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In the past two decades we observed an active and still growing activity of models based on fractional
derivatives and numerical methods to solve them. As for non-Euclidean geometries, the topic started long
ago and there was skepticism from the mainstreams in Mathematics. However, time did and does its job
and after a few centuries the work on fractional problems of any kind is still exploding. We will focus
our attention on the linear systems arising from the numerical approximation of fractional differential
equations (FDEs) and in this direction few items can be indicated:

1. When approximating on a uniform gridding, as for standard partial differential equations (PDEs),
the arising matrix structures are of Toeplitz type: we observe d-level Toeplitz matrices for d-
dimensional problems, block type Toeplitz matrices if systems of FDEs are considered or if
Discontinuous Galerkin or high order Finite Elements are employed.

2. Opposite to the approximation of PDEs, even when using local approximation methods, the
nonlocal nature of the fractional derivatives leads to dense structure and this issue calls for the
interest of the Numerical Linear Algebra community.

In the current Tutorial we discuss more in detail the consequences of 1), 2) and we propose a general
way for studying the spectral features of the involved matrices and matrix sequences, using the Toeplitz
and Generalized Locally Toeplitz technology.

Finally we discuss fast numerical solvers based on the spectral information in the framework of precon-
ditioned Krylov methods and multigrid techniques or combinations of the two.
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