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Introduction

Propagation of galactic CRs (E ~ 10" -10% eV) in the interstellar medium:
v Solution of the transport equation for CRs:

of _ 0 of Af dvapdf 1 0] ,(dp B
ot 0z (DZ?’ 82:) R TE dp " p*op [p dt ionf = Ocr:

v No dynamical constraint due to computational limits
v Nonlinear effects: self-confinement (Kulsrud and Pierce, 1969, ..., Evoli et al. 2018)
v Diffusion coefficient is based on “questionable” CRs transport theories

v Numerical modeling of CRs in a synthetic turbulent field:
v Dynamical range is limited by computational power
v Insights to develop better theory

v~ Numerical modeling of CRs in a MHD turbulent field:
v Dynamical range is limited by computational power
v Role of electric field and reconnecting islands for accelerating particles



Test-particle code

Motion equations are numerically solved for N particles:

dr
ar Y u = p/m = yv.
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Test-particle code

Motion equations are numerically solved for N particles:

dr
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+ Two different orbit integrators:
* Boris scheme
+ Adaptive Runge-Kutta method with the Cash-Karp coefficients



Test-particle code

Motion equations are numerically solved for N particles:
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+ Two different orbit integrators:

+ Boris scheme

+ Adaptive Runge-Kutta method with the Cash-Karp coefficients
+ Magnetic Field

+ Defined on a [N, N, ,N_] uniform grid, with periodic BC (FFT)

+ Trilinear method or cubic splines to interpolate B at each particle position



Test-particle code

Motion equations are numerically solved for N particles:

dr

E =5 u:p/m’:fy.vf

du q fl V.. B v=1/4/1—=v2/c2 = /1 +u2/c?
= — X

dt m C )

+ Two different orbit integrators:

* Boris scheme

+ Adaptive Runge-Kutta method with the Cash-Karp coefficients
+ Magnetic Field

+ Defined on a [N, N_,N,] uniform grid, with periodic BC (FFT)

+ Trilinear method or cubic splines to interpolate B at each particle position

+ Particles Injection:
* Random position; Two different

+ Constant energy and isotropic in p and 6. implementations



~ Synthetic model of the turbulent field

B=By+4dB Turbulent perturbation:

+ Isotropic energy spectrum with Kolmogorov slope (I'= 5/3)
* Random phase;

Background field, + Bendover scale A to mimic injection of turbulent fluctuations:
along z S(k) ~ k? at low wavenumber
10— NRAR.
Kolmogorov

b(k) = %\/ S(k) [b1(k)e'”'® +ib, (k)e'2®]

i \ | k%>
; | Stk)=C
107k i ( ) )F/2+2

§ (1 + k%22
\ ] (Sonsrettee et al., APJ, 2015)

Power spectrum
/

10 10 k 10 10



___Synthetic model of the turbulent field

B=By+4dB Turbulent perturbation:

+ Isotropic energy spectrum with Kolmogorov slope (I'= 5/3)
* Random phase;

Background field, + Bendover scale A to mimic injection of turbulent fluctuations:
along z S(k) ~ k? at low wavenumber
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Numerical results: case without B,
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Numerical results: case without B,

High-energy theory r, /1 >> 1:
v Several uncorrelated fields within a
gyration;
v~ Small particle deflections due to
magnetic field irregularities;
v Diffusion achieved when 6B is
uncorrelated.
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Numerical results: case without B,

Low-energy theory r /1 <<1:
v Particles experience the presence of

a local coherent field, due to large-
scale fluctuations (1)

v Two dominant effects:
v Field line random walk

v Resonant wave particle scattering
k~1/r,

Koy = Kyy = Kz = K| /3

7 pi o 2\2
V_f i (1 = pu)
8 J-1 D

|

Subedi et al., 2017
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Numerical results: case without B,

Low-energy theory r /1 <<1:
v Particles experience the presence of

a local coherent field, due to large-
scale fluctuations (1)

v Two dominant effects:
v Field line random walk

-
v Resonant wave particle scattering 3
k~1/r,
Rax = Ry = Kz = K| /3
(1 — p?)?
K| = — f dy —‘7
r, “slope
Correct normalization

Subedi et al., 2017
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Numerical results: case with B,
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Numerical results: case with B,
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Compensated spectra

(cmzfs]

D E—Iffi

Synth 1024° - A=L,_ /8

Case with B: parallel diffusion
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E(eV)

le+ 16

Dynamical range much more
extended with respect to
previous works

(De Marco and Blasi, 2007)



Dperp‘FDpar

Case with B : perpendicular diffusion
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Case with B : perpendicular diffusion
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Case with B: theoretical needs

NLGC as well as further “universal” theories predict that D and D ,  are parallel.

10°¢ e —————

""" Shalchi et al., 2014
Hussein et al., 2015



__Case with By;: theoretical needs

NLGC as well as further “universal” theories predict that D and D are parallel.

Numerical simulations were actually indicating a different behavior!

| T |

1

10% - - ! 10" 10" 10" 10" 2x10"7
10 107 10° 10

R/t Shalchi et al., 2014 E [eV] De Marco et al., 2007
Hussein et al., 2015 Giacinti et al., 2018



NLGC as well as further “universal” theories predict that D and D are parallel.
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- Case with B: theoretical needs

Numerical simulations were actually indicating a different behavior!
We can provide now a better evidence of such behavior (grid up to 2048°)
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NLGC as well as further “universal” theories predict that D and D are parallel.

~ Case with B: theoretical needs

Numerical simulations were actually indicating a different behavior!
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~ Case with B: theoretical needs

NLGC as well as further “universal” theories predict that D and D are parallel.

Numerical simulations were actually indicating a different behavior!
We can provide now a better evidence of such behavior (grid up to 2048°)

Theory needs
to be revisited

NLGC Main Assumptions:
* 4th order correlator (v, ()8 By (£)v,(0)§BX(0)) > (v.(1)v.(0)) (6B (¢)SB}(0))

Matthaeus et al., APJ 2003
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~ Case with B: theoretical needs

NLGC as well as further “universal” theories predict that D and D are parallel.

Numerical simulations were actually indicating a different behavior!
We can provide now a better evidence of such behavior (grid up to 2048°)

Theory needs a*v’ f S, .(k)dk, dk, dk,

to be revisited Kex = 2 B
3By ) ¥+ (kI + kD« + kik.. + y(k)

NLGC Main Assumptions:
rERIOr(y (1)8B, (1)v.(0)8B1(0)) —— (v(1)v.(0)) (8Bx(1)5B(0))

2
* Velocity Correlator  v_(¢) = (v,(¢)v,(0)) = %e—vf/ln

* Corrsin hypothesis (+ Hom. Turb.) R, (1) = [ &k (8B, (k,1)8B? (k. 0) e2¥)
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Matthaeus et al., APJ 2003



_Conclusions and perspective

* Preliminary numerical results concerning the CRs tranport in a prescribed (synthetic)
turbulent magnetic field

* Numerical tools are quite robust (different implementations, different methods)

+ Improved dynamical range allows to analyze CRs diffusion in the inertial range of turbulence
for more than an order of magnitude of energy

+ Numerical results confirm the validity of the Subedi’s theory for B, =0
+ When B is present, D and D, show different slopes with respect to particle energy

* Perspectives:
- Theories need to be revisited since they predict the same energy dependencs of D . and D,

+ Comparison with the results obtained with magnetic fields generated through MHD
simulation may shed light on the role of intermittency and particles acceleration
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