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From continuous to discrete

A continuous infinite-dimensional problem (PDEs, FDEs, IDEs etc) is
transformed, via a suitable numerical approximation, into a linear
(nonlinear) system of algebraic equations

» Structure inherited from the continuous counterpart
» Large dimensions (e.g. 10°, p > 10)

» Spectral features described via a proper Symbol

Goal: solving the resulting linear system by Optimal Methods
(operation count to obtain the solution of the same order of the
matrix-vector multiplication)

Goal: understanding the spectral properties of the resulting matrices
(Weyl formulas: from discrete to continuous; information for
Engineers)



From continuous to discrete

| Linear PDE/FDE/IDE £ = g]

4

‘Linear Numerical Method — L,u, =g,

> dim(L,) = 00 as n = o0
» {L,} has an asymptotic spectral distribution described by a
spectral /sv symbol

’ GLT sequences = a tool for computing spectral/sv symbols ‘

’GLT sequences = a tool for designing fast numer. methods‘

‘ {L,} is usually a GLT sequence




In the discrete case

» Large dimensions imply that direct solvers (Gaussian Elimination
etc.) have to be avoided

> lterative solvers: A) operation count per iteration of the same order
of the matrix-vector multiplication B) the method is Optimal if the
number of iterations < c(e), with e desired precision.

Requirement B) depends on the spectrum of the involved matrices: it
depends especially on the possibility of approximating the coefficient
matrix in the ill-conditioned subspaces (i.e. associated to the
eigenvectors with small eigenvalues).

4

For large classes of matrices coming from continuous problems, the
knowledge of the spectrum is often compactly represented in a
function, called the symbol, the GLT symbol: a wide generalization of
the (local) Fourier Analysis, see e.g. T.Chan, H.EIman, SIREV 1989



Main items

Symbol for matrix sequences

1.

Toeplitz, Diagonal structures and symbol

2. The GLT algebra and the notion of symbol

3. Approximation of Differential Operators

Examples + (preconditioning, multigrid)

4.

© 0 N oo

FEM of degree p in d dimensions

IgA of degree p in d dimensions
Approximation Q2Q1 of the Linear Elasticity
Curl-Div, Curl-Curl, Navier Stokes

FDEs and symbol approach

The symmetrization (next lecture)



Collaborators

Adriani, Ahmad, Al Aidarous, Barakitis, Barbarino, Beckermann,
Benedusi, Bertaccini, Bianchi, Bolten, Bottcher, R. Chan, Donatelli,
Dorostkar, Dravins, Dumbser, Durastante, Ekstrom, Ferrari Furci, Garoni,
Golub, Golinskii, Hon, Hughes, Krause, Kuijlaars, Manni, Mazza,
Molteni, Neytcheva, Pelosi, Pennati, Ratnani, Reali, Semplice, Sesana,
Speleers, Tablino Possio, Tavelli, Tilli, Tyrtyshnikov, Vassalos.

» In blue consolidated collaborations on the themes of the talk;

» In green recently started collaborations (with the goal of
variable-coeff. vector PDEs).

U
Elasticity, Navier-Stokes, MHD, evolution PDEs, FDEs ...



The GLT components I: Toeplitz sequences

Let f € L}([—m,n]) with Fourier coefficients

1 [T .
L f —ijo
i =5 - (6)e™""d0,

fo fa
fo

jez

f(n-1)

f_1
fo



The GLT components I: Toeplitz sequences

2 -1
-1
Tn(2 —2cos(8)) =
=1
-1 2
Its eigenvalues are a sampling of f(6) =2 — 2 cos(6):

N=2-2cos({5),j=1,....n

In general if f is real-valued a.e. then

{Ta(f)}n ~x £(0)
and
{Tn(f)}n ~o f(o)

The notions ~ , generalize that of sampling: more precise definitions
later on.



The GLT components Il: diagonal sampling matrices

Let a: [0,1] - C

The eigenvalues of D,(a) are clearly the samplings of a(x) on [0, 1] and

{Dn(a)}n ~a0 alx).



The GLT algebra: Toeplitz + Diagonal

GLT sequences = The algebra of matrix sequences containing {D,(a)}, a
Riemann integrable, {T,(f)}, f Lebesgue integrable, {X,} zero
distributed sequences.
GLT 1. If {A,}n ~cLr & then {A,}, ~» k. If, moreover, the matrices A,
are Hermitian, then {A,}, ~ k.
GLT 2. If {Ap}n ~cLr K and A, = X, + Y, where
> |IXull, || Yall < C for some constant C independent of n,
> every X, is Hermitian,

Ya
T L L

n— oo n

then {A,}, ~x K.
GLT 3. We have
> {T.(A)}n ~crr k(x,0) = £(0) if f € L*(—=,7),
> {D,(a)}n ~crr K(x,0) = a(x) if a € Coe.[0,1],
> {Z,}n ~crr K(x,0) = 0 if and only if {Z,}s ~, 0.
GLTA4. If {An}n ~aLT K then {A;‘;}n ~GLT K-



The GLT algebra: Toeplitz + Diagonal

GLT5. If Ay = an A + AP with o; € C and {AV}, ~aur ki, i = 1,2,
then {Antn ~arr K = arky + anka. If Ay = AD AR with
{A } ~aur Ki, I = 1,2, then {A } ~NGQLT K = K1K2.

GLT6. If {A,}, ~crr & and k # 0 a.e., then {Al}, ~qrr k1

GLT 7. If {A,}n ~cLr K and each A, is Hermitian, then
{f(An)}n ~cr1 f(K) for every continuous function f : C — C.

GLT 8. {A,}» ~cLr k if and only if there exist GLT sequences
{Bn,m}tn ~crr Km such that {Bp m}n o8 {An}n and Ky — K in
measure over [0,1] x [—m, 7.



The GLT idea: Toeplitz + Diagonal

As an example (not academical!)

> A, = Dy(a1)Ta(f) + Ta(£)Xs + Ya, with {X,}, {Yas} zero
distributed sequences

» {A,} has singular values approximated by an equispaced sampling of
[1h(x,0)], (x,0) = a1(x)£(0)

> If {A,} is quasi-Hermitian, then {A,} has eigenvalues approximated
by an equispaced sampling of ¥(x, 6)



A GLT example: Toeplitz + Diagonal

/

Lo(u)=— (a(x)ul> [rod with variable section].
di —azp
K — —4az)2
n — b
—apn—1/2
—an-1/2 dn

1

Ta(2—2cos()), Dn(a) = diag(a(jh)), d; = aj_1/o+ajr12, h= 1
Then
Kn = Dn(a)Tn(2—2cos(0))+ A, ||An]] — 0,
Y(x,0) a(x)(2 — 2 cos(h)).

The eigenvalues of K, are a sampling of 1(x,0): this is a GLT result
using items GLT 3., GLT 5., GLT 1.
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%  spectrum of L
10k O uniform sampling of a(x)(2-2cos8)
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Figure: a(x) = 2 4 cos(3x), n = 400.The error on
n~': can we do better?

each eigenvalue is of order



Asymptotic Expansion for Banded Symmetric Toeplitz
Matrices (....toward matrix-less eigensolvers)

)‘j(Tn(f)) = f(ej,n) + Ejn

= f(0.0) + > ck(0j.n)0* + Ejna
k=1

, f monotone

1) The same applies to preconditioned structures
Pa(f,g) = T, (g) Ta(f), with g nonnegative not
identically zero, and r = f/g (new GLT symbol)
monotone;

2) The same applies to structures of the form M, 1K,, M,
mass matrix, K, stiffness matrix (also in the variable
coefficient case, Ekstrom's intuition (IgA, FEM)).



Extrapolation Algorithm

We can compute a high precision approximation of A;( T,(f)) with the
following extrapolation algorithm:

2
>

|

choose m smaller matrices, such that jih; = jh,i=1,...,m;
compute the eigenvalues A (T, (f)),..., A, (Th,(f)) using a
standard eigensolver;

compute the errors Ej .o = \;.(Th(f)) — f(@) fori=1,...,m,
where § = 0; , = jmh;

is the interpolation polynomial for the

compute p(h), Where p(-)
=1,...,m, plus (0, f());

data (hi, Ej no/hi), i
return £(6) + hp(h).



Numerics

f(0) =2 — cos(6) — cos(36)
0 =n/10

Error [\;(TW(f)) — £(A) — hp(h)], n = 10°

7.61-10°°
2.94.1077
8.76 - 10~°
2.13-1071%0
8.27 - 10712

g~ W N =3




The GLT glasses: a variable-coefficient-operative version of
the Local Fourier Analysis

a.1) Local methods (including FDs, FEs, IgA, FVs, VEMs) for
approximating PDEs, IEs lead to GLT sequences, possibly
after proper permutations

a.2) No limitations on variable coefficients and on domains
(grids should have some structure at least asymptotically)

a.3) Information on the symbol leads to information on
ill-conditioning, on the size of the ill-conditioned
subspaces, on the nature of the ill-conditioned subspaces
(low frequencies, high frequencies etc)

The GLT glasses.....



The GLT glasses: a variable-coefficient-operative version of
the Local Fourier Analysis

The GLT glasses.....

b.1) We exploit the symbol for understanding the reason of
difficulties of known techniques, w.r.t. finess parameters,
problem parameters, approximation parameters

b.2) We exploit the symbol for designing new iterative solvers,

new preconditioners or smoothers or prolongation
operators, aiming at optimality and robustness



Spectral Distribution: the qualitative idea

» M, (C) complex matrices of order m,

> {A,}, A, € My (C), dp < dpy1,

» 1 measurableon D C R, g > 1,

> ¢ being Ms(C)-valued, s > 1,

» 0 < p{D} < oo, u{-} can be the Lebesgue measure,

{An}n ~x (¢, D).

Informal meaning: s = 1. If ¢ is continuous, then a suitable ordering of
the eigenvalues {)\;(A,)}, in correspondence with a equispaced gridding
on D, reconstructs approximately the surface t — v(t).

Informal meaning: s > 1. If ¢ is continuous, then a suitable ordering of
the eigenvalues {\;(A,)}, in correspondence with a equispaced gridding
on D, reconstructs approximately s surfaces, t — X\;j(¢(t)), j=1,...,s.



Spectral Distribution: the definition

F € Gy (continuous with compact support):

YA (F, A, = din > FN (AN

Definition
We write {A,}n ~x (¢, D) if VF € G

I|m YA(F,Ap) {D}/trace P(t))) d

Moreover, we write {A,}, ~5 (1, D) replacing \;j(A,) by o;(A,)
(singular values) in X, (F,A,) in place of ZA(F,A ) and replacing v (t)

by [4(t)] in the integral. If s > 1 then |o(t)] = (¢ (£)v(t))>.



Comparison IgA-FEM (and furthermore the case of
intermediate regularity): C° -FEM— s = p¢,
CP~! =lgA— s =1, CK —interm. regularity

— s = (p— k)9 (figure by A. Reali)
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Toeplitz sequences generated by a symbol:
{To(F)}n~on (F, lg) if £ =FF
» s, d positive integers, i? = —1;
> £ e LX(ly, Ms(C)), Iy = (—m,7), j € Z°
> £ = any /i, F(s)e™ ds, f; € My(C).
For d = 1 the matrix T,(f) has size ns:

fo f1 - hop
(= " |
- f—l
fo-1 i fy

For d > 1 we have a recoursive formula.



Toeplitz sequences generated by a symbol:
{Ta(F)}n~n (F, 1) if F=1FF
For d > 1, the d-level Toeplitz matrix T,(f) has order Ns, N =[] n;,

n=(ny,...,nq), and takes the form
To T-1 -+ Tip
Tn(f) — 7.—1 .. . . ’
: T,
To—1 -+ Ti To

T; being (d — 1)-level Toeplitz matrix. If ® denotes the Kronecker

product

()= > JU, M=sio ohef,
lil<n—1

with (JI)s: =1 if s — t = r and 0 otherwise.



FEM: of degree p on a d dimensional domain

We consider the Laplacian over [0,1]? and we denote by Aff’) the degree

p FEM matrix on quadrilaterals.

» There exists a permutation matrix 1 such that
NAPIOT ~ T,(f);

> f is defined over Iy = (—m,m)? and Hermitian matrix-valued with
size p? (any comment is redundant!);

» hence, the eigs of A%p) are divided into p? branches (of the same

cardinality), each of them represented by a different real-valued
eigenvalue of f: A\i(f) <... < A

» the spreading of the spectrum, measured by the ratio

max(Aye)
max(A1),

depends on the choice of the basis (Lagrange, integrated Legendre,
Bernstein etc); not that of [M,(,p)]*lAS,p).



lgA: of degree p on a d dimensional domain

We consider the Laplacian over [0,1]? and we denote by AP) the
spline-degree p IgA matrix.

>
>

It holds AP ~ T,,(f) so that {AP)}, ~y (F, 1), Iy = (=, 7)%

f is defined over Iy = (—m, )9, is scalar-valued, nonnegative with a
unique zero at zero (as in the FD case: it is somehow the revenge of
the smoothness);

the function f tends exponentially to zero as p in every point of the
type 8 = (61, ...,04) for which 6; = 7 for some j;

the latter property induces a bad conditioning in the high frequency
subspace, growing exponentially with p and which is not expected
for a differential problem: the knowledge of the symbol is an
essential guide for finding the right preconditioner.



Comparison IgA-FEM (and furthermore the case of
intermediate regularity): the picture has a clear
interpretation as the revenge of the smoothness

_C4
_C3
_02
_CO




lgA, degree p, d dimensions: spectral distribution and
classical multigrid

Theorem | n?2AlPl ~ T,(f,)| and hence | {n?2AP1}, ~, (£, Iy)

fp has the expected zero of order 2 at zero, positive elsewhere but it
collapses to zero exponentially with p at the boundaries of Iy = (—m,7)9.

n =1 p=3 p=>5
16 0.16 0.64 0.96
28 0.17 0.64 0.96
40 0.18 0.64 0.96
52 0.18 0.65 0.96
n p=2 p=4 p==6
17 0.27 0.88 0.99
29 0.27 0.88 0.99
41 0.29 0.88 0.99
53 0.30 0.88 0.99

Table: spectral radius: standard twogrid, 2D, relaxed GS as smoother

~ denotes equality up to matrix-sequences with zero symbol.



The graph of f,




lgA, degree p, d dimensions: structured PCG/PGMRES
and multigrid (const. coeff.... but the technique is equally
effective for var. coeff. and singular mappings)

We consider the system nALp]u =b coming from the IgA
approximation of
—Au=1 in(0,1)3
{ u=0 on 9(0,1)3

For the solution: V-cycle and W-cycle multigrid

n p=1 n p=3 n p=>5

16 | 10 7 14 | 7 6 12 | 8 8
32| 11 7 30 | 8 6 28 | 8 7
64 | 12 7 62 | 9 6 60 | 9 6
n p=2 n p==4 n p==©6

15| 9 8 13| 7 6 11| 9 9
31| 8 7 29 | 8 6 27 | 8 6
63 | 9 7 61 | 9 6 59 | 10 6

Table: number of iterations: 3D with structured PCG/PGMRES



lgA, degree p, d dimensions: structured PCG/PGMRES
and multigrid

We consider the system nAPlu = b coming from the IgA

approximation of
—~Au=1 in(0,1)3
u=20 on 9(0,1)3

Only one (!) new ingredient in our fast V-cycle

» Standard restriction and prolongation operator;

» Standard smoother (GS) at coarse grids;

> V-cycle with PCG/PGMRES as smoother only at the finest grid;
>

Preconditioner chosen by using the information contained in the
symbol;

» The preconditioner has a very cheap tensor-banded structure



Variable coefficients: symbol of the IgA matrix-sequences
associated to a full elliptic Pb (a GLT sequence)
Full elliptic problem:

~V-KVu+B-Vut+yu=Ff onQcCR?
u=20 on 00

IgA approximation: take a geometry map G:[0,1] = Q to transfer
the problem from Q to [0,1]%; on [0,1]¢ use again splines of deg. p.

APl — resulting IgA approximation matrix

Theorem {n?=2AP11, matrix sequence belonging to the GLT algebra

{n?2 AP}~y 1(| det(Jg(x1, - - - xa)) | KG (X1 - - -y Xd) © Hp(B1, -+ ., 04))17

Ke = (Jg) *K(G)(Jg)~ ", Jg = Jacobian matrix of G

Hp, = symmetric d x d matrix whose (i, j) entry represents the ‘formula’

used to approximate 9°/9x;0x; (pull-back idea)



Further Technical Insights

# The symbol can be recovered in the IgA Collocation/Galerkin setting
with variable coefficient PDEs, general physical domain, general
geometrical mapping (Bsplines, NURBS).

% The symbol can be recovered in the FEM setting with variable
coefficient PDEs, general physical domain, general graded griddings.

s Concerning the numerical methods, the dimensionality d is not an
issue and singular mappings are not an issue.

% We are now completing the analysis when the model space is given
by GB.



Conclusions

» In the case of constant coefficients PDEs the GLT approach and the
Local Fourier Analysis lead to the same conclusions and to the same
tools.

» The GLT tool has to be considered as an extension of the Local
Fourier Analysis (for variable coefficients, irregular domains etc) and
indeed the symbol analysis via GLT is more general and includes also
integral problems, preconditioning, involved iteration matrices
(PHSS), variable coefficients.

» Future work: Navier-Stokes and other vector problems to be
considered, with the idea of using the spectral information and the
symbol, in order to obtain faster and more robust (preconditioned)
iterative solvers.
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Problem setting
900000000

Fractional Diffusion Equations (FDEs)

We are interested in the following initial-boundary value problem [1]

u(x, 2 “u(x,
% = J; P(Oé)aapgwt) da+f(x,t), (xt)eQ,

u(x,0) = up(x), x € (a, b), (1.1)
u(a,t) =u(b,t) =0, t € (0, T],
where
e Q=|a,b]x|0,T],

@ « € (1,2) is the fractional derivative order,
@ f(x,t) is the source term,
@ p(a) is the kernel function and satisfies

pla) >0, 0< /1 pa)c(a) < 00, c(a) = ‘2cos1(a;)’

% u(x,t
] 7‘0(

IF; ) is the Riesz fractional derivative and defined as

[1] Abbaszadeh, Appl. Math. Lett., 2019
Stefano Serra-Capizzano s.serracapizzano®@uninsubria.it 2/27



Problem setting
0e000000

Fractional Diffusion Equations (FDEs)

W = c(a)(aDgu(x, t) +« Dy u(x, 1)), c(a)= s

The left-sided and right-sided Riemann-Liouville (RL) fractional
derivatives ;DL u(x, t), xDg'u(x, t) are in turn defined as

o 1 d* [* —a
2D u(x, t):l_(Q—a)dxz/a (X*}’)l u(y, t)dy,

1 4% [P .
XD?U(X, t) = mﬁ/x (y_X) _au()/7 t)dy7

with I'(-) being the gamma function.

Stefano Serra-Capizzano s.serracapizzano®@uninsubria.it 3/27



Problem setting
[e]e] lelelele]e]

Fractional Diffusion Equations (FDEs)

In order to discretize the left and right RL fractional derivatives in space,
we exploit the weighted and shifted Griinwald-Letnikov difference scheme

given in [3], i.e.,

1
Dlulxi,t) = — > wlu(x_gi1,t) + O(h),

« q
q=0
1 n—i+1
«Difu(xi, t) = = Z wgo‘)u(x;+q_1, t) + O(h?),
q=0

[11] Hao, Sun, Cao, J. Comput. Phys., (2015)

Stefano Serra-Capizzano s.serracapizzano®@uninsubria.it 4 /27



Problem setting
[e]e]e] lelele]e]

Fractional Diffusion Equations (FDEs)

where
Wi = (e Wi =n(0)el” +0(a)g”,
i = 71()gi™ +70()gi ) +71-1()gih, k22,
in which
a?+3a+2 4 —o? a? —3a+2
71(a) = 1 Yo(a) = 6 ' y-1(a) = 1

g =1, g% = <1—k+1)g£ ) k>0

Stefano Serra-Capizzano s.serracapizzano®@uninsubria.it 5 /27



Problem setting
[e]e]e]e] Telele]

A discretization

Let L, m, n be positive integers, Aa = % be the integration step size,
At = % be the time step size, h = ﬁ be the spatial width, and
consider the following partitions
ar=(k+1/2)Aa+1, k=0,---,/1-1,
xi=a+ih, i=0,1,--- ,n+1,
tj=jAt,  j=0,1,---,m.

@ discretization in time by an central difference scheme +

@ discretization in space of the fractional derivatives by the weighted
and shifted Griinwald-Letnikov difference scheme +

© quadrature formula for the distributed order

unconditionally stable method[.
1] Abbaszadeh, Appl. Math. Lett., 2019

Stefano Serra-Capizzano s.serracapizzano®@uninsubria.it



Problem setting
[e]e]e]ele] lele]

Matrix form of the discretized problem

(I = A = (1 + A + AtFT3, (1.2)
with
L
AtA
= S5 ) 40 (13)
k=1

° Uj = (%7“127 7“{1)7— with U{ ~ U(Xivtj)’

. ji+1 41 j+1 j+1
o FItE = (A2 7 o AT with £77 = f(x,1,1),
@ / denoting the identity of size n.

@ Non-distributed problems: spectral analysis, multigrid, precond.
[6, 7, 2] (Barakitis, Donatelli, Ekstrom, Mazza, Vassalos).

Stefano Serra-Capizzano s.serracapizzano®@uninsubria.it 7/ 27



Problem setting
00000080

Matrix form of the discretized problem

2w(1°‘k) w(()ﬂk) n w;‘lk) wg&k) . wf:ikll WLQI{) 1
wéﬂk) T u1(20%) 2‘”(1&“ wéak) 4 w(zak) w;ak) o ‘*’E,Cikl)
wga“) +w;°‘k) 2w£°‘k)
An(ak) = )
wffikl) 2w;0‘k) w(()ﬂk) +w<20‘k)
L wﬁak) w,(fikl) cee v wéak) + w(zak) 2w(10‘k) J

rra-Capizzano s.serracapizzano®@uninsubria.it 8 /27




Problem setting
0000000e

Matrix form of the discretized problem

Equivalently A,(au) = Ag,.n + Al . where

[wiew) Lo 0 e 0 o |
w(za“) w:(lo‘k) wgak) o
(k) (ag)
Acyon = - w1
wfikl) w:(lak) wgo‘k)
_w,(1 k) Wﬁoikl) . . w(zo‘k) w(lak)_

It is clear that A,(ak) is a symmetric Toeplitz matrix. We rewrite the
linear system in (1.2) as

M/t = b, (1.4)
where A, is as in (1.3) and
My=1—Ap b =(I+A) W+ AtFTE

Stefano Serra-Capizzano s.serracapizzano®@uninsubria.it 9 /27



Spectral analysis
00000

Preliminaries: generating function vs symbol

Definition

Let f € LY([—m,m]) and let {fx}xez be the sequence of its Fourier
coefficients defined as

— 1 " —iko
fio= o= /_ﬂ fF(0)e ™ 0 do, ke Z.

Then the matrix-sequence { T} en with T, = [f,-,j]j?’j:1 is called the
sequence of Toeplitz matrices generated by f, which in turn is called the
generating function of {T,}nen and T, is denoted by T,(f).

Stefano Serra-Capizzano s.serracapizzano@uninsubria.it



Spectral analysis
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Preliminaries: spectral distribution

Definition (of the Spectral Symbol)

Let f : [a, b] — C be a measurable function, defined on [a, b] C R, let
Co(C) be the set of continuous functions with compact support over C
and let {A,}, be a sequence of matrices of size n with eigenvalues
Ai(Ap), j=1,...,n. We say that {A,}, is distributed as the pair

(f, [a, b]) in the sense of the eigenvalues, and we write

{-An}n ~A (f7 [av b]),

if the following limit relation holds for all F € Co(C):

n'LmooEZF i(Ap) = 13/[) F(f(t))dt.

Stefano Serra-Capizzano s.serracapizzano@uninsubria.it



Spectral analysis
[e]e] le]e]e]

GLT Books: Vol. 1 ('17), 11 ('18), III, IV, V long BIT/ETNA
papers ('20-'22), VI in preparation: with Barbarino, Garoni)

ourde) 4135 - oy
0e)-£1RS - 0 1RY

Carlo Garoni - Stefano Serra-Capizzano Carlo Garoni - Stefano Serra-Capizzano

Generalized Generalized
77 LocallyToeplitz =¢  Locally Toeplitz
£ Sequences: £ Sequences:
== Theoryand :; Theoryand
§ Applications §  Applications

@ Springer @ Springer

s.serracapizzano@uninsubria.it

Stefano Serra-Capizzano



Spectral analysis
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Generating function and spectral distribution of {Au. ,}nen

Recall the coefficient matrix

L
AtAa ag)c(a
A — Zp k) ( k)An(ak)7
k=1

with Ap(ak) = Aapn + Aak’

Proposition

Let o € (1,2). The generating function associated to the Toeplitz
matrix-sequence {Aq n}tnen is given by

—if i0
£(60) = Z N L 2% + (o® +3a +2)e” " + (a® —3a + 2)¢’ (1 +eto+m)®
P 12

Stefano Serra-Capizzano

s.serracapizzano@uninsubria.it



Spectral analysis
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Generating function and spectral distribution of {Au. ,}nen

Corollary

Let o € (1,2). The generating function associated to the Toeplitz
matrix-sequence {An() = Aa,n + AL, nen is given by

ga(0) = 1o(0) + fo(—0).

Corollary

Let A, be the matrix defined in (1.3) and assume that h*% = o(1).
Then,

- plon)elos)
{AI’AaAn}neN ~A (CLgaL(e)a [077(]), where cL = f

Stefano Serra-Capizzano s.serracapizzano@uninsubria.it



Spectral analysis
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Symbol and spectral distribution of {Ay. n}nen

Similarly, for the matrix M,,, we prove the following spectral result.

Corollary

For the matrix M, defined as in (1.4), when h®t = o(AtA«) and
hA = o(1) it holds

he } plar)c(ar)
— M, ~x (—cLga,(0), [0,7]), where ¢ =——""—-.
{AtAa nEN 2

Conditioning and extremal spectral behavior in [4,5,13].

[4] Bogoya, Grudsy, Mazza, SSC, LAMA, 2023; [5] Bogoya, Mazza, SSC, Tablino-Possio BIT, 2022; [13]
Mazza, SSC, Usman, ETNA, 2021
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Solvers for FDEs
[ ]

Conjugate gradient method

Due to the symmetric positive definite nature of the coefficient matrices,
we opt for the preconditioned conjugate gradient (PCG) method and we
compare the performances of our proposal with a Strang circulant
alternative given in literature [12]. We propose the following two
preconditioners (see also [2, 6, 7])

@ Laplacian style preconditioner,

@ generic T-preconditioner.

[2] Barakitis, Ekstrém, Vassalos, NLAA, (2022); [6,7] Donatelli, Mazza, Serra-Capizzano, JCP, (2016),
SISC, (2018), [12] Huang, Fang, Sun, Zhang, LAMA, 2020

Stefano Serra-Capizzano s.serracapizzano@uninsubria.it
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Numerical Example

Under mild conditions on h*t, At, A«a, we prove

{An(aL)}neN ~A (gaL(9)> [077T]) )

-  plew)e(en)
{AtAOZAn}neN A (CL gaL(9)7 [O,’]T])’ where cL = f

Stefano Serra-Capizzano s.serracapizzano@uninsubria.it
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Numerical Example

-10 -10 -10
0 1 2 3 0 1 2 3 0 1 2 3
(a) n=100 (b) n =500 (c) n= 1000
0
——eig(, )
-1t |=—9a.(0)
2
-3
4
5
0 1 2 3
(d) n=100

Flgu re. (a)—-(c) Comparison between the symbol CLgO‘L(G) and eig( AhtaALa Ap) for L =2 and

n = 100, 500, 1000. (d) Comparison between the symbol g, (0) and eig(An(c,)) for L = 2 and n = 100.
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Numerical Example

-10 -10 -10
-15 -15 -15
-20 -20 -20
0 1 2 3 0 1 2 3 0 1 2 3
(a) n=100 (b) n= 1000 (c) n= 10000
0
ia(74 (o)
HE=A0)
-4
6
0 1 2 3
(d) n=100

Flgu €. (a)-(c) Comparison between the symbol c;gq, (¢) and eig( AhtaALa Ap) for L =5, and

n =100, 1000, 10000. (d) Comparison between the go, (0) and eig(An(c)) for L =5 and n = 100.
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Numerical Example

We now discuss the performances of the PCG method when applied to
the following example taken from [12]: assume that in problem equation
(1.1) we set

u(x,0) = x*(1 — x)?, p(a) = —2r(5 — a)cos (%) ,

f(x,t) = e'x?(1 — x)? — /1 p(a)Wda

= e%*(1 = x)? — e'[A(x) + (1 = X)),

x
5x 3 2x 2
Inx Inx (Inx)2  (Inx)2]|"

Stefano Serra-Capizzano s.serracapizzano@uninsubria.it
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Numerical Example

The exact solution for this problem is
u(x, t) = e'x*(1 — x)?, and (x,t) € [0,1] x [0,1].
As stopping criterion for the PCG method we consider

||f(k)\|2 -8
—= < 10

[[r O] ’
where r(¥) represents the residual vector after k iterations. In all tables,
by “lter’ we mean the average number of iterations after 10 time-steps
and by "CPU" the corresponding average timings in seconds.

Stefano Serra-Capizzano s.serracapizzano@uninsubria.it
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Numerical Example

Strang circulant | 7 preconditioner Laplacian
n=m E>(h)
Iter  CPU(s) | lter CPU(s) | lter CPU(s)
24 4.0 0.0000 4.0 0.0003 7.2 0.0001 | 1.37e-3
25 4.0 0.0000 4.0 0.0003 8.1 0.0001 | 3.49e-4
26 4.0 0.0001 4.0 0.0004 7.2 0.0002 | 8.66e-5
27 4.0 0.0003 4.0 0.0007 7.1 0.0006 | 2.13e-5
28 4.0 0.0007 4.0 0.0012 7.1 0.0011 | 5.23e-6
2° 4.0 0.0059 4.0 0.0066 7.2 0.0077 | 1.28e-6
210 4.0 0.0166 3.8 0.0180 7.3 0.0284 | 3.15e-7
2i! 3.9 0.0608 3.0 0.0484 7.1 0.1067 | 7.76e-8
212 3.7 0.2322 3.1 0.1924 7.1  0.4326 | 1.92¢-8

Table: PCG method performances with three different preconditioners.
Here L = 5.
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Numerical results
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Numerical Example

Strang circulant | 7 preconditioner Laplacian
n=m E>(h)
Iter  CPU(s) | lter CPU(s) | lter CPU(s)
24 4.0 0.0000 4.0 0.0003 7.1 0.0001 | 1.37e-3
25 4.0 0.0000 4.0 0.0003 8.1 0.0001 | 3.49e-4
26 4.0 0.0001 4.0 0.0004 7.1 0.0002 | 8.66e-5
27 4.0 0.0003 4.0 0.0008 7.1 0.0005 | 2.13e-5
28 4.0 0.0006 4.0 0.0013 7.1 0.0008 | 5.23e-6
2° 4.0 0.0052 4.0 0.0065 7.1 0.0078 | 1.28e-6
2100 1 40 00168 | 40 0.0189 | 6.7 0.0271 | 3.15e-7
2i! 4.0 0.0631 3.1 0.0500 6.1 0.0918 | 7.76e-8
212 4.0 0.2516 3.1 0.1984 5.1 0.3097 | 1.92e-8

Table: PCG method performances with three different preconditioners.
Here L = n.
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Conclusions

@ Asymptotic eigenvalue/singular value distribution for constant
coefficient FDEs.

@ Analysis of known preconditioned Krylov methods.

@ Two new preconditioning (Laplacian style preconditioning and
generic T-preconditioning).

Further steps

Adaptations of the same strategies work in the more challenging
multilevel setting (for 2D or 3D problems, Mazza, SSC, Sormani, 23).
More analysis is needed for different versions of the fractional operators
such as the tempered derivatives. Furthermore, there are connections
with the notions of the Toeplitz and GLT momentary symbols: see
Bolten, Ekstrom, Furci, SSC, LAA, 22 and ETNA, 23.
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Thank you for your attention
(Q/A) ... second part: an
example in higher dimensions

and with non Cartesian
domains.
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SPECTRAL SYMBOL

{An}n = Sequence of matrices of increasing dimension as N — co.

Spectral symbol of {Ay}n = function Fq such that the eigenvalues of
Ay are approximately a uniform sampling of Fq over its domain.

Notation: {A/\(}N ~ Fa



SPECTRAL SYMBOL

{Ay}n = Sequence of matrices of increasing dimension as N — oo.

Spectral symbol of {Ay}y = function F, such that the eigenvalues of
Ay are approximately a uniform sampling of Fq over its domain.

Notation: {Ay}n ~x Fa

An example:

Ay = pentadiag[1, —4,6, —4, 1]
Fa(0) = (2 — 2 cos(0))?

It holds

{An}n ~x Fq on [0, 7]




SPECTRAL SYMBOL

{Ay}n = Sequence of matrices of increasing dimension as N — oo.

Spectral symbol of {Ay}y = function F, such that the eigenvalues of
Ay are approximately a uniform sampling of Fq over its domain.

Notation: {Ay}n ~x Fa

—#*— Uniform sampling of the symbol

An example: taf L0 Hosmates
Ay = pentadiag[1, —4,6, —4, 1] ::
Fa(0) = (2 — 2 cos(0))? :
It holds ‘
{An}n ~x Fq on [0, 7] h s a5 4




SPECTRAL SYMBOL

{Ay}n = Sequence of matrices of increasing dimension as N — oo.

Spectral symbol of {Ay}y = function F, such that the eigenvalues of
Ay are approximately a uniform sampling of Fq over its domain.

Notation: {Ay}n ~x Fa

An example:

Ay = pentadiag[1, —4,6, —4, 1]
Fa(0) = (2 — 2 cos(0))?

It holds

{An}n ~x Fq on [0, 7]




GLT THEORY

GLT ALGEBRA Set of matrix sequences closed under linear
combinations, product and (pseudo)inversion.

- It contains:
- Toeplitz sequences with L' symbols
- Diagonal sampling matrices with Riemann integrable symbols
- Zero-distributed sequences

- Each GLT sequence is equipped with a symbol



GLT THEORY

GLT ALGEBRA Set of matrix sequences closed under linear
combinations, product and (pseudo)inversion.

- It contains:
- Toeplitz sequences with L' symbols
- Diagonal sampling matrices with Riemann integrable symbols
- Zero-distributed sequences

- Each GLT sequence is equipped with a symbol

GLT algebra — Symbols
{AN}N — Fq

is an algebra homomorphism



PROBLEM SETTING AND
DISCRETIZATION




CONTINUOUS PROBLEM

Consider the 2D distributed order space-fractional diffusion equation

ou(x,y,t) /2 (8"“u(x,y,t) d*u(x,y, t)
ot 1 x|« oly|*

> pla)da + f(u, x, y, t),
(x,y) € Q, te[0,T]

with initial and boundary conditions

U(X7y’0) = UO(va)v (Xay) € Q,
u(x,y,t) =0, (x,y) e R\Q, t € (0,T]

where Q is a convex region



CONTINUOUS PROBLEM

Non-Cartesian domain = Non-Cartesian meshes

- Extra care needed for the boundary

- Difficult to implement

- Linear systems with hidden structures or unstructured
coefficient matrices



CONTINUOUS PROBLEM

Non-Cartesian domain = Non-Cartesian meshes

- Extra care needed for the boundary
- Difficult to implement
- Linear systems with hidden structures or unstructured

coefficient matrices

VOLUME-PENALIZATION METHOD

1. Embed the domain into a rectangle [a,b] x [c,d] = Q2 D Q
2. Extend the problem to

3. Add a penalization term that dominates on Q \ Q, annihilating
the solution



EXTENDED CONTINUOUS PROBLEM

(X, y, 1) [* (0%, (x,y,t)  9%U,(X, V1)
ot 7/1 < x|« aly|
1=Ta(x,y)
n
with initial and boundary conditions

un(vaa O) = DO(Xay)v (X,)/) € Qv
un(x,y,t) = 0, (x,y) e R\Q, t € (0,T],

) pla)da + g x,y,1)

Un (X, Y, t), (x,y) €, teo,T]

where
- Q=[a,b] x[c,d 2Q
- 1 is the penalty parameter and v, LNy

- 1q is the characteristic function of Q
- f, 0y are zero extensions for f,uo



DISCRETIZATION

Cartesian domain = Uniform spatial grids {x;}/;, {y;} 2,

- Finite difference methods
- Linear systems with structured matrices



DISCRETIZATION

Cartesian domain = Uniform spatial grids {x;}I",, {y,}

- Finite difference methods
- Linear systems with structured matrices

COEFFICIENT MATRIX
My = Ly + Dy, My € RNN N = nin,
- Ly corresponds to the original problem and is a 2-level Toeplitz
Ly = In — In, ® B, — Bh, ® In,
- Dy corresponds to the added penalization term and is diagonal

Dy = diag [d/ ]I: ces di,j #0 — (vayj) € S3\9

J=1,ee5m2

- My is symmetric and positive definite
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SYMBOL OF {My }y

To compute the symbol of
MN:IN—I")z@B)r(h _B%z®ln1+DN

= Iy — A — A, + Dy

1. Compute F, Fgx, Far, Fa, symbols of {In}n, {A% I, {A% N, {Dn}n
2. Compute Fy, = Fj — Fox — Fav + Fg, symbol of {My}n



SYMBOL OF {My}y

To compute the symbol of
My = Iy — In, ® B}, — BY, ® In, + Dy

= Iy — AY, — A + Dy

1. Compute F, Fgx, Far, Fa, symbols of {In}n, {A% I, {A% N, {Dn}n
2. Compute Fp = F; — Fox — Fov + Fg, symbol of {My}x

Theorem
With suitable hypothesis on the parameters,

{tcMn}y ~x Fa(bh,02) + 15\oCy

where F,(61,6,) is defined on [0, 7]> and C, 220, .



SYMBOL OF {My}y

Comparison between the symbol F,(x,y, 61, 60,) and eig(txMy)

10°

REGMIE = 3%

*  Symbol
*  Eigenvalues
107! . " . L L
0 50 100 150 200 250

Figure 1: n =10"% ny = n, = 2*



SYMBOL OF {My}y

Comparison between the symbol F,(x,y, 61, 60,) and eig(txMy)

10°

S—
102 F 1
10'F
10°
107

E *  Symbol
*  Eigenvalues

2 L . " L . " L 1
10
0 500 1000 1500 2000 2500 3000 3500 4000

Figure2: n=10"%ny =n, =2°



ALGEBRA PRECONDITIONING




PRECONDITIONING PROPOSAL 1

77\! =Iy— Iﬂz ® T(B)r(h) — T(B)f/h) ® Ifh
SN — IN - Inz ®S(B)r<11) — S(B%z) ® I”1

with

- T(BY,), T(Bh,) T-preconditioners of B}, By,
- 8(BY,), S(Bp,) circulant preconditioners of By , By,

1



PRECONDITIONING PROPOSAL 1

Tnv=In—In, ® T(BS,) — T(Bh,) ® In,
SN — IN - Inz ®S(B)r(11) — S(B%z) ® I”1

with
- T(BY,), T(Bh,) T-preconditioners of B}, By,
- 8(BY,), S(Bp,) circulant preconditioners of By , By,

Theorem
With suitable hypothesis on the parameters,

{tx77v}N 3 {thN}N ~A ]:oz(ah 6‘2)

1



PRECONDITIONING PROPOSAL 2

TP = Du(12)Ta + Dullayg) (7o + 2in)

S,f,pht Dn(19)Sn + Dn(1 Q\Q) (51\1 + At )

based on the alternative splitting for My

My = Dy(1q)Ly + DN(1Q\Q) (LN + ZAT;/N)

where Dy(1q) = diag {19 (r’“, ﬁ)}i:mm,m
j=1,...,n



PRECONDITIONING PROPOSAL 2

S,f,pht Dn(19)Sn + Dn(1 Q\Q) (SN + At )
based on the alternative splitting for My
My = Du(1g)lw + Du(lang) (Lu + Shv)

where Dy(1q) = diag {19 (r'w ﬁ)} i

Theorem
With suitable hypothesis on the parameters,

{txmplit}l\’,{txsﬁlplit}l\l _ ]:a(91a‘92)+1fz\ncn
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SN Y Sﬁlplit 77\1' 7-,\*Isplit
- Worse matching of small - Better matching of small
eigenvalues eigenvalues

Table 1: p = 1072

PCG
Sn Tn
ni=n, [ter CPU [ter CPU

2/ 18.90 0.0708 5.10 0.0313
28 2290 0.2479 5.10 0.0983
2° 2990 19227 520 0.4682
210 3550 7.6379 5.80 19621




SN Y Sﬁlplit 77\1' 7-,\*Isplit
- Worse matching of small - Better matching of small
eigenvalues eigenvalues

Table 1: p = 1072

GMRES
Sﬁ,plit 77Vsplit
n=n; Iter CPU Iter CPU

2/ 18.20 0.1001 6.00 0.0640
28 2260 03865 7.00 0.2227
2° 2720 19674 7.00 0.8897
210 32.80 93339 6.20 3.5411




NON-SPLIT VS SPLIT

SN: 77\/ S:Iplit’ 7—[\7plit
- Symbol does not balance the - Symbol balances the large
large outliers due to Dy outliers due to Dy

Table2: n =10""°

PCG GMRES
SN 77\] S:lplit Tiplit
ni=n, Iter Iter [ter [ter

2/ 19.00 7.10 17.00 8.00
28 2410 7.00 21.80 8.00
2° 30.10 7.00 26.90 8.00
210 4330 8.10 3420 7.20

14



NON-SPLIT VS SPLIT

SN 77\/ Sﬁ[pht 7—[\7plit
- Symmetric = PCG can be - Non-symmetric = Resort to
used GMRES
- 2 fast transforms less - 2 fast transforms more

Table2: n =10"°

PCG GMRES
SN 77\[ Sﬁjpht 7—[\7plit
ny=ny CPU CPU CPU CPU

27 0.0689 0.0409 0.0940 0.0808
226 02527 01242 03503 0.2581
29 15727 05657 19032 09314
20 87480 25431 99982 3.9584 "
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