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GLT Books: Vol. I (’17), II (’18), III, IV, V long
BIT/ETNA papers (’20-’22), VI in preparation)



From continuous to discrete

A continuous infinite-dimensional problem (PDEs, FDEs, IDEs etc) is
transformed, via a suitable numerical approximation, into a linear
(nonlinear) system of algebraic equations

▶ Structure inherited from the continuous counterpart

▶ Large dimensions (e.g. 10p, p ≥ 10)

▶ Spectral features described via a proper Symbol

Goal: solving the resulting linear system by Optimal Methods
(operation count to obtain the solution of the same order of the
matrix-vector multiplication)
Goal: understanding the spectral properties of the resulting matrices
(Weyl formulas: from discrete to continuous; information for
Engineers)



From continuous to discrete

Linear PDE/FDE/IDE L u = g

⇓

Linear Numerical Method → Lnun = gn

▶ dim(Ln) → ∞ as n → ∞
▶ {Ln} has an asymptotic spectral distribution described by a

spectral/sv symbol

GLT sequences = a tool for computing spectral/sv symbols

GLT sequences = a tool for designing fast numer. methods

{Ln} is usually a GLT sequence



In the discrete case

▶ Large dimensions imply that direct solvers (Gaussian Elimination
etc.) have to be avoided

▶ Iterative solvers: A) operation count per iteration of the same order
of the matrix-vector multiplication B) the method is Optimal if the
number of iterations ≤ c(ϵ), with ϵ desired precision.

Requirement B) depends on the spectrum of the involved matrices: it
depends especially on the possibility of approximating the coefficient
matrix in the ill-conditioned subspaces (i.e. associated to the
eigenvectors with small eigenvalues).

⇓

For large classes of matrices coming from continuous problems, the
knowledge of the spectrum is often compactly represented in a
function, called the symbol, the GLT symbol: a wide generalization of
the (local) Fourier Analysis, see e.g. T.Chan, H.Elman, SIREV 1989



Main items

Symbol for matrix sequences

1. Toeplitz, Diagonal structures and symbol

2. The GLT algebra and the notion of symbol

3. Approximation of Differential Operators

Examples + (preconditioning, multigrid)

4. FEM of degree p in d dimensions

5. IgA of degree p in d dimensions

6. Approximation Q2Q1 of the Linear Elasticity

7. Curl-Div, Curl-Curl, Navier Stokes

8. FDEs and symbol approach

9. The symmetrization (next lecture)



Collaborators

Adriani, Ahmad, Al Aidarous, Barakitis, Barbarino, Beckermann,
Benedusi, Bertaccini, Bianchi, Bolten, Böttcher, R. Chan, Donatelli,
Dorostkar, Dravins, Dumbser, Durastante, Ekström, Ferrari Furci, Garoni,
Golub, Golinskii, Hon, Hughes, Krause, Kuijlaars, Manni, Mazza,
Molteni, Neytcheva, Pelosi, Pennati, Ratnani, Reali, Semplice, Sesana,
Speleers, Tablino Possio, Tavelli, Tilli, Tyrtyshnikov, Vassalos.

▶ In blue consolidated collaborations on the themes of the talk;

▶ In green recently started collaborations (with the goal of
variable-coeff. vector PDEs).

⇓

Elasticity, Navier-Stokes, MHD, evolution PDEs, FDEs ...



The GLT components I: Toeplitz sequences

Let f ∈ L1([−π, π]) with Fourier coefficients

fj =
1

2π

∫ π

−π

f (θ)e−ijθdθ, j ∈ Z

Tn(f ) =



f0 f−1 · · · · · · f−(n−1)

f1
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . f−1

fn−1 · · · · · · f1 f0





The GLT components I: Toeplitz sequences

Tn(2− 2 cos(θ)) =


2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2


Its eigenvalues are a sampling of f (θ) = 2− 2 cos(θ):

λj = 2− 2 cos
(

jπ
n+1

)
, j = 1, . . . , n.

In general if f is real-valued a.e. then

{Tn(f )}n ∼λ f (θ)

and
{Tn(f )}n ∼σ f (θ).

The notions ∼λ,σ generalize that of sampling: more precise definitions
later on.



The GLT components II: diagonal sampling matrices

Let a : [0, 1] → C

Dn(a) =


a( 1n )

a( 2n )
. . .

a(1)


The eigenvalues of Dn(a) are clearly the samplings of a(x) on [0, 1] and

{Dn(a)}n ∼λ,σ a(x).



The GLT algebra: Toeplitz + Diagonal

GLT sequences = The algebra of matrix sequences containing {Dn(a)}, a
Riemann integrable, {Tn(f )}, f Lebesgue integrable, {Xn} zero
distributed sequences.

GLT1. If {An}n ∼GLT κ then {An}n ∼σ κ. If, moreover, the matrices An

are Hermitian, then {An}n ∼λ κ.

GLT2. If {An}n ∼GLT κ and An = Xn + Yn, where
▶ ∥Xn∥, ∥Yn∥ ≤ C for some constant C independent of n,
▶ every Xn is Hermitian,

▶ lim
n→∞

∥Yn∥1
n

= 0,

then {An}n ∼λ κ.

GLT3. We have
▶ {Tn(f )}n ∼GLT κ(x , θ) = f (θ) if f ∈ L1(−π, π),
▶ {Dn(a)}n ∼GLT κ(x , θ) = a(x) if a ∈ Ca.e.[0, 1],
▶ {Zn}n ∼GLT κ(x , θ) = 0 if and only if {Zn}n ∼σ 0.

GLT4. If {An}n ∼GLT κ then {A∗
n}n ∼GLT κ.



The GLT algebra: Toeplitz + Diagonal

GLT5. If An = α1A
(1)
n + α2A

(2)
n , with αi ∈ C and {A(i)

n }n ∼GLT κi , i = 1, 2,

then {An}n ∼GLT κ = α1κ1 + α2κ2. If An = A
(1)
n A

(2)
n , with

{A(i)
n }n ∼GLT κi , i = 1, 2, then {An}n ∼GLT κ = κ1κ2.

GLT6. If {An}n ∼GLT κ and κ ̸= 0 a.e., then {A†
n}n ∼GLT κ

−1.

GLT7. If {An}n ∼GLT κ and each An is Hermitian, then
{f (An)}n ∼GLT f (κ) for every continuous function f : C → C.

GLT8. {An}n ∼GLT κ if and only if there exist GLT sequences

{Bn,m}n ∼GLT κm such that {Bn,m}n
a.c.s.−→ {An}n and κm → κ in

measure over [0, 1]× [−π, π].



The GLT idea: Toeplitz + Diagonal

As an example (not academical!)

▶ An = Dn(a1)Tn(f1) + Tn(f2)Xn + Yn, with {Xn}, {Yn} zero
distributed sequences

▶ {An} has singular values approximated by an equispaced sampling of
|ψ(x , θ)|, ψ(x , θ) = a1(x)f1(θ)

▶ If {An} is quasi-Hermitian, then {An} has eigenvalues approximated
by an equispaced sampling of ψ(x , θ)



A GLT example: Toeplitz + Diagonal

La(u) = −
(
a(x)u

′
)′

[rod with variable section].

Kn =


d1 −a3/2

−a3/2
. . .

. . .
. . .

. . . −an−1/2

−an−1/2 dn

 ,

Tn(2−2 cos(θ)), Dn(a) = diag(a(jh)), dj = aj−1/2+aj+1/2, h =
1

n + 1
.

Then

Kn = Dn(a)Tn(2− 2 cos(θ)) + An, ∥An∥ → 0,

ψ(x , θ) = a(x)(2− 2 cos(θ)).

The eigenvalues of Kn are a sampling of ψ(x , θ): this is a GLT result
using items GLT 3., GLT 5., GLT 1.



Figure: a(x) = 2 + cos(3x), n = 400.The error on each eigenvalue is of order
n−1: can we do better?



Asymptotic Expansion for Banded Symmetric Toeplitz
Matrices (....toward matrix-less eigensolvers)

λj(Tn(f )) = f (θj,n) + Ej,n

= f (θj,n) +
α∑

k=1

ck(θj,n)h
k + Ej,n,α

θj,n =
jπ

n + 1
, f monotone

1) The same applies to preconditioned structures
Pn(f , g) = T−1

n (g)Tn(f ), with g nonnegative not
identically zero, and r = f /g (new GLT symbol)
monotone;

2) The same applies to structures of the form M−1
n Kn, Mn

mass matrix, Kn stiffness matrix (also in the variable
coefficient case, Ekström’s intuition (IgA, FEM)).



Extrapolation Algorithm

We can compute a high precision approximation of λj(Tn(f )) with the
following extrapolation algorithm:

▶ choose m smaller matrices, such that jihi = jh, i = 1, . . . ,m;

▶ compute the eigenvalues λj1(Tn1(f )), . . . , λjm(Tnm(f )) using a
standard eigensolver;

▶ compute the errors Eji ,ni ,0 = λji (Tni (f ))− f (θ̄) for i = 1, . . . ,m,
where θ̄ = θj,n = jπh;

▶ compute p(h), where p(·) is the interpolation polynomial for the
data (hi ,Eji ,ni ,0/hi ), i = 1, . . . ,m, plus (0, f (θ̄));

▶ return f (θ̄) + hp(h).



Numerics

f (θ) = 2− cos(θ)− cos(3θ)

θ̄ = π/10

m Error
∣∣λj(Tn(f ))− f (θ̄)− hp(h)

∣∣, n = 106

1 7.61 · 10−6

2 2.94 · 10−7

3 8.76 · 10−9

4 2.13 · 10−10

5 8.27 · 10−12



The GLT glasses: a variable-coefficient-operative version of
the Local Fourier Analysis

a.1) Local methods (including FDs, FEs, IgA, FVs, VEMs) for
approximating PDEs, IEs lead to GLT sequences, possibly
after proper permutations

a.2) No limitations on variable coefficients and on domains
(grids should have some structure at least asymptotically)

a.3) Information on the symbol leads to information on
ill-conditioning, on the size of the ill-conditioned
subspaces, on the nature of the ill-conditioned subspaces
(low frequencies, high frequencies etc)

The GLT glasses.....



The GLT glasses: a variable-coefficient-operative version of
the Local Fourier Analysis

The GLT glasses.....

b.1) We exploit the symbol for understanding the reason of
difficulties of known techniques, w.r.t. finess parameters,
problem parameters, approximation parameters

b.2) We exploit the symbol for designing new iterative solvers,
new preconditioners or smoothers or prolongation
operators, aiming at optimality and robustness



Spectral Distribution: the qualitative idea

▶ Mm(C) complex matrices of order m,

▶ {An}, An ∈ Mdn(C), dn < dn+1,

▶ ψ measurable on D ⊂ Rg , g ≥ 1,

▶ ψ being Ms(C)-valued, s ≥ 1,

▶ 0 < µ{D} <∞, µ{·} can be the Lebesgue measure,

{An}n ∼λ (ψ,D).

Informal meaning: s = 1. If ψ is continuous, then a suitable ordering of
the eigenvalues {λj(An)}, in correspondence with a equispaced gridding
on D, reconstructs approximately the surface t → ψ(t).
Informal meaning: s > 1. If ψ is continuous, then a suitable ordering of
the eigenvalues {λj(An)}, in correspondence with a equispaced gridding
on D, reconstructs approximately s surfaces, t → λj(ψ(t)), j = 1, . . . , s.



Spectral Distribution: the definition

F ∈ C0 (continuous with compact support):

Σλ(F ,An) =
1

dn

dn∑
j=1

F [λj(An)].

Definition
We write {An}n ∼λ (ψ,D) if ∀F ∈ C0

lim
n→∞

Σλ(F ,An) =
1

sµ{D}

∫
D

trace (F (ψ(t))) dt.

Moreover, we write {An}n ∼σ (ψ,D) replacing λj(An) by σj(An)
(singular values) in Σσ(F ,An) in place of Σλ(F ,An) and replacing ψ(t)

by |ψ(t)| in the integral. If s > 1 then |ψ(t)| = (ψ∗(t)ψ(t))1/2.



Comparison IgA-FEM (and furthermore the case of
intermediate regularity): C 0 →FEM→ s = pd ,
C p−1 →IgA→ s = 1, C k →interm. regularity
→ s = (p − k)d (figure by A. Reali)
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Toeplitz sequences generated by a symbol:
{Tn(f )}n ∼λ (f , Id) if f = f ∗

▶ s, d positive integers, i2 = −1;

▶ f ∈ L1(Id ,Ms(C)), Id = (−π, π)d , j ∈ Zd ;

▶ fj =
1

(2π)d

∫
Id
f (s)e−ijs ds, fj ∈ Ms(C).

For d = 1 the matrix Tn(f ) has size ns:

Tn(f ) =


f0 f−1 · · · f1−n

f1
. . .

. . .
...

...
. . .

. . . f−1

fn−1 · · · f1 f0

 .

For d > 1 we have a recoursive formula.



Toeplitz sequences generated by a symbol:
{Tn(f )}n ∼λ (f , Id) if f = f ∗

For d > 1, the d-level Toeplitz matrix Tn(f ) has order Ns, N =
∏

nj ,
n = (n1, . . . , nd), and takes the form

Tn(f ) =


T0 T−1 · · · T1−n1

T1
. . .

. . .
...

...
. . .

. . . T−1

Tn1−1 · · · T1 T0

 ,

Tj being (d − 1)-level Toeplitz matrix. If ⊗ denotes the Kronecker

product

Tn(f ) =
∑

|j|≤n−1

J [j]n , J [j]n = J j1n1 ⊗ · · · ⊗ J jdnd ⊗ fj ,

with (J rm)s,t = 1 if s − t = r and 0 otherwise.



FEM: of degree p on a d dimensional domain

We consider the Laplacian over [0, 1]d and we denote by A
(p)
n the degree

p FEM matrix on quadrilaterals.

▶ There exists a permutation matrix Π such that

ΠA(p)
n ΠT ≈ Tn(f );

▶ f is defined over Id = (−π, π)d and Hermitian matrix-valued with
size pd (any comment is redundant!);

▶ hence, the eigs of A
(p)
n are divided into pd branches (of the same

cardinality), each of them represented by a different real-valued
eigenvalue of f : λ1(f ) ≤ . . . ≤ λpd ;

▶ the spreading of the spectrum, measured by the ratio

max(λpd )

max(λ1),

depends on the choice of the basis (Lagrange, integrated Legendre,

Bernstein etc); not that of [M
(p)
n ]−1A

(p)
n .



IgA: of degree p on a d dimensional domain

We consider the Laplacian over [0, 1]d and we denote by A
(p)
n the

spline-degree p IgA matrix.

▶ It holds A
[p]
n ≈ Tn(f ) so that {A(p)

n }n ∼λ (f , Id), Id = (−π, π)d ;
▶ f is defined over Id = (−π, π)d , is scalar-valued, nonnegative with a

unique zero at zero (as in the FD case: it is somehow the revenge of
the smoothness);

▶ the function f tends exponentially to zero as p in every point of the
type θ = (θ1, . . . , θd) for which θj = π for some j ;

▶ the latter property induces a bad conditioning in the high frequency
subspace, growing exponentially with p and which is not expected
for a differential problem: the knowledge of the symbol is an
essential guide for finding the right preconditioner.



Comparison IgA-FEM (and furthermore the case of
intermediate regularity): the picture has a clear
interpretation as the revenge of the smoothness
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IgA, degree p, d dimensions: spectral distribution and
classical multigrid

Theorem nd−2A[p]
n ≈ Tn(fp) and hence {nd−2A[p]

n }n ∼λ (fp, Id)

fp has the expected zero of order 2 at zero, positive elsewhere but it
collapses to zero exponentially with p at the boundaries of Id = (−π, π)d .

n p = 1 p = 3 p = 5

16 0.16 0.64 0.96
28 0.17 0.64 0.96
40 0.18 0.64 0.96
52 0.18 0.65 0.96

n p = 2 p = 4 p = 6

17 0.27 0.88 0.99
29 0.27 0.88 0.99
41 0.29 0.88 0.99
53 0.30 0.88 0.99

Table: spectral radius: standard twogrid, 2D, relaxed GS as smoother

≈ denotes equality up to matrix-sequences with zero symbol.



The graph of fp



IgA, degree p, d dimensions: structured PCG/PGMRES
and multigrid (const. coeff.... but the technique is equally
effective for var. coeff. and singular mappings)

We consider the system nA
[p]
n u = b coming from the IgA

approximation of {
−∆u = 1 in (0, 1)3

u = 0 on ∂(0, 1)3

For the solution: V-cycle and W-cycle multigrid

n p = 1 n p = 3 n p = 5

16 10 7 14 7 6 12 8 8
32 11 7 30 8 6 28 8 7
64 12 7 62 9 6 60 9 6

n p = 2 n p = 4 n p = 6

15 9 8 13 7 6 11 9 9
31 8 7 29 8 6 27 8 6
63 9 7 61 9 6 59 10 6

Table: number of iterations: 3D with structured PCG/PGMRES



IgA, degree p, d dimensions: structured PCG/PGMRES
and multigrid

We consider the system nA
[p]
n u = b coming from the IgA

approximation of {
−∆u = 1 in (0, 1)3

u = 0 on ∂(0, 1)3

Only one (!) new ingredient in our fast V-cycle

▶ Standard restriction and prolongation operator;

▶ Standard smoother (GS) at coarse grids;

▶ V-cycle with PCG/PGMRES as smoother only at the finest grid;

▶ Preconditioner chosen by using the information contained in the
symbol;

▶ The preconditioner has a very cheap tensor-banded structure



Variable coefficients: symbol of the IgA matrix-sequences
associated to a full elliptic Pb (a GLT sequence)

Full elliptic problem:{
−∇ · K∇u + β · ∇u + γu = f on Ω ⊂ Rd

u = 0 on ∂Ω

IgA approximation: take a geometry map G : [0, 1]d → Ω to transfer
the problem from Ω to [0, 1]d ; on [0, 1]d use again splines of deg. p.

A[p]
n = resulting IgA approximation matrix

Theorem {nd−2A[p]
n }n matrix sequence belonging to the GLT algebra

{nd−2A[p]
n } ∼λ 1

(
| det(JG(x1, . . . , xd))|KG(x1, . . . , xd) ◦ Hp(θ1, . . . , θd)

)
1T

KG = (JG)
−1K (G)(JG)

−T , JG = Jacobian matrix of G

Hp = symmetric d × d matrix whose (i , j) entry represents the ‘formula’

used to approximate ∂2/∂xi∂xj (pull-back idea)



Further Technical Insights

✵ The symbol can be recovered in the IgA Collocation/Galerkin setting
with variable coefficient PDEs, general physical domain, general
geometrical mapping (Bsplines, NURBS).

✵ The symbol can be recovered in the FEM setting with variable
coefficient PDEs, general physical domain, general graded griddings.

✵ Concerning the numerical methods, the dimensionality d is not an
issue and singular mappings are not an issue.

✵ We are now completing the analysis when the model space is given
by GB.



Conclusions

▶ In the case of constant coefficients PDEs the GLT approach and the
Local Fourier Analysis lead to the same conclusions and to the same
tools.

▶ The GLT tool has to be considered as an extension of the Local
Fourier Analysis (for variable coefficients, irregular domains etc) and
indeed the symbol analysis via GLT is more general and includes also
integral problems, preconditioning, involved iteration matrices
(PHSS), variable coefficients.

▶ Future work: Navier-Stokes and other vector problems to be
considered, with the idea of using the spectral information and the
symbol, in order to obtain faster and more robust (preconditioned)
iterative solvers.
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Symbol-based NLA for FDEs... and around it
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Fractional Diffusion Equations (FDEs)

We are interested in the following initial-boundary value problem [1]
∂u(x,t)

∂t =
∫ 2
1 ρ(α)∂

αu(x,t)
∂|x|α dα+ f (x , t), (x , t) ∈ Ω,

u(x , 0) = u0(x), x ∈ (a, b),
u(a, t) = u(b, t) = 0, t ∈ (0,T ],

(1.1)

where

Ω = [a, b]× [0,T ],

α ∈ (1, 2) is the fractional derivative order,

f (x , t) is the source term,

ρ(α) is the kernel function and satisfies

ρ(α) ≥ 0, 0 <

∫ 2

1
ρ(α)c(α) < ∞ , c(α) = − 1

2 cos(απ2 )
,

∂αu(x,t)
∂|x|α is the Riesz fractional derivative and defined as

[1] Abbaszadeh, Appl. Math. Lett., 2019
Stefano Serra-Capizzano s.serracapizzano@uninsubria.it 2 / 27
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Fractional Diffusion Equations (FDEs)

∂αu(x , t)

∂|x |α
= c(α)(aD

α
x u(x , t) +x D

α
b u(x , t)), c(α) = − 1

2 cos(απ2 )
> 0.

The left-sided and right-sided Riemann-Liouville (RL) fractional
derivatives aD

α
x u(x , t), xD

α
b u(x , t) are in turn defined as

aD
α
x u(x , t) =

1
Γ(2 − α)

d2

dx2

∫ x

a

(x − y)1−αu(y , t)dy ,

xD
α
b u(x , t) =

1
Γ(2 − α)

d2

dx2

∫ b

x

(y − x)1−αu(y , t)dy ,

with Γ(·) being the gamma function.

Stefano Serra-Capizzano s.serracapizzano@uninsubria.it 3 / 27
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Fractional Diffusion Equations (FDEs)

In order to discretize the left and right RL fractional derivatives in space,
we exploit the weighted and shifted Grünwald-Letnikov difference scheme
given in [3], i.e.,

aD
α
x u(xi , t) =

1
hα

i∑
q=0

ω(α)
q u(xi−q+1, t) +O(h2),

xD
α
b u(xi , t) =

1
hα

n−i+1∑
q=0

ω(α)
q u(xi+q−1, t) +O(h2),

[11] Hao, Sun, Cao, J. Comput. Phys., (2015)
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Fractional Diffusion Equations (FDEs)

where

ω
(α)
0 = γ1(α)g

(α)
0 , ω

(α)
1 = γ1(α)g

(α)
1 + γ0(α)g

(α)
0 ,

ω
(α)
k = γ1(α)g

(α)
k + γ0(α)g

(α)
k−1 + γ−1(α)g

(α)
k−2, k ≥ 2,

in which

γ1(α) =
α2 + 3α+ 2

12
, γ0(α) =

4 − α2

6
, γ−1(α) =

α2 − 3α+ 2
12

,

g
(α)
0 = 1, g

(α)
k+1 =

(
1 − α+ 1

k + 1

)
g
(α)
k , k ≥ 0.
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A discretization

Let L,m, n be positive integers, ∆α = 1
L be the integration step size,

∆t = T
m be the time step size, h = b−a

n+1 be the spatial width, and
consider the following partitions

αk = (k + 1/2)∆α+ 1, k = 0, · · · , l − 1,
xi = a+ ih, i = 0, 1, · · · , n + 1,
tj = j∆t, j = 0, 1, · · · ,m.

1 discretization in time by an central difference scheme +

2 discretization in space of the fractional derivatives by the weighted
and shifted Grünwald-Letnikov difference scheme +

3 quadrature formula for the distributed order

=

unconditionally stable method[1].
[1] Abbaszadeh, Appl. Math. Lett., 2019
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Matrix form of the discretized problem

(I − An)u
j+1 = (I + An)u

j +∆tf j+
1
2 , (1.2)

with

An =
∆t∆α

2

L∑
k=1

ρ(αk)c(αk)

hαk
An(αk), (1.3)

uj = (uj1, u
j
2, · · · , ujn)T with uji ≈ u(xi , tj),

f j+
1
2 = (f

j+ 1
2

1 , f
j+ 1

2
2 , · · · , f j+

1
2

n )T with f
j+ 1

2
i = f (xi , tj+ 1

2
),

I denoting the identity of size n.

Non-distributed problems: spectral analysis, multigrid, precond.
[6, 7, 2] (Barakitis, Donatelli, Ekström, Mazza, Vassalos).
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Matrix form of the discretized problem

An(αk ) =



2ω(αk )
1 ω

(αk )
0 + ω

(αk )
2 ω

(αk )
3 · · · ω

(αk )
n−1 ω

(αk )
n

ω
(αk )
0 + ω

(αk )
2 2ω(αk )

1 ω
(αk )
0 + ω

(αk )
2 ω

(αk )
3 · · · ω

(αk )
n−1

.

.

. ω
(αk )
0 + ω

(αk )
2 2ω(αk )

1

. . .
. . .

.

.

.
.
.
.

. . .
. . .

. . .
. . . ω

(αk )
3

ω
(αk )
n−1

. . .
. . .

. . . 2ω(αk )
1 ω

(αk )
0 + ω

(αk )
2

ω
(αk )
n ω

(αk )
n−1 · · · · · · ω

(αk )
0 + ω

(αk )
2 2ω(αk )

1


.
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Matrix form of the discretized problem

Equivalently An(αk) = Aαk ,n + AT
αk ,n, where

Aαk ,n
=



ω
(αk )
1 ω

(αk )
0 0 · · · 0 0

ω
(αk )
2 ω

(αk )
1 ω

(αk )
0

. . .
. . . 0

.

.

. ω
(αk )
2 ω

(αk )
1

. . .
. . .

.

.

.
.
.
.

. . .
. . .

. . .
. . .

.

.

.

ω
(αk )
n−1

. . .
. . .

. . . ω
(αk )
1 ω

(αk )
0

ω
(αk )
n ω

(αk )
n−1 · · · · · · ω

(αk )
2 ω

(αk )
1



.

It is clear that An(αk) is a symmetric Toeplitz matrix. We rewrite the
linear system in (1.2) as

Mnu
j+1 = bj , (1.4)

where An is as in (1.3) and

Mn = I − An, bj = (I + An) u
j +∆tf j+

1
2 .
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Preliminaries: generating function vs symbol

Definition

Let f ∈ L1([−π, π]) and let {fk}k∈Z be the sequence of its Fourier
coefficients defined as

fk =
1
2π

∫ π

−π

f (θ)e−ikθ dθ, k ∈ Z.

Then the matrix-sequence {Tn}n∈N with Tn = [fi−j ]
n
i,j=1 is called the

sequence of Toeplitz matrices generated by f , which in turn is called the
generating function of {Tn}n∈N and Tn is denoted by Tn(f ).
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Preliminaries: spectral distribution

Definition (of the Spectral Symbol)

Let f : [a, b] → C be a measurable function, defined on [a, b] ⊂ R, let
C0(C) be the set of continuous functions with compact support over C
and let {An}n be a sequence of matrices of size n with eigenvalues
λj(An), j = 1, . . . , n. We say that {An}n is distributed as the pair
(f , [a, b]) in the sense of the eigenvalues, and we write

{An}n ∼λ (f , [a, b]),

if the following limit relation holds for all F ∈ C0(C):

lim
n→∞

1
n

n∑
j=1

F (λj(An)) =
1

b − a

∫ b

a

F (f (t))dt.
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GLT Books: Vol. I (’17), II (’18), III, IV, V long BIT/ETNA
papers (’20-’22), VI in preparation: with Barbarino, Garoni)
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Generating function and spectral distribution of {Aα,n}n∈N

Recall the coefficient matrix

An =
∆t∆α

2

L∑
k=1

ρ(αk)c(αk)

hαk
An(αk),

with An(αk) = Aαk ,n + AT
αk ,n .

Proposition

Let α ∈ (1, 2). The generating function associated to the Toeplitz
matrix-sequence {Aα,n}n∈N is given by

fα(θ) =
∞∑

k=−1
ω
(α)
k+1e

ikθ =

[
8 − 2α2 + (α2 + 3α + 2)e−iθ + (α2 − 3α + 2)eiθ

12

] (
1 + ei(θ+π)

)α
.
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Generating function and spectral distribution of {Aα,n}n∈N

Corollary

Let α ∈ (1, 2). The generating function associated to the Toeplitz
matrix-sequence {An(α) = Aα,n + AT

α,n}n∈N is given by

gα(θ) = fα(θ) + fα(−θ) .

Corollary

Let An be the matrix defined in (1.3) and assume that h∆α = o(1).
Then,{

hαL

∆t∆α
An

}
n∈N

∼λ (cL gαL
(θ), [0, π]) , where cL =

ρ(αL)c(αL)

2
.
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Symbol and spectral distribution of {Aα,n}n∈N

Similarly, for the matrix Mn, we prove the following spectral result.

Corollary

For the matrix Mn defined as in (1.4), when hαL = o(∆t∆α) and
h∆α = o(1) it holds{

hαL

∆t∆α
Mn

}
n∈N

∼λ (−cL gαL
(θ), [0, π]) , where cL =

ρ(αL)c(αL)

2
.

Conditioning and extremal spectral behavior in [4,5,13].

[4] Bogoya, Grudsy, Mazza, SSC, LAMA, 2023; [5] Bogoya, Mazza, SSC, Tablino-Possio BIT, 2022; [13]
Mazza, SSC, Usman, ETNA, 2021
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Conjugate gradient method

Due to the symmetric positive definite nature of the coefficient matrices,
we opt for the preconditioned conjugate gradient (PCG) method and we
compare the performances of our proposal with a Strang circulant
alternative given in literature [12]. We propose the following two
preconditioners (see also [2, 6, 7])

Laplacian style preconditioner,

generic τ -preconditioner.

[2] Barakitis, Ekström, Vassalos, NLAA, (2022); [6,7] Donatelli, Mazza, Serra-Capizzano, JCP, (2016),
SISC, (2018), [12] Huang, Fang, Sun, Zhang, LAMA, 2020
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Numerical Example

Under mild conditions on hαL ,∆t,∆α, we prove

{An(αL)}n∈N ∼λ (gαL
(θ), [0, π]) ,

{
hαL

∆t∆α
An

}
n∈N

∼λ (cL gαL
(θ), [0, π]) , where cL =

ρ(αL)c(αL)

2
.
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Numerical Example
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(a) n = 100
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(b) n = 500
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-10
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0

(c) n = 1000
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-3
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-1
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(d) n = 100

Figure: (a)–(c) Comparison between the symbol cLgαL
(θ) and eig( hαL

∆t∆α
An) for L = 2 and

n = 100, 500, 1000. (d) Comparison between the symbol gαL
(θ) and eig(An(αL)) for L = 2 and n = 100.
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Numerical Example
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(a) n = 100
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(b) n = 1000
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(c) n = 10000
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Figure: (a)–(c) Comparison between the symbol cLgαL
(θ) and eig( hαL

∆t∆α
An) for L = 5, and

n = 100, 1000, 10000. (d) Comparison between the gαL
(θ) and eig(An(αL)) for L = 5 and n = 100.
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Numerical Example

We now discuss the performances of the PCG method when applied to
the following example taken from [12]: assume that in problem equation
(1.1) we set

u(x , 0) = x2(1 − x)2, ρ(α) = −2Γ(5 − α) cos
(απ

2

)
,

f (x , t) = etx2(1 − x)2 −
∫ 2

1
ρ(α)

∂αu(x , t)

∂|x |α
dα

= etx2(1 − x)2 − et [f1(x) + f1(1 − x)],

where

f1(x) = Γ(5)
1
ln x

(x3 − x2)− 2Γ(4)
[

1
ln x

(3x2 − 2x)− 1
(ln x)2

(x2 − x)

]
+Γ(3)

1
ln x

[
6x − 2 − 5x

ln x
+

3
ln x

+
2x

(ln x)2
− 2

(ln x)2

]
.
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Numerical Example

The exact solution for this problem is

u(x , t) = etx2(1 − x)2, and (x , t) ∈ [0, 1]× [0, 1].

As stopping criterion for the PCG method we consider

||r (k)||2
||r (0)||2

< 10−8,

where r (k) represents the residual vector after k iterations. In all tables,
by “Iter” we mean the average number of iterations after 10 time-steps
and by “CPU” the corresponding average timings in seconds.
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Numerical Example

n = m
Strang circulant τ preconditioner Laplacian

E2(h)Iter CPU(s) Iter CPU(s) Iter CPU(s)
24 4.0 0.0000 4.0 0.0003 7.2 0.0001 1.37e-3
25 4.0 0.0000 4.0 0.0003 8.1 0.0001 3.49e-4
26 4.0 0.0001 4.0 0.0004 7.2 0.0002 8.66e-5
27 4.0 0.0003 4.0 0.0007 7.1 0.0006 2.13e-5
28 4.0 0.0007 4.0 0.0012 7.1 0.0011 5.23e-6
29 4.0 0.0059 4.0 0.0066 7.2 0.0077 1.28e-6
210 4.0 0.0166 3.8 0.0180 7.3 0.0284 3.15e-7
211 3.9 0.0608 3.0 0.0484 7.1 0.1067 7.76e-8
212 3.7 0.2322 3.1 0.1924 7.1 0.4326 1.92e-8

Table: PCG method performances with three different preconditioners.
Here L = 5.
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Numerical Example

n = m
Strang circulant τ preconditioner Laplacian

E2(h)Iter CPU(s) Iter CPU(s) Iter CPU(s)
24 4.0 0.0000 4.0 0.0003 7.1 0.0001 1.37e-3
25 4.0 0.0000 4.0 0.0003 8.1 0.0001 3.49e-4
26 4.0 0.0001 4.0 0.0004 7.1 0.0002 8.66e-5
27 4.0 0.0003 4.0 0.0008 7.1 0.0005 2.13e-5
28 4.0 0.0006 4.0 0.0013 7.1 0.0008 5.23e-6
29 4.0 0.0052 4.0 0.0065 7.1 0.0078 1.28e-6
210 4.0 0.0168 4.0 0.0189 6.7 0.0271 3.15e-7
211 4.0 0.0631 3.1 0.0500 6.1 0.0918 7.76e-8
212 4.0 0.2516 3.1 0.1984 5.1 0.3097 1.92e-8

Table: PCG method performances with three different preconditioners.
Here L = n.
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Conclusions

Asymptotic eigenvalue/singular value distribution for constant
coefficient FDEs.

Analysis of known preconditioned Krylov methods.

Two new preconditioning (Laplacian style preconditioning and
generic τ -preconditioning).

Further steps
Adaptations of the same strategies work in the more challenging
multilevel setting (for 2D or 3D problems, Mazza, SSC, Sormani, 23).
More analysis is needed for different versions of the fractional operators
such as the tempered derivatives. Furthermore, there are connections
with the notions of the Toeplitz and GLT momentary symbols: see
Bolten, Ekström, Furci, SSC, LAA, 22 and ETNA, 23.
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MATRIX SEQUENCES



SPECTRAL SYMBOL

{AN}N = Sequence of matrices of increasing dimension as N→ ∞.
Spectral symbol of {AN}N = function Fa such that the eigenvalues of
AN are approximately a uniform sampling of Fa over its domain.
Notation: {AN}N ∼λ Fa

An example:

AN = pentadiag[1,−4, 6,−4, 1]
Fa(θ) = (2− 2 cos(θ))2

It holds

{AN}N ∼λ Fa on [0, π]

2



SPECTRAL SYMBOL

{AN}N = Sequence of matrices of increasing dimension as N→ ∞.
Spectral symbol of {AN}N = function Fa such that the eigenvalues of
AN are approximately a uniform sampling of Fa over its domain.
Notation: {AN}N ∼λ Fa

An example:

AN = pentadiag[1,−4, 6,−4, 1]
Fa(θ) = (2− 2 cos(θ))2

It holds

{AN}N ∼λ Fa on [0, π]

N = 20
2



SPECTRAL SYMBOL

{AN}N = Sequence of matrices of increasing dimension as N→ ∞.
Spectral symbol of {AN}N = function Fa such that the eigenvalues of
AN are approximately a uniform sampling of Fa over its domain.
Notation: {AN}N ∼λ Fa

An example:

AN = pentadiag[1,−4, 6,−4, 1]
Fa(θ) = (2− 2 cos(θ))2

It holds

{AN}N ∼λ Fa on [0, π]

N = 50
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SPECTRAL SYMBOL

{AN}N = Sequence of matrices of increasing dimension as N→ ∞.
Spectral symbol of {AN}N = function Fa such that the eigenvalues of
AN are approximately a uniform sampling of Fa over its domain.
Notation: {AN}N ∼λ Fa

An example:

AN = pentadiag[1,−4, 6,−4, 1]
Fa(θ) = (2− 2 cos(θ))2

It holds

{AN}N ∼λ Fa on [0, π]

N = 100
2



GLT THEORY

GLT ALGEBRA Set of matrix sequences closed under linear
combinations, product and (pseudo)inversion.

• It contains:
• Toeplitz sequences with L1 symbols
• Diagonal sampling matrices with Riemann integrable symbols
• Zero-distributed sequences

• Each GLT sequence is equipped with a symbol

GLT algebra −→ Symbols
{AN}N −→ Fa

is an algebra homomorphism

3
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• It contains:
• Toeplitz sequences with L1 symbols
• Diagonal sampling matrices with Riemann integrable symbols
• Zero-distributed sequences

• Each GLT sequence is equipped with a symbol

GLT algebra −→ Symbols
{AN}N −→ Fa

is an algebra homomorphism
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PROBLEM SETTING AND
DISCRETIZATION



CONTINUOUS PROBLEM

Consider the 2D distributed order space-fractional diffusion equation

∂u(x, y, t)
∂t =

∫ 2

1

(
∂αu(x, y, t)

∂|x|α +
∂αu(x, y, t)

∂|y|α

)
ρ(α)dα+ f(u, x, y, t),

(x, y) ∈ Ω, t ∈ [0, T]

with initial and boundary conditions{
u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

u(x, y, t) = 0, (x, y) ∈ R2\Ω, t ∈ (0, T]

where Ω is a convex region [7, 4, 3, 6, 8, 1, 5, 2]

4



CONTINUOUS PROBLEM

Non-Cartesian domain⇒ Non-Cartesian meshes

• Extra care needed for the boundary
• Difficult to implement
• Linear systems with hidden structures or unstructured
coefficient matrices

y
VOLUME-PENALIZATION METHOD

1. Embed the domain into a rectangle [a,b]× [c,d] = Ω̃ ⊇ Ω

2. Extend the problem to Ω̃

3. Add a penalization term that dominates on Ω̃ \ Ω, annihilating
the solution

5
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EXTENDED CONTINUOUS PROBLEM

∂uη(x, y, t)
∂t =

∫ 2

1

(
∂αuη(x, y, t)

∂|x|α +
∂αuη(x, y, t)

∂|y|α

)
ρ(α)dα+ f̃(uη, x, y, t)

−1− 1Ω(x, y)
η

uη(x, y, t), (x, y) ∈ Ω̃, t ∈ [0, T]

with initial and boundary conditions{
uη(x, y, 0) = ũ0(x, y), (x, y) ∈ Ω̃,

uη(x, y, t) = 0, (x, y) ∈ R2\Ω̃, t ∈ (0, T],

where

• Ω̃ = [a,b]× [c,d] ⊇ Ω

• η is the penalty parameter and uη
η→0+−−−−→ u

• 1Ω is the characteristic function of Ω
• f̃, ũ0 are zero extensions for f,u0
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DISCRETIZATION

Cartesian domain⇒ Uniform spatial grids {xi}n1i=1, {yj}
n2
j=1

• Finite difference methods
• Linear systems with structured matrices

COEFFICIENT MATRIX

MN = LN + DN, MN ∈ RN×N,N = n1n2

• LN corresponds to the original problem and is a 2-level Toeplitz

LN = IN − In2 ⊗ Bxn1 − Byn2 ⊗ In1

• DN corresponds to the added penalization term and is diagonal

DN = diag
[
di,j

]
i=1,...,n1
j=1,...,n2

di,j ̸= 0 ⇐⇒ (xi, yj) ∈ Ω̃ \ Ω

• MN is symmetric and positive definite
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GLT SPECTRAL ANALYSIS



SYMBOL OF {MN}N

To compute the symbol of

MN = IN − In2 ⊗ Bxn1 − Byn2 ⊗ In1 + DN
= IN − AxN − AyN + DN

1. Compute Fi, Fax , Fay , Fd, symbols of {IN}N, {AxN}N, {A
y
N}N, {DN}N

2. Compute Fm = Fi − Fax − Fay + Fd, symbol of {MN}N

Theorem
With suitable hypothesis on the parameters,

{txMN}N ∼λ Fα(θ1, θ2) + 1Ω̃\ΩCη

where Fα(θ1, θ2) is defined on [0, π]2 and Cη
η→0+−−−−→ ∞.
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SYMBOL OF {MN}N

Comparison between the symbol Fα(x, y, θ1, θ2) and eig(txMN)

Figure 1: η = 10−4, n1 = n2 = 24
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SYMBOL OF {MN}N

Comparison between the symbol Fα(x, y, θ1, θ2) and eig(txMN)

Figure 2: η = 10−6, n1 = n2 = 26
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ALGEBRA PRECONDITIONING



PRECONDITIONING PROPOSAL 1

TN = IN − In2 ⊗ T (Bxn1)− T (Byn2)⊗ In1
SN = IN − In2 ⊗ S(Bxn1)− S(Byn2)⊗ In1

with
• T (Bxn1), T (Byn2) τ-preconditioners of Bxn1 , B

y
n2

• S(Bxn1), S(B
y
n2) circulant preconditioners of Bxn1 , B

y
n2

Theorem
With suitable hypothesis on the parameters,

{txTN}N , {txSN}N ∼λ Fα(θ1, θ2)
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PRECONDITIONING PROPOSAL 2

T split
N = DN(1Ω)TN +DN(1Ω̃\Ω)

(
TN + ∆t

2η IN
)

Ssplit
N = DN(1Ω)SN +DN(1Ω̃\Ω)

(
SN + ∆t

2η IN
)

based on the alternative splitting for MN

MN = DN(1Ω)LN +DN(1Ω̃\Ω)
(
LN + ∆t

2η IN
)

where DN(1Ω) = diag
[
1Ω

(
i

n1+1 ,
j

n2+1

)]
i=1,...,n1
j=1,...,n2

Theorem
With suitable hypothesis on the parameters,{

txT split
N

}
N
,
{
txSsplit

N

}
N
∼λ Fα(θ1, θ2) + 1Ω̃\ΩCη
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NUMERICAL EXPERIMENTS



τ VS CIRCULANT

SN , Ssplit
N

• Worse matching of small
eigenvalues

TN, T split
N

• Better matching of small
eigenvalues

Table 1: η = 10−2

PCG

SN TN

n1 = n2 Iter CPU Iter CPU

27 18.90 0.0708 5.10 0.0313
28 22.90 0.2479 5.10 0.0983
29 29.90 1.9227 5.20 0.4682
210 35.50 7.6379 5.80 1.9621
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τ VS CIRCULANT

SN , Ssplit
N

• Worse matching of small
eigenvalues

TN, T split
N

• Better matching of small
eigenvalues

Table 1: η = 10−2

GMRES

Ssplit
N T split

N

n1 = n2 Iter CPU Iter CPU

27 18.20 0.1001 6.00 0.0640
28 22.60 0.3865 7.00 0.2227
29 27.20 1.9674 7.00 0.8897
210 32.80 9.3339 6.20 3.5411
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NON-SPLIT VS SPLIT

SN, TN

• Symbol does not balance the
large outliers due to DN

Ssplit
N , T split

N

• Symbol balances the large
outliers due to DN

Table 2: η = 10−3

PCG GMRES

SN TN Ssplit
N T split

N

n1 = n2 Iter Iter Iter Iter

27 19.00 7.10 17.00 8.00
28 24.10 7.00 21.80 8.00
29 30.10 7.00 26.90 8.00
210 43.30 8.10 34.20 7.20
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NON-SPLIT VS SPLIT

SN, TN

• Symmetric⇒ PCG can be
used

• 2 fast transforms less

Ssplit
N , T split

N

• Non-symmetric⇒ Resort to
GMRES

• 2 fast transforms more

Table 2: η = 10−3

PCG GMRES

SN TN Ssplit
N T split

N

n1 = n2 CPU CPU CPU CPU

27 0.0689 0.0409 0.0940 0.0808
28 0.2527 0.1242 0.3503 0.2581
29 1.5727 0.5657 1.9032 0.9314
210 8.7480 2.5431 9.9982 3.9584 14
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