smooth solutions as critical points of a suitable
functional which is surprisingly very reminiscent of
classical continuum mechanics (BURGERS/EULER).
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Let us start with Einstein’s equation (Y.B. ’22,’23+)
by introducing the variational principle: find 4 × 4 (non
symmetric) matrix-valued fields (C,M)(x , ξ) over the
tangent bundle (x , ξ) ∈ (R4)2 of R4, critical points of∫

trace(MC−1M)(x , ξ)dxdξ

s.t. ∇x · C +∇ξ · M = 0, and C = ∇ξA − (∇ξ · A) I4,

for some vector potential A = A(x , ξ) ∈ R4.

N.B. Here ∇x , ∇ξ are just FLAT Euclidean gradients. More precisely, in coordinates,

C j
k = ∂ξk Aj − ∂ξγ Aγ δj

k , ∂x j C j
k + ∂ξj M j

k = 0, trace(MC−1M) = M j
k (C

−1)k
qMq

j .
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Theorem (Y.B. CRAS ’22) english version:

https://www.lmo.universite-paris-saclay.fr/

∼yann.brenier/GROT-note-english2022.pdf

Let g be a smooth solution to the Einstein equations in
vacuum, with Christoffel symbols Γ = ”g−1∂g”. Set

Aj = ξ j detg(x) cos(
gkq(x)ξkξq

2
), V j

k = −Γj
kq(x)ξ

q,

C j
k = ∂ξk Aj − ∂ξqAq δj

k , M j
k = C j

qV q
k + V j

qCq
k .

Then (C,M) satisfies our variational principle and

g ij(x)
√

−detg(x) = cst
∫
(ξ iAj + ξ jAi)(x , ξ)dξ.
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Our trick: write everything on the "tangent bundle"

(x , ξ) ∈ R4 × R4, V j
k(x , ξ) = −Γj

kγ(x)ξ
γ

(j, k , γ ∈ {0, 1, 2, 3})

so that the Riemann and the Ricci curvatures just read

Rn
jkm(x)ξ

m =
(
(∂xk + V γ

k ∂ξγ)V
n
j − (∂x j + V γ

j ∂ξγ)V
n
k

)
(x , ξ)

= ∂xk V n
j + ∂ξj(V γ

k V n
γ )− ∂x j V n

k − ∂ξk (V γ
i V n

γ ),

Rkm(x)ξm = ∂xk V j
j + ∂ξj(V γ

k V j
γ)− ∂x j V j

k − ∂ξk (V γ
j V j

γ)

and treat this matrix-valued Burgers operator more or
less as we did for entropic conservation laws in 2018.
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Let us move back to entropic conservation laws

∂tU +∇ · (F (U)) = 0, U = U(t , x) ∈ W ⊂ Rm, x ∈ Td ,

with a strictly convex "entropy" E : W → R (where W is
convex) and an "entropy flux" Z ∈ W → Rd , such that
each smooth solution U satisfies the extra
conservation law ∂t(E(U)) +∇ · (Z(U)) = 0.
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A minimization approach to the IVP (Y.B. ’18)

Given U0 on D = Td and T > 0, minimize the total
entropy among all weak solutions U of the IVP:

inf
U

∫ T

0

∫
D
E(U), U = U(t , x) ∈ W ⊂ Rm subject to

∫ T

0

∫
D
∂tA · (U − U0) +∇A · F (U) = 0

for all smooth A = A(t , x) ∈ Rm with A(T , ·) = 0.

The problem is not trivial since there may be many weak solutions starting from U0

which are not entropy-preserving (by "convex integration" à la De Lellis-Székelyhidi).
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The resulting saddle-point problem

inf
U

sup
A

∫ T

0

∫
D
E(U)− ∂tA · (U − U0)−∇A · F (U)

where A = A(t , x) ∈ Rm is smooth with A(T , ·) = 0.
Here U0 is the initial condition and T the final time.

N.B. The supremum in A exactly encodes that U is a
weak solution with initial condition U0,
each test function A acting as a Lagrange multiplier.

inf
U
sup

A
≥ sup

A
inf
U
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Reversing infimum and supremum...

leads to a concave maximization problem in A, namely

sup
A(T ,·)=0

inf
U

∫ T

0

∫
D
E(U)− ∂tA · (U − U0)−∇A · F (U)

= sup
A(T ,·)=0

∫ T

0

∫
D
−G(∂tA,∇A) + ∂tA · U0,

G(E ,B) = sup
V∈W⊂Rm

E ·V+B ·F (V )−E(V ), ∀(E ,B) ∈ Rm+d .

Note that G is automatically convex (even without E !)
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Main results (Y.B. CMP ’18)
Theorem 1: If U is a smooth solution to the IVP and T
is not too large

(*), then U can be recovered from the
concave maximization problem which admits
A(t , x) = (t − T )E ′(U(t , x)) as solution.

Theorem 2: For the Burgers equation, all entropy
solutions can be recovered, for arbitrarily large T .

(*) more precisely if, ∀ t , x ,V ∈ W, E”(V )− (T − t)F”(V ) · ∇(E ′(U(t , x))) > 0.
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Let us consider the simple Burgers equation

∂tu + ∂x(u2/2) = 0. Then, we get the convex problem

inf
(ρ,m)

{
∫
[0,T ]×T

ρ−1m2 + 2mu0 | ∂tρ+ ∂xm = 0, ρ|t=T = 1}.

As mentioned, for arbitrarily large T , we may recover,
through this problem, the correct "entropy solution" à
la Kruzhkov, but only at time T and (surprisingly
enough) not for t < T , once shocks have formed!
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’fort.10’

Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Formation of two shock waves. (Vertical axis: t ∈ [0,1/4], horizontal axis: x ∈ T.)
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’fort.19’

Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Recovery of the solution at time T=0.1 by convex optimization.

Observe the formation of a first vacuum zone as the first shock has formed.
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’fort.24’

Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Recovery of the solution at time T=0.16 by convex optimisation.

Observe the formation of a second vacuum zone as the second shock has formed.
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’fort.29’

Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Recovery of the solution at time T=0.225 by convex optimisation.

Observe the extension of the two vacuum zones.
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Conclusion: EINSTEIN so close to BURGERS!

Inf(ρ,m)

∫
[0,T ]×T

(mρ−1m)(t , x)+2m(t , x)u0(x)

(t , x) ∈ [0,T ]× T → (ρ,m)(t , x) ∈ R+ × R s.t.

∂tρ+ ∂xm = 0, ρ|t=T = 1

Crit(C,M)

∫
trace(MC−1M)(x , ξ)dxdξ

(x , ξ) ∈ R4+4 → (C,M)(x , ξ) ∈ R4×4 × R4×4 s.t.

∇x · C +∇ξ · M = 0, ∃A, C = ∇ξA − (∇ξ · A) I4.
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