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Introduction:

Cone theoretic proof of the PF theorem for positive matrices
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Perron eigenvector

Consider the problem:

Find x such that Ax = λx

Perron–Frobenius theorem

If A is positive then there exists a unique solution x⋆ > 0, ∥x⋆∥ = 1
and

xm+1 = Axm/∥Axm∥ m→∞−−−−→ x⋆

for any choice of x0 > 0.

How do you prove that?
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Cone-theoretic proof 1/4

Hilbert-Birkhoff projective metric

x, y positive vectors dH(x, y) = log
(
maxi

xi
yi

maxi
yi
xi

)
dH is projective i.e. dH(x, y) = dH(αx,βy), ∀α,β > 0. Thus
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Cone-theoretic proof 2/4

Observation 1

Eigenvector ⇐⇒ Fixed point
Ax = λx ⇐⇒ dH(Ax,x) = 0

Observation 2

Take any norm ∥ · ∥ and let S++ = {x > 0 : ∥x∥ = 1}
Then (S++, dH) is a complete metric space.
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Cone-theoretic proof 3/4

Birkhoff-Hopf theorem

Let A be any positive matrix. Then

dH(Ax,Ay) ≤ κ(A) dH(x, y) ∀x, y > 0

where κ(A) = tanh(14diam(A)) = tanh(14 log△(A)), and

△(A) = △(AT ) = max
ijhk

AijAhk

AikAhj

△(A) ≥ A12A12

A12A12
= 1

0

0.2

0.4

0.6

0.8

1

κ(A) = tanh(14 log△(A))
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Birkhoff contraction ratio - example
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Figure: Each line shows the distribution of κ(A) over 1000 random matrices A
with entries between s and 10. Different curves correspond to different values of
s ∈ {1, 2, . . . , 5}.
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Cone-theoretic proof 4/4

If
G(x) = Ax/∥Ax∥

then
dH(G(x),G(y)) = dH(Ax,Ay) ≤ κ(A)dH(x, y)

Thus: if A is a positive matrix, G is a contraction in the metric space
(S++, dH), with contraction constant κ(A).

Using the Banach fixed point theorem we conclude that:

Axm/∥Axm∥ m→∞−−−−→ x⋆ as κ(A)m

and x⋆ is the unique positive eigenvector of A
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Introduction:

Nonlinear matrix eigenvectors
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Nonlinear Perron eigenvector

Let f : Rn → Rn be such that x > 0 =⇒ f(x) > 0

Consider the problem

Find x such that Af(x) = λx

For the time being: f(x) = xα = component-wise power, α ̸= 0

Can we do the same?
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Dilatations

α ∈ R =⇒ dH(xα, yα) = |α| dH(x, y)

Therefore

dH(Af(x),Af(y)) ≤ κ(A)dH(f(x), f(y)) = |α|κ(A)︸ ︷︷ ︸
contraction constant

dH(x, y)
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Nonlinear Perron eigenvector

Consider the problem

Find x such that Axα = λx

Theorem

If |α|κ(A) < 1 then there exists a unique solution x⋆ > 0, ∥x⋆∥ = 1
and

xm+1 = Axαm/∥Axαm∥ m→∞−−−−→ x⋆ as
(
|α|κ(A)

)m
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What about other spectral equations?
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Singular vectors:

PF theorem for singular vectors
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Singular vectors

Consider the problem

Find (x, y) such that

{
Ay = λx

ATx = λy

A
[
x
y

]
=

[
A

AT

] [
x
y

]
= λ

[
x
y

]

Problem: Even if A is positive, it holds

κ(A) = κ(AT ) < 1 but κ
([ A

AT

])
= 1

Solution: “Higher-order” Hilbert metric
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“Order-2” Birkhoff-Hopf theorem

[
dH(Ay,Av)

dH(ATx,ATu)

]
≤
[

κ(A)
κ(AT )

] [
dH(x,u)
dH(y, v)

]
= K(A)

[
dH(x,u)
dH(y, v)

]
We call K(A) “Lipschitz matrix” of A =

[
A

AT

]
: Rn × Rn → Rn × Rn

Theorem

For any positive matrix A there exists a metric δH on Rn × Rn st

δH

(
A
[
x
y

]
, A
[
u
v

])
≤ ρ
(
K(A)

)
δH

([x
y

]
,

[
u
v

])
for all (x, y) > 0, (u, v) > 0.

δH is defined in terms of any positive eigenvector of A
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... moreover

Observation 1

Take any norm ∥ · ∥ and let S2
++ = {(x, y) > 0 : ∥x∥ = ∥y∥ = 1}

Then (S2
++, δH) is a complete metric space

Observation 2

If G is the “normalized version” of A

G
([x

y

])
=

[
Ay/∥Ay∥

ATx/∥ATx∥

]
then

δH

(
G
([x

y

])
,G
([u

v

]))
= δH

(
A
[
x
y

]
, A
[
u
v

])
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... moreover

Observation 3

For this particular case we have

ρ
(
K(A)

)
= ρ
([ κ(A)

κ(AT )

])
= κ(A)
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Perron-Frobenius theorem for singular values

Consider the problem

Find (x, y) such that

{
Ay = λx

ATx = λy

Theorem

If A is positive then there exists a unique solution x⋆, y⋆ > 0 such
that ∥x⋆∥ = ∥y⋆∥ = 1 and[

xm+1

ym+1

]
=

[
Aym/∥Aym∥

ATxm/∥ATxm∥

]
m→∞−−−−→

[
x⋆

y⋆

]
as κ(A)m
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Singular vectors:

Nonlinear matrix singular vectors
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More in general

⋆ Find (x, y) such that

{
Ayβ = λx

Bxα = µy

Application examples:
• Matrix norms:

Compute ∥A∥p,q = maxx ̸=0 ∥Ax∥q/∥x∥p
Boils down to ⋆ for α = 1/(p− 1) and β = q/(q − 1)

• Matrix rescaling (matrix Sibkhorn method) and entropy minimization:

Find a diagonal D1,D2 such that D1AD2 is doubly stochastic
Boils down to ⋆ for α = β = −1
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Birkhoff-Hopf theorem

[
dH(Ayβ,Avβ)
dH(Bxα,Buα)

]
≤
[

κ(A)
κ(B)

] [
|α|

|β|

]
︸ ︷︷ ︸

K

[
dH(x,u)
dH(y, v)

]

Theorem

There exists a metric δH such that

δH

([Ayβ
Bxα

]
,

[
Avβ

Buα

])
≤ ρ
(
K
)
δH

([x
y

]
,

[
u
v

])
and ρ(K) =

√
|αβ|κ(A)κ(B).
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Nonlinear Perron singular vector

Find (x, y) such that

{
Ayβ = λx

Bxα = µy

Theorem

If |αβ|κ(A)κ(B) < 1 then there exists a unique solution x⋆, y⋆ > 0
such that ∥x⋆∥ = ∥y⋆∥ = 1 and[

xm+1

ym+1

]
=

[
Ayβm/∥Ayβm∥
Bxαm/∥Bxαm∥

]
m→∞−−−−→

[
x⋆

y⋆

]
as
(
|αβ|κ(A)κ(B)

)m/2

Moreover: If A = BT then λ = µ
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Singular vectors:

Example of application: matrix operator norm
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Mixed matrix norms

Compute ∥A∥

p,q

= max
x ̸=0

∥Ax∥

p

∥x∥

q
, 1 < p, q < +∞

NP-hard to approximate if p = q ̸= 1, 2,∞ [Hendrickx, Olshevsky, 2009]

Observations

1. If A > 0 then max
x ̸=0

∥Ax∥p
∥x∥q

= max
x>0

∥Ax∥p
∥x∥q

2. ∇x

(
∥Ax∥p
∥x∥q

)
= 0 ⇐⇒ AT (Ax)p−1 = σ xq−1
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AT (Ax)p−1 = σ xq−1 ⇐⇒

{
(Ax)p−1 = λ y

AT y = µxq−1

⇐⇒

{
Ax = λ̃ y

1
p−1

AT y = µxq−1(
u = xq−1

v = y
1

p−1

)
⇐⇒

{
Au

1
q−1 =

˜̃
λ v

AT vp−1 = µ̃ u

Computing ∥A∥p,q is equivalent to solving

{
Auα = λ v

AT vβ = µu

28 / 71
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Mixed matrix norms: Theorem

Compute ∥A∥p,q = max
x ̸=0

∥Ax∥p
∥x∥q

, 1 < p, q < +∞

Theorem

We can compute ∥A∥p,q if q > κ(A)2(p− 1) + 1.

The condition is necessary and sufficient for Aε =

[
ε 1
1 ε

]
, ε > 0

Moreover, if for example ε = 3/4, we have

Classical condition ([1–4]): (q − 1) ≥ (p− 1)
New condition: (q − 1) > 0.0016 · (p− 1)

[1] Boyd (‘73), [2] N.Higham (‘92), [3] Bhaskara, Vijayaraghavan (‘11), [4] Gautier, Hein (‘16)
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Multihomogeneous PF theorem:

The contractive case
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Perron–Frobenius theory
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Multihomogeneous operators

The spectral equation

Find (x, y) such that

{
Ag(y) = Ayβ = λx

Bf(x) = Bxα = µy

is an example of a multihomogeneous spectral problem, just like

Find x such that Af(x) = Axα = λx

is an example of a homogeneous spectral problem.
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Multihomogeneous operators

Homogeneity

F : Rn → Rn is θ-homogeneous, in symbols F ∈ hom(θ), if

F (λx) = λθF (x) for all λ > 0 and all x

θ ∈ R is called homogeneity degree

Multihomogeneity Xd := Rn1 × · · · × Rnd

F : Xd → Xd is Θ-homogeneous, in symbols F ∈ hom(Θ), if

Fi(x1, . . . ,λxj , . . . ,xd) = λΘijFi(x) for all λ > 0 and all x ∈ Xd

Θ ∈ Rd×d is called homogeneity matrix
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Examples: Linear and multilinear operators

• F (x) = Ax ∈ hom(1)

• F (x) = Axα ∈ hom(α)

• F (x) = Af(x) ∈ hom(θ) provided f ∈ hom(θ)

• F (x, y) =
[
Ay
Bx

]
∈ hom

(
[ 0 1
1 0 ]
)

• F (x, y) =
[
Ayβ

Bxα

]
∈ hom

([
0 β
α 0

])
• F (x, y) =

[
Af(x,y)
Bg(x,y)

]
∈ hom

([ α1 α2
β1 β2

])
provided

f ∈ hom([α1,α2]), g ∈ hom([β1,β2])
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34 / 71



Introduction Singular vectors Multihomogeneous PF theorem Example applications Conclusions

Examples: Linear and multilinear operators

• F (x) = Ax ∈ hom(1)

• F (x) = Axα ∈ hom(α)

• F (x) = Af(x) ∈ hom(θ) provided f ∈ hom(θ)

• F (x, y) =
[
Ay
Bx

]
∈ hom

(
[ 0 1
1 0 ]
)

• F (x, y) =
[
Ayβ

Bxα

]
∈ hom

([
0 β
α 0

])
• F (x, y) =

[
Af(x,y)
Bg(x,y)

]
∈ hom

([ α1 α2
β1 β2

])
provided

f ∈ hom([α1,α2]), g ∈ hom([β1,β2])

34 / 71



Introduction Singular vectors Multihomogeneous PF theorem Example applications Conclusions

Examples: Linear and multilinear operators

• F (x) = Ax ∈ hom(1)

• F (x) = Axα ∈ hom(α)

• F (x) = Af(x) ∈ hom(θ) provided f ∈ hom(θ)

• F (x, y) =
[
Ay
Bx

]
∈ hom

(
[ 0 1
1 0 ]
)

• F (x, y) =
[
Ayβ

Bxα

]
∈ hom

([
0 β
α 0

])

• F (x, y) =
[
Af(x,y)
Bg(x,y)

]
∈ hom

([ α1 α2
β1 β2

])
provided

f ∈ hom([α1,α2]), g ∈ hom([β1,β2])

34 / 71



Introduction Singular vectors Multihomogeneous PF theorem Example applications Conclusions

Examples: Linear and multilinear operators

• F (x) = Ax ∈ hom(1)

• F (x) = Axα ∈ hom(α)

• F (x) = Af(x) ∈ hom(θ) provided f ∈ hom(θ)

• F (x, y) =
[
Ay
Bx

]
∈ hom

(
[ 0 1
1 0 ]
)

• F (x, y) =
[
Ayβ

Bxα

]
∈ hom

([
0 β
α 0

])
• F (x, y) =

[
Af(x,y)
Bg(x,y)

]
∈ hom

([ α1 α2
β1 β2

])
provided

f ∈ hom([α1,α2]), g ∈ hom([β1,β2])

34 / 71



Introduction Singular vectors Multihomogeneous PF theorem Example applications Conclusions

Examples: Linear and multilinear operators

If T is a 3rd-order tensor, define z = Txy as zi =
∑

jk Tjkxjyk

• F (x, y, z) =

[
T1yz
T2xz
T3xy

]
∈ hom

([
0 1 1
1 0 1
1 1 0

])

• F (x, y, z) =

[
T1f(x,y,z)
T2g(x,y,z)
T3h(x,y,z)

]
∈ hom

([ a1 a2 a3
b1 b2 b3
c1 c2 c3

])
provided

f ∈ hom([a1, a2, a3]), g ∈ hom([b1, b2, b3]),h ∈ hom([c1, c2, c3])

General tensor mapping

For a collection of tensors T = [T1, . . . ,Td], x = [x1, . . . ,xd] ∈ Xd,

F (x) = T f(x) ∈ hom(Θ) provided f ∈ hom(Θ)
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Multihomogeneous eigenproblem

We want to consider systems of spectral equations...

x = (x1, . . . ,xd) ∈ Xd and λ ∈ Rd are an eigenpair for the multhom
operator F : Xd → Xd if

F1(x) = λ1x1

F2(x) = λ2x2
...

Fd(x) = λdxd

In symbols
F (x) = λ⊗ x

36 / 71



Introduction Singular vectors Multihomogeneous PF theorem Example applications Conclusions

Multihomogeneous eigenproblem

We want to consider systems of spectral equations...

x = (x1, . . . ,xd) ∈ Xd and λ ∈ Rd are an eigenpair for the multhom
operator F : Xd → Xd if

F1(x) = λ1x1

F2(x) = λ2x2
...

Fd(x) = λdxd

In symbols
F (x) = λ⊗ x

36 / 71



Introduction Singular vectors Multihomogeneous PF theorem Example applications Conclusions

Multihomogeneous PF theorem (1)

Let F : Xd → Xd ∈ hom(Θ) be such that

• Continuous

• Positive: F (x) > 0 if x > 0

• Order-preserving: F (x) ≥ F (y) if x ≥ y

• ρ(|Θ |) < 1, | · | = component wise

• There exists v > 0 such that vT |Θ | = λvT , ∥v∥ = 1

Then

• there exists a unique x∗ ∈ Sd st x∗ > 0, F (x∗) = λ⊗ x∗

• x(k+1) = G(x(k)) → x∗ as ρ(|Θ |)k

where Gi(x) = Fi(x)/∥Fi(x)∥i, and Sd = {x ∈ Xd : ∥xi∥i = 1}
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Multihomogeneous BH theorem

A. It applies to maps of the form F (x) = T f(x) ∈ hom(Θ).

B. It is based on the mode-j tensor contraction ratio

κj(T ) = tanh
(1
4
log△j(T )

)
with △j(T ) = max

i1,...,im
k1,...,km

Ti1,...,ij−1,ij ,ij+1,...,im

Ti1,...,ij−1,kj ,ij+1,...,im

Tk1,...,kj−1,kj ,kj+1,...,km

Tk1,...,kj−1,ij ,kj+1,...,km

C. It states that

There exists K(T ,Θ) ∈ Rd×d defined in terms of κj(Ti) and Θ ,

such that Θ in the PF theorem can be replaced by K(T ,Θ):

• if there exists Ti > 0, then ρ(K(T ,Θ)) < ρ(Θ)

• otherwise, κj(Ti) = 1 for all i, j and K(T ,Θ) = Θ

38 / 71



Introduction Singular vectors Multihomogeneous PF theorem Example applications Conclusions

Multihomogeneous BH theorem

A. It applies to maps of the form F (x) = T f(x) ∈ hom(Θ).

B. It is based on the mode-j tensor contraction ratio

κj(T ) = tanh
(1
4
log△j(T )

)
with △j(T ) = max

i1,...,im
k1,...,km

Ti1,...,ij−1,ij ,ij+1,...,im

Ti1,...,ij−1,kj ,ij+1,...,im

Tk1,...,kj−1,kj ,kj+1,...,km

Tk1,...,kj−1,ij ,kj+1,...,km

C. It states that

There exists K(T ,Θ) ∈ Rd×d defined in terms of κj(Ti) and Θ ,

such that Θ in the PF theorem can be replaced by K(T ,Θ):

• if there exists Ti > 0, then ρ(K(T ,Θ)) < ρ(Θ)

• otherwise, κj(Ti) = 1 for all i, j and K(T ,Θ) = Θ

38 / 71



Introduction Singular vectors Multihomogeneous PF theorem Example applications Conclusions

Multihomogeneous BH theorem

A. It applies to maps of the form F (x) = T f(x) ∈ hom(Θ).

B. It is based on the mode-j tensor contraction ratio

κj(T ) = tanh
(1
4
log△j(T )

)
with △j(T ) = max

i1,...,im
k1,...,km

Ti1,...,ij−1,ij ,ij+1,...,im

Ti1,...,ij−1,kj ,ij+1,...,im

Tk1,...,kj−1,kj ,kj+1,...,km

Tk1,...,kj−1,ij ,kj+1,...,km

C. It states that

There exists K(T ,Θ) ∈ Rd×d defined in terms of κj(Ti) and Θ ,

such that Θ in the PF theorem can be replaced by K(T ,Θ):

• if there exists Ti > 0, then ρ(K(T ,Θ)) < ρ(Θ)

• otherwise, κj(Ti) = 1 for all i, j and K(T ,Θ) = Θ

38 / 71



Introduction Singular vectors Multihomogeneous PF theorem Example applications Conclusions

Multihomogeneous BH theorem

A. It applies to maps of the form F (x) = T f(x) ∈ hom(Θ).

B. It is based on the mode-j tensor contraction ratio

κj(T ) = tanh
(1
4
log△j(T )

)
with △j(T ) = max

i1,...,im
k1,...,km

Ti1,...,ij−1,ij ,ij+1,...,im

Ti1,...,ij−1,kj ,ij+1,...,im

Tk1,...,kj−1,kj ,kj+1,...,km

Tk1,...,kj−1,ij ,kj+1,...,km

C. It states that

There exists K(T ,Θ) ∈ Rd×d defined in terms of κj(Ti) and Θ ,

such that Θ in the PF theorem can be replaced by K(T ,Θ):

• if there exists Ti > 0, then ρ(K(T ,Θ)) < ρ(Θ)

• otherwise, κj(Ti) = 1 for all i, j and K(T ,Θ) = Θ

38 / 71



Introduction Singular vectors Multihomogeneous PF theorem Example applications Conclusions

Example: tensor singular vectors (1)

Find (x, y, z) such that


T1y

βzγ = λx

T2x
αzγ = µy

T3x
αyβ = σz

Tensor norm: ∥T∥p,q,r = max
x,y ̸=0

∥Txy∥p
∥x∥q∥y∥r

[Friedland, Gaubert, Han, 2016]

K(T ,Θ) =

 0 κ2(T1) κ3(T1)
κ2(T2) 0 κ3(T2)
κ2(T3) κ3(T3) 0

|α| |β|
|γ|


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Comparison with Gaubert and Friedland

Theorem [Friedland, Gaubert, Han], [Lim]

If T is “weakly irreducible” and p, q, r ≥ 3 then there exist unique
(x, y, z) > 0 that realize that maximum

ρ(Θ) < 1
p, q, r ≥ 3
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Example: tensor singular vectors (2)

Find (x, y) such that

{
Txαyβ = λx

Sxαxα = µy

K(T ,Θ) =

[
κ2(T1) κ3(T1)

κ2(T2) + κ3(T2) 0

] [
|α|

|β|

]
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Multihomogeneous PF theorem:

Non-expansive case
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Matrix Perron–Frobenius theorem

Let A ∈ Rn×n be such that A ≥ 0. Then:

• There exists x ≥ 0 such that Ax = λx

• λ ≥ 0 and λ = ρ(A)

if additionally, A is irreducible, then

• ρ(A) > 0 and x is unique

if additionally, A is primitive (aperiodic), then

• x(k+1) = G(x(k)) = Ax(k)/∥Ax(k)∥ −→ x, as k → ∞

Linear operators F (x) = Ax are continuous and hom(1).
Moreover, F is positive and order-preserving iff A ≥ 0.

All the above “irreducibility assumptions” are not needed if
F ∈ hom(Θ) and ρ(Θ) < 1 (or ρ(T ,Θ) < 1)

43 / 71



Introduction Singular vectors Multihomogeneous PF theorem Example applications Conclusions

Spectral radius

Observation

Let F (x) ∈ hom(θ). Then F (x) = λx iff F (αx) = (αθ−1λ)αx.
=⇒ Each eigenvector has infinitely many eigenvalues.

The notion of spectral radius makes sense only for θ = 1

For multihomogeneous operators we will need Θ ≥ 0 and ρ(Θ) = 1
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Spectral radius via Gelfand formula

Definition Homogeneous spectral radius

Let F ∈ hom(1) be continuous and order-preserving. Define

ρ(F ) = lim
k→∞

∥F k∥1/k+ := lim
k→∞

sup
x≥0,x̸=0

(∥F k(x)∥
∥x∥

)1/k
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Irreducible and primitive matrices

There are different ways to define irreducibility / primitivity of a
nonnegative matrix A ∈ Rn×n.

Irreducible iff

∑n
k=0A

kx > 0 for all x ≥ 0, x ̸= 0

Primitive iff

There exists k st Akx > 0 for all x ≥ 0, x ̸= 0

Remark: primitive =⇒ irreducible
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Homogeneous PF theorem

F ∈ hom(1) continuous, order-preserving is irreducible iff∑n
k=0 F

k(x) > 0 for all x ≥ 0, x ̸= 0.

Theorem [Nussbaum, Eveson, Lemmens, Gaubert, ...]

Let F ∈ hom(1) continuous, order-preserving, irreducible. Then,

• there exists x∗ > 0 st F (x∗) = λx∗

• λ = ρ(F ) > 0 and ρ(F ) = max{|µ| : F (x) = µx}
if moreover the Jacobian F ′(x∗) is irreducible, then

• x∗ is the unique positive eigenvector of F

if moreover the Jacobian F ′(x∗) is primitive, then

• x(k+1) = G(x(k)) = F (x(k))/∥F (x(k))∥ −→ x, as k → ∞

Note: F ∈ hom(1) is order-preserving iff F ′(x) ≥ 0 for all x ≥ 0

47 / 71



Introduction Singular vectors Multihomogeneous PF theorem Example applications Conclusions

Homogeneous PF theorem

F ∈ hom(1) continuous, order-preserving is irreducible iff∑n
k=0 F

k(x) > 0 for all x ≥ 0, x ̸= 0.

Theorem [Nussbaum, Eveson, Lemmens, Gaubert, ...]

Let F ∈ hom(1) continuous, order-preserving, irreducible. Then,

• there exists x∗ > 0 st F (x∗) = λx∗

• λ = ρ(F ) > 0 and ρ(F ) = max{|µ| : F (x) = µx}
if moreover the Jacobian F ′(x∗) is irreducible, then

• x∗ is the unique positive eigenvector of F

if moreover the Jacobian F ′(x∗) is primitive, then

• x(k+1) = G(x(k)) = F (x(k))/∥F (x(k))∥ −→ x, as k → ∞

Note: F ∈ hom(1) is order-preserving iff F ′(x) ≥ 0 for all x ≥ 0
47 / 71



Introduction Singular vectors Multihomogeneous PF theorem Example applications Conclusions

Example: Matrix-inheritance

F (x) = g(Af(x)) ∈ hom(1) with f ∈ hom(θ), g ∈ hom(θ−1).

For example, F (x) = (Axα)1/α.

Then

If A is irreducible, then

• there exists x∗ > 0 st F (x∗) = λx∗

• λ = ρ(F ) > 0 and ρ(F ) = max{|µ| : F (x) = µx}
• x∗ is the unique positive eigenvector of F

If moreover A is primitive, then

• x(k+1) = G(x(k)) = F (x(k))/∥F (x(k))∥ −→ x∗, as k → ∞
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Multihomogeneous spectral radius

Definition Multihomogeneous spectral radius

Let F : Xd → Xd ∈ hom(Θ) be continuous and order-preserving.
Assume that

• Θ ≥ 0 and ρ(Θ) = 1

• there exists v > 0 such that vTΘ = λvT , ∥v∥ = 1

Define
ρv(F ) = lim

k→∞
∥F k∥1/k+,d

= lim
k→∞

sup
x=(x1,...,xd)≥0

x ̸=0

(∥F k
1 (x)∥v1 · · · ∥F k

d (x)∥vd
∥x1∥v1 · · · ∥xd∥vd

)1/k
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Multihomogeneous PF theorem

Theorem

Let F ∈ hom(Θ) continuous, order-preserving, irreducible.
Assume Θ ≥ 0, ρ(Θ) = 1 and vTΘ = λvT with v > 0, ∥v∥ = 1.
For λ ∈ Rd, define

|||λ|||v = |λ1|v1 · · · |λd|vd = exp ∥ log(|λ|)∥1,v

Then, for Sd = {x ∈ Xd : ∥x1∥1 = · · · = ∥xd∥d = 1}, it holds
• there exist x∗ ∈ Sd, x

∗ > 0 and λ ∈ Rd st F (x∗) = λ⊗ x∗

• λ > 0 and |||λ|||v = ρv(F ) = max{|||µ|||v : F (x) = µ⊗ x}
if moreover the Jacobian F ′(x∗) is irreducible, then

• x∗ ∈ Sd is the unique positive eigenvector of F in Xd

if moreover the Jacobian F ′(x∗) is primitive, then

• x(k+1) = G(x(k)) =
(

F1(x(k))

∥F1(x(k))∥1
, . . . , Fd(x

(k))

∥Fd(x(k))∥d

)
−→ x∗ ∈ Sd
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Example applications:

Constrained homogeneous optimization
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Matrix singular vectors, again

Consider the constrained optimization problem{
optimize xT1 Ax2

subject to ∥x1∥2 = ∥x2∥2 = 1

In general, the function f : X2 → R, f(x) = xT1 Ax2 is not convex.
However, we know how to compute global max and global min:

Singular values and singular vectors of A
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Homogeneous singular vectors

For sufficiently smooth homogeneous functions f : Xd → R, gi ∈ Rni → R{
optimize f(x)

subject to g1(x1) = · · · = gd(xd) = 1

can be transformed into F (x) = λ⊗ x for a multihomogeneous F

However, global max/min can be NP-hard
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Example: graph clustering

• A = adjacency matrix of a graph with n nodes

• f(x) = 1
2

∑n
i=1Aij |xi − xj | graph total variation

• g(x) = ∥x−mean(x)1∥1
Then

• Graph clustering ↔ min f(x) st g(x) = 1

• Modularity maximization ↔ max f(x) st g(x) = 1

[T., Zhang, Nonlinear Spectral Duality ]
[T., Mercado, Hein, Nonlinear modularity eigenvectors]
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Positive news

When f has nonegativity / order-preserving properties, we can solve these
optimization problems globally
Two examples:

• Core-periphery detection

• Semi-supervised classification
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Core–periphery classification

Core: nodes strongly connected across the whole network
Periphery: nodes strongly connected only to the core
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Core-periphery score

{
max f(x) :=

∑
ij Aij(|xi|α + |xj |α)1/α

subject to ∥x∥p = 1 and x ≥ 0
(α large)

Coreness score: “xi > xj if i is more in the core than j”

T., D. Higham, SIMODS, 2019

C. Higham, D. Higham, T., KDD, 2022
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Core-periphery kernel

α large ⇒ (xα + yα)1/α ≈ max{x, y}

For a positive x > 0,
f(x) =

∑
ij Aij(x

α
i + xαj )

1/α is large
when edges Aij = 1 involve at least one
node with large core-score
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Connection with node degrees

If p = 2 and α = 1 then (arithmetic mean)

max f(x) st ∥x∥p = 1 ⇐⇒ max
x≥0

∥Ax∥1
∥x∥2

= ∥A∥2→1

and the maximizer is
x = degree vector
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Connection with eigenvector centrality

If p = 1 and α = 0 then (geometric mean)

max f(x) st ∥x∥p = 1 ⇐⇒ max
x≥0

xTAx

xTx
= ρ(A)

and the maximizer is

x = Perron eigenvector of A
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Qualitative results

Degree Sim-Ann Nonlinear Eig

Y
ea
st

P
P
I

n ≈ 2k

In
te
rn
et

20
06

n ≈ 25k

Degree coincides with NEig for α = 1 and p = 2
Convergence in a few seconds vs several minutes with Sim-Ann.
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Semi-supervised graph clustering

p1

p2

pn

We are given points/nodes {pi}; we know that they belong to K classes;
and we know the class of some of them
Goal: assign classes to remaining points
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Setting (cont.)

Yij =

{
1 if i ∈ class j

0 otherwise

p1

p2

pn

Y =


1 0
1 0

0
...

... 0
0 1


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Variance minimization


min f(X) :=

∥∥∥∥ Y

g(Y )
−X

∥∥∥∥
F

+ µ
∑
e∈E

{
Ae

∑
i∈e

∥∥∥xi−(∑j∈e x
p
j

|e|

)1/p∥∥∥
q

}

subject to g(X) = 1 Example: g(X) = ∥X∥F

• [Flores, Calder, Lerman, Applied Comp Harmonic Analysis, 2022]

• [Slepcev, Thorpe, SIAP 2019]

• [Prokopchik, Benson, T., ICML, 2022]
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Example applications:

Entropy minimization and optimal transport
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Wasserstein distance

• P (n) = {x ∈ Rn : x ≥ 0, sum(x) = 1}
• a ∈ P (n1), b ∈ P (n2), let U(a, b) = {M ≥ 0 : M1 = 1,MT 1 = b}
• C ∈ Rn1×n2 weight matrix

W (a, b) = minM∈U(a,b)

∑
ij MijCij

Sand pile problem:

• n1 piles of sand, with ai units of sand each.

• n2 target locations, each should receive bj units

• M ∈ U(a, b) represents a possible solution: move Mij units from i to
j, so that all initial sand M1 = a is moved to the targets MT 1 = b

• Cij = cost of moving one unit of sand from i to j
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Multimarginal optimal transport

• U(a, b, c) = {T ≥ 0 :
∑

jk Tijk = ai,
∑

ik Tijk = bj ,
∑

ij Tijk = ck}
• C ∈ Rn1×n2×n3 weight tensor

W (a, b, c) = minT∈U(a,b,c)

∑
ijk TijkCijk

Sand pile problem:

• n3 transportation means, with capacity ck
• Cijk = cost of moving one unit of sand from i to j by means of k

Computing W (a, b, c) can be very expensive...
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Entropy regularization

Φε(T ) = ⟨T ,C⟩ − εE(T ) = εKL(T | exp(−C/ε))

• E(T ) = −
∑

ijk Tijk log Tijk entropy

• KL(T |S) =
∑

ijk Tijk log(Tijk/Sijk) Kullback–Leibler divergence

It can be shown that

minT∈U(a,b,c)Φε(T ) −→ W (a, b, c) as ε → 0
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From divergence to eigenvectors

Let L(T ,α,β, γ) be the Lagrangian of Φε. Imposing the first-order
conditions ∂L/∂Tijk = 0 yields

log Tijk =
1

ε

(
αi + βj + γk − Cijk

)
Thus, taking the exponent, we can rewrite the multimarginal opt transport
problem as finding (x, y, z) = (exp(α/ε), exp(β/ε), exp(γ/ε)) such that

Tijk = exp(−Cijk/ε)xiyjzk ∈ U(a, b, c)

which in turn is equivalent to
∑

jk a
−1
i exp(−Cijk/ε)yjzk = x−1

i∑
ik b

−1
j exp(−Cijk/ε)xizk = y−1

j∑
ij c

−1
k exp(−Cijk/ε)xiyj = z−1

k
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Comments and open questions

• Everything can be generalized to “any” cone
• Better convergence bounds?

• Use eigenvalues of A somewhere
• Use different distances (e.g. Ergodicity coefficients)

• Speed up power method?
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