

based on: M. Di Mauro, SM, F. Donato arXiv:1903.05647, arXiv:1908.03216

Silvia Manconi Oct 10, 2019 CRA2019, GSSI

Introduction

Introduction: cosmic-ray e^+ at Earth

 e⁺ excess PAMELA, AMS-02 data: flux above 10 GeV exceeds secondary component

2. e⁺ probe local Galaxy: severe energy losses for $E_{e^{\pm}} \gtrsim 10$ GeV: typical propagation scale $\lambda < 5$ kpc

 Pulsars and their nebulae (PWNe): main candidates to explain e⁺ excess

 Nearby PWNe: Geminga, Monogem, d < 500 pc Uncertainties: e[±] acceleration, release, energy spectrum... Multimessenger constraints!

Multi-wavelenght emission in PWNe

 $\Rightarrow e^{\pm}$ pairs accelerated by PWNe loose energy by Inverse Compton scattering, synchrotron emission:

cascade of photons in a broad range of frequency

Modeling intensity, distribution of photon emission in PWNe: properties of accelerated e^{\pm}

- Traditionally applied to pulsar, PWNe emission: arcmin-arcsec scale
- GeV-TeV Inverse Compton emission in HAWC, Fermi-LAT data: few-degree scale

Silvia Manconi (RWTH Aachen)

Introduction | CR/

CRA19, GSSI

Extended γ -ray halo of Geminga and Monogem

HAWC detects few-degrees extended γ -ray emission at E > 5 TeV around Geminga and Monogem pulsars [HAWC Collaboration, Science 358 2017] MILAGRO observed similar extended Geminga emission at 1-100 TeV. [Abdo+ApJL09]

First evidence of e^{\pm} diffusing away from the pulsar and up-scatter CMB photons, **inverse Compton emission**

 \sim 20 pc extension around Geminga at d = 250 pc Silvia Manconi (RWTH Aachen) Introduction Cernings Cernings C (HAWC,Science 358 2017)

Interpreted as e^{\pm} accelerated from the PWNe, and then released in the interstellar medium

Strong support to PWNe as e^+ sources.

CRA19, GSSI

i, GSSI

What we learn from HAWC data for Geminga/Monogem?

- 1. Continous injection of e^{\pm} , $Q(E, t) \propto L(t)E^{-\gamma_e} \exp(-E/E_c)$ $L(t) = W_0(1 + t/\tau)^{-2}$ evolution of pulsar luminosity, $\tau \sim 10$ kyr
- 2. Pulsar spin-down energy converted in high-energy $e^{\pm} \eta W 0 = 1.5 \times 10^{48}$ erg for Geminga, $\eta W 0 = 4.2 \times 10^{46}$ erg for Monogem
- 3. Diffusion in the vicinity (\sim 20 pc) of Geminga and Monogem is inhibited

•
$$D(1 \text{ GeV}) = 5.0^{+2.0}_{-1.0} \times 10^{25} \text{cm}^2/\text{s}$$

 \sim 500 times smaller than the average value in the Galaxy from B/C

Outline:

- 1. Follow-up of Geminga and Monogem HAWC halo with Fermi-LAT GeV data
- 2. Are TeV halos* a general property of pulsars?
- 3. Consequences for the interpretation of the AMS-02 e^+ flux

Results in: M. Di Mauro, SM, F. Donato arXiv:1903.05647, arXiv:1908.03216, arXiv:19XX.XXXX

Many other interesting references (2017-2019): Linden+PRD96, Hooper+PRD98, PRD96, Lopez-Coto+MNRAS479, PRL121, Fang+ApJ863, MNRAS488, Profumo+PRD97, Sudoh+PRD100, Xi+ApJ878, Tang+MNRAS48, , Evoli+PRD98, Johannesson+ApJ879, Giacinti+arXiv:1907.12121

detection prospects in VHE experiments; consequences for propagation models, cosmic-ray fluxes interpretation; magnetic field properties around sources, ...

* probably not final name: not only TeV...

Geminga γ -ray halo with Fermi-LAT

Beyond HAWC: Fermi-LAT and the e^+ flux

 \Rightarrow Using 5-40 TeV γ -rays to predict e^+ at 10-500 GeV is a strong extrapolation.

If we use *only* the HAWC results to calibrate:

Spectral energy distribution

Geminga contribution to e^+ flux is not constrained.

GeV Fermi-LAT data:

1. probe Geminga e^+ production relevant for e^+ excess

2. discriminate between different spectral index γ_e of the accelerated e^+ Silvia Manconi (RWTH Aachen) Geminga γ -ray halo with Fermi-LAT | CRA19, GSSI

Inverse-Compton halo extension depends on energy + diffusion

- At VHE Geminga halo is smaller, < 5 deg; at GeV could be even > 8 deg
- For $D_0 \sim 10^{28}~{\rm cm}^2/{\rm s}$ the "halo" around Geminga would be spread out widely in the interstellar medium

*extension = angle containing 68% of the ICS flux

Setup for Fermi-LAT data analysis

- 115 months of Fermi-LAT data in the energy range [8,1000] GeV
- Region of Interest of 70deg × 70deg: extension is predicted to increase at GeV

Energy dependence of the spatial morphology of Inverse Compton emission: we create templates for D(1 GeV) in the range $10^{25} - 10^{29} \text{cm}^2/\text{s}$:

Detection of Geminga extended halo in Fermi-LAT data

- 7.8-11.8 σ significance depending on background emission model
- Diffusion $D(1 GeV) = 1.6 3.5 \times 10^{26} \text{ cm}^2/\text{s}$, compatible within 2σ with HAWC
- Size of \sim 60 pc at 100 GeV, $\gamma_e = 1.8 2$

Inverse Compton emission from e^{\pm} accelerated, and escaped, from Geminga

Monogem halo not significantly detected: upper limits.

Silvia Manconi (RWTH Aachen)

Detection of Geminga pulsar proper motion with γ -rays

- Geminga pulsar has a proper motion, with transverse velocity of $v_t \sim 211$ km/s [Faherty+AS07]: \sim 70 pc across its age (342 kyr)
- Transverse velocity affects significantly morphology of Geminga halo γ -ray emission at E < 100 GeV [Tang&Piran18]

Model fit with proper motion preferred at least at 4σ .

Silvia Manconi (RWTH Aachen)

Geminga γ -ray halo with Fermi-LAT | CRA19, GSSI

Systematics checks

- 10 different background diffuse emission models, as used in Fermi-LAT SNR catalog [Acero+ApJ16]
- Null hypothesis test: 1000 simulations w/o signal, TS distribution compatible with χ^2
- Weak anti-correlation with isotropic and background diffuse emission (always less than -0.3)
- Point Spread Function: residuals when analysing bright sources? Analysis toward brightest Fermi-LAT sources, same Geminga template: TS < 2.
- **Proper motion**: we rotated the template by 90, 180, 270 deg. Model with right direction always preferred at TS > 30
- Slightly lower significance with CLEAN (55) and ULTRACLEANVETO (48) event class

IEM	TS^{Geminga}	D_0^{Geminga}	TS^{motion}	$TS^{Monogem}$	D_0^{Monogem}
		$[10^{26}~{\rm cm^2/s}]$			$[10^{26}~{\rm cm^2/s}]$
Off.	65	$2.1^{+1.0}_{-0.7}$	28	25	> 2
Alt. 1	104	$2.6^{+1.4}_{-0.8}$	30	3	> 1
Alt. 2	92	$2.6^{+1.2}_{-0.8}$	22	14	> 3
Alt. 3	87	$3.3^{+1.6}_{-1.1}$	24	16	> 4
Alt. 4	102	$3.5^{+1.8}_{-1.1}$	20	26	> 3
Alt. 5	111	$2.4^{+1.0}_{-0.6}$	51	12	> 2
Alt. 6	143	$2.6^{+1.2}_{-0.8}$	43	10	> 3
Alt. 7	128	$2.8^{+1.3}_{-0.9}$	41	12	> 10
Alt. 8	134	$3.1^{+1.3}_{-0.9}$	39	25	> 8
GC	71	$1.6^{+0.6}_{-0.4}$	35	8	> 1

Consequences for the cosmic e^+ flux at Earth (I)

 e^+ flux using results of Fermi-LAT: **two-zone diffusion model** [Tang+1808.02445]: inhibited diffusion $r_b < 100$ pc, \sim angular size of Geminga at 100 GeV

$$D(r) = \left\{egin{array}{ll} D_0(E/1\,{
m GeV})^\delta \ {
m for} \ 0 < r < r_b, \ D_2(E/1\,{
m GeV})^\delta \ {
m for} \ r \geq r_b, \end{array}
ight.$$

• Geminga contributes 1% (10%) to e^+ at 100 GeV (800 GeV); Monogem at most 3%

Geminga and Monogem alone, as constrained by Fermi-LAT, cannot be major contributors to $e^+ \mbox{ excess}$

Silvia Manconi (RWTH Aachen)

Geminga γ -ray halo with Fermi-LAT | CRA19, GSSI

PWNe γ *-ray halos* are a **new and promising** source class: New halos discovered by HAWC, (O(30) [Linden+PRD17]) expected in the next years, CTA, AMEEGO

- General feature around each Galactic pulsar?
- Constrain and refine production and emission models of cosmic e^{\pm} from PWNe
- Study propagation of cosmic rays around sources
- Connect to other evidence of inhomogenous diffusion (H,He breaks)

Are TeV halos a general property of pulsars?

Angular size: key parameter for detectability

Fermi-LAT: challenging detection for > 10 degrees VHE experiments: few degrees instantaneous field of view

- 10 GeV: a source of 100 kyr should be far at least 0.9 kpc to be detected with extension smaller than 2 deg
- 1 TeV: D_0 is similar to Geminga value: most ATNF pulsars would be good targets for inverse Compton gamma-ray halo

Prediction for number of TeV halos in HESS, HAWC, CTA

Number of sources above HESS, HAWC, CTA sensitivity as a function of the efficiency of conversion of pulsar spin down into e^{\pm} :

- HAWC/HESS might have already detected 25-35 TeV halos (see also [Linden+PRD17])
- Tens of halos could be detected even if $\eta \sim 1\%$

Difference with previous works: we do not rescale the results of HAWC for Geminga, we compute for each ATNF source the inverse Compton flux with catalog properties.

Silvia Manconi (RWTH Aachen) Are 7

Are TeV halos a general property of pulsars? | CRA19, GSSI

Analysis tecnique and source sample

- Rank the ATNF pulsars according to gamma-ray flux at 10 TeV: majority already detected by HAWC, HESS
- Flux maps from HESS HGPS catalog: surface brightness above 1 TeV
- Gamma-ray emission interpreted as purely leptonic
- Fit to surface brightness to derive D₀ for each source

Example: HESSJ1809-193 associated to J1809-1917, d = 3.27 kpc, 52 kyr

A low-diffusion zone around pulsars

Results for our sample of HESS sources:

- The diffusion coefficient around PWNe is systematically lower by 2 orders of magnitude with respect to mean Galactic value found from B/C data fits
- No clear trend with respect to age
- Inverse Compton TeV halos have typical size of about 35 pc above 1 TeV

Consequences for the e^+ flux

Consequences for the cosmic e^+ flux at Earth (II)

Geminga and Monogem are not the only PWNe in our Galaxy.

• An efficiency of 1-3% for the conversion of pulsar spin down in e^{\pm} pairs for a smooth Galactic distribution of PWN can explain the e^+ excess

[Cholis+PRD18], [DiMauro+19, in preparation]

• Previous studies considering PWNe in the ATNF catalog

[DiMauro+JCAP14,Manconi+JCAP17,DiMauro,SM+ApJ18] also find similar values

The cumulative e^+ emission from Galactic PWNe remains a viable interpretation for the e^+ excess

Silvia Manconi (RWTH Aachen)

 Extended γ -ray halo from Geminga and Monogem in HAWC: evidence for e[±] diffusing away from PWNe

A counterpart of the Geminga halo is detected in Fermi-LAT data

- inibithed diffusion $D(1 GeV) = 1.6 3.5 \times 10^{26} \text{ cm}^2/\text{s}$, compatible with HAWC results
- Geminga and Monogem, as constrained from Fermi-LAT, contribute at most 10% to the flux of e⁺ at 800 GeV
- TeV halos emerging as general characteristics of Galactic pulsars
- Pulsars and their nebulae remain the most promising candidates to explain the e⁺ flux at Earth: starting to probe production and emission mechanism

Thank you!

BACKUP

Analysis of HAWC data: fit to surface brightness

• We fit HAWC surface brightness for Geminga and Monogem

- Results are compatible with [HAWC Collaboration, Science 358 2017]
- Similar results using spectral index for $e^\pm~\gamma_e=2.3$