Nonlinear Perron-Frobenius theory and
applications

Francesco Tudisco

G S
I

Gran Sasso Science Institute

Numerical Linear Algebra days — Due giorni di Algebra Linear Numerica
GSSI - May 10, 2023



1/71



1/71



May 10,




3/71



Introduction
9000000

Introduction:

Cone theoretic proof of the PF theorem for positive matrices
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Perron eigenvector

Consider the problem:

[ Find x such that Az = \z
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Perron eigenvector

Consider the problem:

Find x such that Az = \z

Perron—Frobenius theorem

If A is positive then there exists a unique solution z* > 0, [|z*|| =1

and
m— 00 *

Tmt1 = A /|| Az || —— =

for any choice of x¢ > 0.
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Introduction
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Perron eigenvector

Consider the problem:

[ Find = such that Az = Az
Perron—Frobenius theorem
If A is positive then there exists a unique solution z* > 0, ||z*|| =1
and

m—00. 4

Tmt1 = A /|| Az || —— =

for any choice of x¢ > 0.

How do you prove that?
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Cone-theoretic proof

Hilbert-Birkhoff projective metric

T,y positive vectors dy(z,y) = log (max,- % max; &)

Z5

dp is projective i.e. dg(z,y) = dg(ax, By), Va, 5 > 0. Thus
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Cone-theoretic proof

Observation 1

Eigenvector <= Fixed point
Az =)z < dy(Az,z)=0

Observation 2

Take any norm || - || and let Sy = {x > 0: ||z = 1}
Then (S4+,dp) is a complete metric space.
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Cone-theoretic proof 3/4

Birkhoff-Hopf theorem

Let A be any positive matrix. Then
du(Az, Ay) < k(A)du(z,y)  Vz,y >0

where r(A) = tanh($diam(A4)) = tanh(3 log A(A)), and

A ;A
o Ty ij41hk
A(A)=AAY) = rlrjl}?]:;( Ao Ang

1
8.2 i K(A) = tanh(} log A(4)) |
Ay > Azl o ] l
A12A12 021 |
0
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Birkhoff contraction ratio - example
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Figure: Each line shows the distribution of x(A) over 1000 random matrices A

with entries between s and 10. Different curves correspond to different values of
se{1,2,...,5}.
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Cone-theoretic proof

G(z) = Ax/| Az]

du(G(z), G(y)) = du(Az, Ay) < k(A)dp(z,y)
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Cone-theoretic proof

If
G(z) = Az/[|Az||

then
du(G(2),G(y)) = du(Az, Ay) < k(A)du(z,y)

Thus: if A is a positive matrix, GG is a contraction in the metric space
(S44,dm), with contraction constant x(A).
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Cone-theoretic proof

If
G(z) = Az/[|Az||

then
du(G(2),G(y)) = du(Az, Ay) < k(A)du(z,y)

Thus: if A is a positive matrix, GG is a contraction in the metric space
(S44,dm), with contraction constant x(A).

Using the Banach fixed point theorem we conclude that:

m—r0o0

Az, /|| Az || —— 2* as k(A)™
and x* is the unique positive eigenvector of A
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Introduction:

Nonlinear matrix eigenvectors
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Nonlinear Perron eigenvector

Let f : R — R™ be such that z > 0 = f(z) > 0

Consider the problem

[ Find = such that Af(z) = \x

For the time being: f(x) = ® = component-wise power, « # 0
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Nonlinear Perron eigenvector

Let f : R — R™ be such that z > 0 = f(z) > 0

Consider the problem

[ Find = such that Af(z) = \x

For the time being: f(x) = ® = component-wise power, « # 0

Can we do the same?
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Dilatations

[ a€eR — di(z®,y%) = |a|dg(z,y) ]
Therefore
di(Af(2), Af(y)) < 6(A)du(f(z), f(y) = |als(A)  du(z,y)

contraction constant
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Nonlinear Perron eigenvector

Consider the problem

Find z such that Az® = \z

If |o|x(A) < 1 then there exists a unique solution z* > 0, [lz*|| =1
and

T = A2/ Aal ] T2 o* as (jal(4)"

14/71



Introduction
[ ]

[ What about other spectral equations? ]
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Singular vectors:

PF theorem for singular vectors
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(o] lelelele)

Singular vectors

Consider the problem

Ay = \x

AT

Find (x,y) such that {
T=\y

Problem: Even if A is positive, it holds

k(A) = k(AT) <1 but /\-(LT ‘1)1
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Singular vectors
(o] lelelele)

Singular vectors

Consider the problem

Ay = \x

Find (x,y) such that {AT

T=\y

Problem: Even if A is positive, it holds

k(A) = r(AT) <1  but /\-(LT ’1)1

Solution: “Higher-order” Hilbert metric
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“Order-2" Birkhoff-Hopf theorem

antir i) = Lany ") [ =<0 [d)

We call K(.A) “Lipschitz matrix” of A = [AT A] :R" xR - R™ x R"
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Singular vectors
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“Order-2" Birkhoff-Hopf theorem

antir i) = Lany ") [ =<0 [d)

We call K(.A) “Lipschitz matrix” of A = {AT A] :R" xR - R™ x R"

For any positive matrix A there exists a metric ;7 on R” x R™ st

o1 (A m A m ) < o5 (A)) o m ! m )

for all (z,y) >0, (u,v) > 0.

\. J

0g is defined in terms of any positive eigenvector of A
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... moreover

Observation 1

Take any norm || - || and let S%, = {(z,y) > 0: ||lz|| = ||y|| = 1}

Then (S_QH, dpr) is a complete metric space
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... moreover

Observation 1

Take any norm || - || and let S%, = {(z,y) > 0: ||lz|| = ||y|| = 1}

Then (S_zH, dpr) is a complete metric space

Observation 2

.

If G is the “normalized version” of A

(L)) = Lt

then




Singular vectors
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... moreover

Observation 3

For this particular case we have

(1) =o( |y ary ")) =)
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Perron-Frobenius theorem for singular values

Consider the problem

Ay = Az

Find (z,y) such that
ind (z,y) su {ATas ~

If A is positive then there exists a unique solution z*,y* > 0 such
that ||lz*|| = |ly*|| = 1 and

Zmi1] [ Aym/|Aym] ] . H "
= —_— A
{ymﬂ} [ATxm/HATxmn yr| 254
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Singular vectors:

Nonlinear matrix singular vectors
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More in general

Ayf =\

® Find (z,y) such that {
Ba® = py
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More in general

Ayf =\

® Find (z,y) such that {
Ba® = py

Application examples:
® Matrix norms:

Compute [|A||pq = maxzo |[|[Az|l¢/ 7|l
Boils down to ® fora =1/(p—1) and 5 =¢q/(q — 1)

® Matrix rescaling (matrix Sibkhorn method) and entropy minimization:

Find a diagonal D1, Do such that D1 ADs is doubly stochastic
Boils down to @ for a = 8 = —1
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Birkhoff-Hopf theorem

e ) = w1 1] a0

~

-

K

There exists a metric gy such that

ou([32] [ o] ) < oyan([2].[2])
a0 () = /IoBIRA)R(B).
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Nonlinear Perron singular vector

AyP = Iz

a

Find (x,y) such that
x® = py

\

If |aB|x(A)x(B) < 1 then there exists a unique solution z*,y* > 0
such that |[z*|| = [ly*|| = 1 and

Tmat] _ [Ays /| AYE|] mooo, [* iy
[ymﬂ} - {Bm%/”Bw%“] - [y*} as (JaBlr(A)x(B))

Moreover: If A= BT then A\ = p
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Singular vectors:

Example of application: matrix operator norm

26/71



Singular vectors
(o] lele}

Mixed matrix norms

A
Compute ||A|| = max | Az]
w20 ||z
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Mixed matrix norms

[ Az],

Compute ||A = max ,
p ” H/)(/ CL'#O HxH(l

1<p,qg<+o0

NP-hard to approximate if p = ¢ # 1,2, 00 [Hendrickx, Olshevsky, 2009]
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Mixed matrix norms

[ Az],

Compute ||A = max ,
p ” H/)(/ CL'#O HxH(l

1<p,qg<+o0

NP-hard to approximate if p = ¢ # 1,2, 00 [Hendrickx, Olshevsky, 2009]

Observations
A A
1. If A > 0 then max 1Azl — max [ Azlp
a0 ||lzllq 0 |zl
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Singular vectors
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Mixed matrix norms

[ Az],

Compute ||A = max ,
p ” H/)(/ CL'#O HxH(l

1<p,qg<+o0

NP-hard to approximate if p = ¢ # 1,2, 00 [Hendrickx, Olshevsky, 2009]

Observations
A A
1. If A > 0 then max 1Azl — max [ Azlp
a0 ||lzllq 0 |zl

2. Vo (lil) =0 = AT(Apt =g ur!
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(Az)P~t = Ay

AT Az =20 ! =
( Jf) g ATy:M$q_1
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(Az)P~t = Ay
ATy — Mliq_l
Az = Xyp%l
<~
ATy = part

AT(Az)P =527 — {
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Singular vectors
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Azt =
Al(Az)Pt =027 = (Az) Y
ATy = pa!
A:E:Xyp%l
e gl B
y=px
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Azt = )
Al(Az)Pt =027 = (Az) Y
ATy — Mliq_l

Ar = Xyp%l

<

ATy = part

szq:1 — Auﬁziv
v=yr1 ATyr=1 = i

. . : . Au® = v
Computing [[Al[,,q is equivalent to solving .
ATv8 = pu

28/71
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Mixed matrix norms: Theorem

[Az]lp

Hl’”q ,

Compute [|A]lp,q = m;%{ 1<p,qg<+oc0
X

.

We can compute || Allpq if ¢ > (A)*(p—1) + 1.
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Mixed matrix norms: Theorem

[Az]lp

Hl’”q ,

Compute [|A]lp,q = m;%{ 1<p,qg<+oc0
X

\

We can compute || Allpq if ¢ > (A)*(p—1) + 1.

The condition is necessary and sufficient for A, = E i] ,e>0
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Singular vectors
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Mixed matrix norms: Theorem

[Az]lp

Hl’”q ,

Compute ||A]|p,q = max 1<p,qg<+oc0
z#0

\

We can compute || Allpq if ¢ > (A)*(p—1) + 1.

The condition is necessary and sufficient for A, = E i] ,e>0

Moreover, if for example € = 3/4, we have

Classical condition ([1-4]): (¢—1)>(p—1)
New condition: (¢ —1) > 0.0016 - (p — 1)

[1] Boyd (‘73), [2] N.Higham (‘92), [3] Bhaskara, Vijayaraghavan (‘11), [4] Gautier, Hein (‘'16)
29/71
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Multihomogeneous PF theorem:

The contractive case
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Perron—Frobenius theory

Linear

[Perron, Frobenius]

J

Y

Homogeneous
[Birkhoff,Samelson]
[Gaubert, Gunawardena]
[Lemmens, Nussbaum]

Y

Multi-Linear
[Friedland, Gaubert,
Han, Lim]

7

> Multi-Homogeneous

J
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Multihomogeneous operators

The spectral equation

Ag(y) = Ay = Mz

Find (z,y) such that N
Bf(z) = Bz = py

is an example of a multihomogeneous spectral problem, just like

Find x such that Af(z) = Az®* = \x

is an example of a homogeneous spectral problem.
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Multihomogeneous operators

Homogeneity

F :R™ — R™ is #-homogeneous, in symbols F' € hom(6), if
F(\z) = AF(z) for all A > 0 and all

0 € R is called homogeneity degree

Multihomogeneity Xg:=R™M x ... x R™
F: X4 — X4 is ©-homogeneous, in symbols F' € hom(O), if
Fy(z1,..., Azj, ..., 2q) = A9 Fy(x) for all A > 0 and all z € X,

O € R¥? is called homogeneity matrix
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Examples: Linear and multilinear operators

® F(z) = Az € hom(1)

34/71
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Examples: Linear and multilinear operators

® F(z) = Az € hom(1)
® F(x) = Az® € hom(«)
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Examples: Linear and multilinear operators

® F(z) = Az € hom(1)
® F(x) = Az® € hom(«)
® F(x) = Af(x) € hom(#) provided f € hom(0)
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Examples: Linear and multilinear operators

® F(z) = Az € hom(1)
® F(x) = Az® € hom(«)

F(z) = Af(z) € hom(é) provided f € hom(6)

* Fla.y) = [32] < hom ([93])
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Examples: Linear and multilinear operators

® F(z) = Az € hom(1)
® F(x) = Az® € hom(«)

F(z) = Af(z) € hom(é) provided f € hom(6)
Fla.y) = [ 3] € hom ([§}])

* F(z,y) = [g‘gi} Ehom([gg])

34/71
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Examples: Linear and multilinear operators

® F(z) = Az € hom(1)
® F(x) = Az® € hom(«)

F(z) = Af(z) € hom(é) provided f € hom(6)
Y] € hom ([ (1)])

Ayﬂ] Ehom( gg})

Bg(z,y)

=3
[
[Af(z’y ] € hom <[gi %2]) provided
a1, az), g € hom([B1, B2])

f € hom(

34/71
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Examples: Linear and multilinear operators

If T'is a 3rd-order tensor, define z = Txy as z; = ij iy

T
 Fla.z) = 12| e nom ([111])
3TY
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Examples: Linear and multilinear operators

If T'is a 3rd-order tensor, define z = Txy as z; = ij iy

T
 Fla.z) = 12| e nom ([111])
3TY

T1f(,y,2) a1 az as .
® F(z,y,2) = | Teg(z,y,2) | € hom ([bl by b3 ]) provided
T3h(z,y,2) €L e2 e

f € hom([a1,az,as]), g € hom([by, bz, b3]), h € hom([c1, c2, c3])
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Multihomogeneous PF theorem
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Examples: Linear and multilinear operators

If T'is a 3rd-order tensor, define z = Txy as z; = ij iy

T
 Fla.z) = 12| e nom ([111])
3TY

T1f(,y,2) a1 az as .
o F(z,y,2) = | Tag(zy, z) € hom ([bl by b3 ]) provided

fe hom([al,ag,ag]) g € hom([by, b2, b3]), h € hom([c1, c2, c3])

General tensor mapping

For a collection of tensors T' = [T,..., Ty, x = [x1,...,z4] € Xg,

F(z) =T f(xz) € hom(O) provided f € hom(O)

35/71
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Multihomogeneous eigenproblem

We want to consider systems of spectral equations...
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Multihomogeneous eigenproblem

We want to consider systems of spectral equations...

x=(x1,...,2q) € Xgand X € R? are an eigenpair for the multhom
operator F': Xy — X, if

Fl(LL‘) = )\11‘1

Fy(x) = Aaxo

Fy(z) = Aaza
In symbols

Fz)=A®x

36/71
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Multihomogeneous PF theorem

Let F': Xy — X4 € hom(@) be such that
¢ Continuous
Positive: F(x) > 0if z >0
Order-preserving: F(z) > F(y)ifz >y
p(|0]) <1, || = component wise
® There exists v > 0 such that v*|0] = M7, |v|| =1

Then

® there exists a unique z* € Sy st * > 0, F(z*) = A®@ 2"
o 2D — G(z®) = 2* as p(|O))*

where G;(x) = Fi(z)/||Fi(x)||;, and Sq = {x € X4 : ||zl = 1}
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Multihomogeneous BH theorem
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Multihomogeneous BH theorem

A. It applies to maps of the form F(z) = T f(x) € hom(O).
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Multihomogeneous BH theorem

A. It applies to maps of the form F(z) = T f(x) € hom(O).
B. It is based on the mode-j tensor contraction ratio

5 (T) = tanh (}l log 24(T))

with Aj(T) — max ;}17--~7ij—1vij7ij+17-~-7im ?ﬁ, wki—1,k5,k5 4150 km
Ueotme Ly, i 1,k 0 41, 00m TRk 1,05,k 1 km
kly'":km
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Multihomogeneous BH theorem

A. It applies to maps of the form F(z) = T f(x) € hom(O).

B. It is based on the mode-j tensor contraction ratio
1
k;(T) = tanh (Z log Aj(T))

5y, iz im Lk, 1,k k

- geenylj—1525, yeeey Tyeeey g [RRES)

with A;(T) = max Loy by bem El S R
i1yemim L
1ok

C. It states that

Tseesli—1,K5,85 4150 0m 7%17 wki—1505,k5 415 km

r

There exists K(T,0) € R defined in terms of #;(T;) and O,
such that © in the PF theorem can be replaced by K (T, ©):
e if there exists 17; > 0, then p(K (T, 9)) < p(O)

e otherwise, k;(T;) =1 for all 4, j and K(T',0) = 6
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Example: tensor singular vectors

TiyP2Y = Az
Find (z,y, z) such that < Thx“2" = uy
TszyP = o2
T
Tensor norm: ||T||,q,» = max 1Tyl [Friedland, Gaubert, Han, 2016]

zy#0 [|z]lgllyllr
0 m2(Th) w3(Th)] [l
(T2

(
rko(T3) k3(T3) 0 il
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Comparison with Gaubert and Friedland

Theorem

[Friedland, Gaubert, Han], [Lim]

If T is “weakly irreducible” and p,q,r > 3 then there exist unique
(x,y,2) > 0 that realize that maximum

p(O) <1
p,q,T >3
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Example: tensor singular vectors

Txy? = \x
% = py

(07

Find (z,y) such that {
5

KT 0)= Lmﬂf)zf 2)3@2) HS(OTl)] [M W']

p(KO)

2.00
1754y
150
125

1.00

logAs(T)

075

0.50

025

00
000 025 050 075 100 125 150 175 2.00

logAy(T)
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Multihomogeneous PF theorem:

Non-expansive case
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Matrix Perron—Frobenius theorem

Let A € R™*"™ be such that A > 0. Then:
® There exists x > 0 such that Az = \z
®* A>0and X =p(A)
if additionally, A is irreducible, then
® p(A) > 0 and z is unique
if additionally, A is primitive (aperiodic), then
o 2D — G(z®) = Az®) /|| Az®) || — z, as k — oo

Linear operators F'(z) = Ax are continuous and hom(1).
Moreover, F' is positive and order-preserving iff A > 0.

All the above “irreducibility assumptions” are not needed if
F € hom(O) and p(@) <1 (or p(T, O) < 1)




Multihomogeneous PF theorem
[e]e] lelele]e]e]e)

Spectral radius

Observation

Let F(x) € hom(0). Then F(z) = Az iff F(az) = (a®~'\)ax.
— Each eigenvector has infinitely many eigenvalues.

The notion of spectral radius makes sense only for 6 = 1

[ For multihomogeneous operators we will need © > 0 and p(@) =1 ]
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Spectral radius via Gelfand formula

Definition Homogeneous spectral radius

Let F' € hom(1) be continuous and order-preserving. Define

= lim |F*|Y/" = lim sup (
k—o0 k=00 4:>0,2£0

HF’“(fL‘)H)l/’“

pLF) E
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Irreducible and primitive matrices

There are different ways to define irreducibility / primitivity of a
nonnegative matrix A € R™*™,
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Multihomogeneous PF theorem
0000e0000

Irreducible and primitive matrices

There are different ways to define irreducibility / primitivity of a
nonnegative matrix A € R™*™,

Irreducible iff

[ S oA*z >0forallz >0, 240

Primitive iff

[ There exists k st Az > 0 for all z >0, z # 0

Remark: primitive = irreducible

46 /71
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Homogeneous PF theorem

F € hom(1) continuous, order-preserving is irreducible iff
Yo F¥(z) > 0forallz >0, z #0.
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Homogeneous PF theorem

F € hom(1) continuous, order-preserving is irreducible iff
Yo F¥(z) > 0forallz >0, z #0.

Theorem [Nussbaum, Eveson, Lemmens, Gaubert, ...

Let F' € hom(1) continuous, order-preserving, irreducible. Then,
® there exists z* > 0 st F/(z*) = A\z*
® \=p(F)>0and p(F) = max{|u| : F(z) = px}
if moreover the Jacobian F’(x*) is irreducible, then
® x* is the unique positive eigenvector of F
if moreover the Jacobian F’/(z*) is primitive, then
o (kD) = G(z®)) = F(z®) /|| F(z®)|| — z, as k — oo

Note: F' € hom(1) is order-preserving iff F’'(z:) > 0 for all z > 0

47/71
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Example: Matrix-inheritance

F(x) = g(Af(x)) € hom(1) with f € hom(f), g € hom(~1).
For example, F(z) = (Az®)'/®.

Then

If Ais irreducible, then
® there exists z* > 0 st F'(z*) = A\z*
® A= p(F)>0and p(F) = max{|u| : F(z) = px}

® x* is the unique positive eigenvector of F
If moreover A is primitive, then

o 2D = G(aW) = F(a®)/|Fa®)|| — 2*, as k — oo
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Multihomogeneous spectral radius

Definition Multihomogeneous spectral radius

Let F : X4 — X4 € hom(©) be continuous and order-preserving.
Assume that

® ©>0andp(@)=1

® there exists v > 0 such that v7 @ = \T, |lv|| = 1

Define
1/k
po(F) = lim |F¥|YG
FF vi L FR va\ 1/k
iy (O IR@I
k=00 g (31...24) >0 [z [|2 - - - [|zal|”e
x#0
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Multihomogeneous PF theorem

Let F' € hom(©) continuous, order-preserving, irreducible.
Assume 6 >0, p(6) =1 and vT' 6 = M7 with v > 0, |jv| = 1.
For XA € R?, define

A, = (A - - - [Aa[*® = exp [|log(|A])]1,0
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Multihomogeneous PF theorem

Let F' € hom(©) continuous, order-preserving, irreducible.
Assume 6 >0, p(6) =1 and vT' 6 = M7 with v > 0, |jv| = 1.
For A € R?, define
M, = A+ - [Aq|* = exp [ log (| A])[]1,0

Then, for S = {z € X4 : ||z1|l1 =+ = ||zalla = 1}, it holds

® there exist * € Sy, * > 0and A € R? st F(z*) = A ® z*

® A>0and [[All, = pu(F) = max{[[ull, : F(z) = p @z}
if moreover the Jacobian F’(z*) is irreducible, then

® x* € Sy is the unique positive eigenvector of F' in Xy
if moreover the Jacobian F’/(z*) is primitive, then

k) — (z®)) = ((AE®)  RaE®) :
Y Gl™) <I|F1<x<k>>||1""’||Fd<w<k>>\|d>_”U € Sa
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Example applications:

Constrained homogeneous optimization
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Matrix singular vectors, again

Consider the constrained optimization problem

optimize a7 Axy
subject to  [|z1]2 = ||z2|l2 =1

In general, the function f: Xy — R, f(z) = 27 Azy is not convex.

However, we know how to compute global max and global min:

Singular values and singular vectors of A
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Homogeneous singular vectors

For sufficiently smooth homogeneous functions f : X; — R, g; € R — R

{optimize f(x)

subject to  gi(z1) =+ = ga(zq) =1

can be transformed into F'(z) = XA ® « for a multihomogeneous F’

However, global max/min can be NP-hard
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Example: graph clustering

® A = adjacency matrix of a graph with n nodes
* f(z) = $ 31, Ajjlzi — x| graph total variation
* g(@) = |l — mean(x)1]|;
Then
® Graph clustering <» min f(x) st g(z) =1
® Modularity maximization <> max f(x) st g(x) =1

[T., Zhang, Nonlinear Spectral Duality]
[T., Mercado, Hein, Nonlinear modularity eigenvectors]
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Positive news

When f has nonegativity / order-preserving properties, we can solve these
optimization problems globally
Two examples:

® Core-periphery detection

® Semi-supervised classification
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Core—periphery classification

Core: nodes strongly connected across the whole network
Periphery: nodes strongly connected only to the core
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Core-periphery score

{maxf(x) = 0 A (|| + |aj| ) e

_ (c large)
subject to ||z, =1 and 2 >0

Coreness score:  “x; > x: if 7 is more in the core than j"
i J

@ T., D.Higham, SIMODS, 2019
@ C. Higham, D. Higham, T., KDD, 2022
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Core-periphery kernel

Example applications
0000000@000000

o large = (2@ 4+ y*)V* ~ max{z,y}

For a positive x > 0,

@) = 3055 A + 2§) 1/ is large
when edges A;; = 1 involve at least one
node with large core-score
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Connection with node degrees

If p=2 and o = 1 then (arithmetic mean)

[ Az |1
m t =1 < m = A
ax f(z) st [l nax o 1Al

and the maximizer is
x = degree vector
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Connection with eigenvector centrality

If p=1 and o = 0 then (geometric mean)

TA
max f(z) st [|z]l, = 1 <= max ——

= p(A
>0 xlx p(4)

and the maximizer is

x = Perron eigenvector of A

60/71



Example applications
0000000000 e000

Qualitative results

Degree Sim-Ann Nonlinear Eig

Yeast PPI

n =~ 25k

Internet 2006

Degree coincides with NEig for « =1 and p = 2
Convergence in a few seconds vs several minutes with Sim-Ann.
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Semi-supervised graph clustering

We are given points/nodes {p;}; we know that they belong to K classes;
and we know the class of some of them
Goal: assign classes to remaining points
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Setting (cont.)

1 ifiveclass j
Yi;j = .
0 otherwise
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Variance minimization

Yo
g(Y)

e fay e (e |

subject to g(X) =1 Example: g(X) = || X||F

min ()= 5

i€e

® [Flores, Calder, Lerman, Applied Comp Harmonic Analysis, 2022]
® [Slepcev, Thorpe, SIAP 2019]
® [Prokopchik, Benson, T., ICML, 2022]
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Example applications:

Entropy minimization and optimal transport
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Example applications
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Wasserstein distance

¢ P(n)={x €R":z>0,sum(x) =1}
® g€ P(n),be P(ng), let U(a,b) ={M >0: M1=1,M"1=0b}
e C € R™*™ weight matrix

[ W(a,b) = minysey(ap) 2oi; MijCij

Sand pile problem:
® n; piles of sand, with a; units of sand each.
® no target locations, each should receive b; units

® M € U(a,b) represents a possible solution: move M;; units from i to
4, so that all initial sand M1 = a is moved to the targets M1 =b

® (;; = cost of moving one unit of sand from i to j
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Multimarginal optimal transport

® Ula,bye) ={T >0 : 35 Tiji = ai, 255, Tige = by, >4 Tigre = e}
o C € R™M*n2X"3 weight tensor

W(av bv C) = minTGU(a,b,c) Eijk Téjkc@'jk

Sand pile problem:
® ng3 transportation means, with capacity ci

® (jjr = cost of moving one unit of sand from ¢ to j by means of k

Computing W (a, b, c) can be very expensive...
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Entropy regularization

O (T)=(T,C) —eE(T) =ecKL(T|exp(—C/e))

* B(T) = — 3., Tijr log Tijk entropy
* KL(T|S) = >_,;1, Tijr log(Tiji/ Sijk) Kullback-Leibler divergence

It can be shown that

MiNTey(a,b,c) o (T) — W(a,b,c)ase =0
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From divergence to eigenvectors

Let L(T, o, 3,) be the Lagrangian of ®.. Imposing the first-order
conditions OL/0T;;, = 0 yields

1
log Tijr = - (ai + B+ — Cijk)

Thus, taking the exponent, we can rewrite the multimarginal opt transport
problem as finding (z,y, z) = (exp(a/e),exp(5/e), exp(y/e)) such that

Tijx = exp(—Cyjr/€)xiyjz € Ula, b, c)
which in turn is equivalent to

>k a; ' exp(—Cijr/e)yjzn = v
> by exp(=Cig/e)izy = y;
> i) 01;1 exp(—Cij/e)iy; = Zk_l
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Conclusions

Comments and open questions

® Everything can be generalized to “any” cone
® Better convergence bounds?

® Use eigenvalues of A somewhere
® Use different distances (e.g. Ergodicity coefficients)

® Speed up power method?
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