

GRAN SASSO SCIENCE INSTITUTE

PhD Defense: Sub-Orbital and Orbital Detection of High-Energy Astrophysical Radiation via Cherenkov Emission

July 27th, 2021 L'Aquila, Italy (remote)

Candidate: Austin Cummings Supervisor: Roberto Aloisio

Outline

- Introduction (UHECRs, Neutrinos, and the Earth-skimming Detection Technique)
- Neutrino Propagation in the Earth
- Shower Modeling (Cherenkov Emission)
- Neutrino Detection Capabilities and Outlook
- Above-the-Limb Cosmic Ray Detection Capabilities and Outlook
- Summary and Future Perspectives

Outline

- Introduction (UHECRs, Neutrinos, and the Earth-skimming Detection Technique)
- Neutrino Propagation in the Earth
- Shower Modeling (Cherenkov Emission)
- Neutrino Detection Capabilities and Outlook
- Above-the-Limb Cosmic Ray Detection Capabilities and Outlook
- Summary and Future Perspectives

Ultra-High Energy Cosmic Rays (UHECR)

- Mostly protons and helium, with small fractions of heavier nuclei, electrons, and positrons
- Flux spans many orders of magnitude in energy, going from ~10⁴/m²s at 10⁹ eV to ~1/km²century at 10²⁰ eV
 - Features in the flux curve can answer fundamental astrophysical questions
- Many questions regarding the sources, acceleration mechanisms, and propagation effects of cosmic rays are largely open

Extensive Air Showers (EAS)

- Primary cosmic ray interacts with atmospheric molecules • Produces many secondaries
- The majority of the shower energy is transferred to electrons, positrons, and photons
- The secondaries can be detected either directly or through emission:
 - Fluorescence Ο
 - Radio Ο
 - **Optical Cherenkov** Ο

Extensive Air Showers (EAS)

- Primary cosmic ray interacts with atmospheric molecules • Produces many secondaries
- The majority of the shower energy is transferred to electrons, positrons, and photons
- The secondaries can be detected either directly or through emission:
 - Fluorescence Ο
 - Radio Ο
 - **Optical Cherenkov**

Optical Cherenkov Emission

 Occurs when a charged particle passes through a dielectric medium faster than the phase velocity of light

 $\beta > \frac{1}{n}$

Energy threshold: 0.8 MeV in water 22 MeV in air

Emission forms a coherent, narrow, forward projected ring

 $\cos(heta_{ch}) = rac{1}{eta n}$ Opening angle: 41° in water 1.4° in air

• Emission peaks at smaller wavelengths

$$\frac{d^2 N_{\gamma}}{dz d\lambda} = 2\pi \alpha \left(1 - \frac{1}{\beta^2 n^2}\right) \frac{1}{\lambda^2}$$

US Department of Energy/SPL

What are Neutrinos?

- Neutrinos are fundamental particles that couple only via the weak interaction force
 - Interactions are very rare Ο
- 3 species of neutrinos:
 - Electron (e)
 - Muon (μ) Ο
 - Tau (τ)
- Neutrinos undergo oscillation between the 3 different flavors
- Neutrinos have mass! • Cosmological limits give $\sum_{i} m_{\nu_{i}} < 0.12 \text{ eV}$

Physics Today 24, 1, 21 (1971)

How are High Energy Neutrinos Created?

- Neutrinos are created in nuclear decays of unstable particles
 - Relativistic (standard) particles Ο
 - Beyond standard model (superheavy particles)
- UHECR can interact with background photon fields via: $p(n) + \gamma \rightarrow n(p) + \pi^{\pm}$

where the charged pions decay via:

 $\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\nu_{\mu}})$

- Inherent link to hadronic acceleration/interactions
- Two primary background photon fields:
 - Cosmic Microwave Background (CMB)
 - Extragalactic Background Light (EBL)

energy loss lengths for protons

Neutrino Propagation to Earth

- Negligible interactions due to miniscule cross sections, even at cosmological scales
 - UHECR with energy> 50 EeV can only be observed
 within 100 Mpc
- No magnetic deflection because of electrical neutrality
 - Points back to sources
- Flavor oscillation results in a nearly 1:1:1 ratio of e, μ , and τ neutrinos at Earth
 - Deviation from this ratio can help determine acceleration mechanisms
- Neutrinos are ideal cosmic messengers of high energy astrophysical phenomena

Neutrino Propagation to Earth

- Negligible interactions due to miniscule cross sections, even at cosmological scales
 - UHECR with energy> 50 EeV can only be observed
 within 100 Mpc
- No magnetic deflection because of electrical neutrality
 - Points back to sources
- Flavor oscillation results in a nearly 1:1:1 ratio of e, μ , and τ neutrinos at Earth
 - Deviation from this ratio can help determine acceleration mechanisms
- Neutrinos are ideal cosmic messengers of high energy astrophysical phenomena

High Energy Neutrino Detection

- Because neutrinos rarely interact, it's necessary to instrument large detection volumes
- IceCube is a 1 km³ neutrino detector located in the South Pole
 - Instrumented with 5160 Digital Optical
 Modules (DOMs) 1.5 km under the ice
 - Can measure energy, direction, and flavor of the incident neutrino
- In addition to characterizing the atmospheric neutrino flux, IceCube has measured the cosmic neutrino flux from ~10 TeV to ~PeV
- For higher energy measurements, larger detector volumes are needed
 - The in-ice Cherenkov method becomes cost
 prohibitive to make these measurements

Earth-Skimming Neutrino Technique

- Using the Earth and its atmosphere as the instrumental volume allows for huge geometric apertures
- We consider the optical Cherenkov detection regime
 - Cherenkov angle ~1.4° in atmosphere, projected to sub-orbital and orbital altitudes yields signal diameters ~10-100 km
- Tau and muon neutrinos are both potential candidates
- **2** things necessary to determine performance:
 - **Characterization of Earth-emergent charged leptons** Ο
 - **Properties of EAS initiated by the charged leptons** Ο

EUSO-SPB2 & POEMMA

- Orbiting altitude: 33 km
- Mission lifetime: ~100 days
- Fluorescence Camera: 6912 pixels
- Cherenkov Camera: 512 pixels, 12.8°x7° FOV

Orbiting altitude: 525 km Mission lifetime: 3 year (5 year goal) Fluorescence Camera: 126,720 pixels Cherenkov Camera: 15,360 pixels, 30°x7° FOV

S

G

Outline

- Introduction (UHECRs, Neutrinos, and the Earth-skimming Detection Technique)
- Neutrino Propagation in the Earth
- Shower Modeling (Cherenkov Emission)
- Neutrino Detection Capabilities and Outlook
- Above-the-Limb Cosmic Ray Detection Capabilities and Outlook
- Summary and Future Perspectives

Neutrino Propagation

- **Goal:** Follow high-energy neutrinos as they propagate through the Earth and qualify the properties of any emerging charged leptons
- Must properly consider:
 - Charged-current and neutral-current neutrino interactions
 - Energy losses of charged leptons
 - Charged lepton decay
 - Possible neutrino re-interaction

Monte Carlo computation scheme: NuTauSim
 Added propagation of muons to the scheme

Neutrino Interaction in Earth

- Calculate grammage profile along neutrino trajectory: $X_E(L) = \int_0^L \rho(r(L)) dL$
- Sample neutrino interaction grammage from exponential distribution with mean:

$$X_{int}^{\nu}(E_{\nu}) = \frac{m_N}{\sigma_{\rm CC}(E_{\nu}) + \sigma_{\rm NC}(E_{\nu})}$$

 $\circ \sigma_{\rm CC}/(\sigma_{\rm CC} + \sigma_{\rm NC})$ probability of becoming a charged lepton $\circ \sigma_{CC}/\sigma_{NC}$ ≈ 2.6 for E>10¹² eV

Charged lepton energy = (1-y) E_v
 v is called the inelasticity
 Average y ≈ 20%

Charged Lepton Propagation

• Assume continuous energy losses inside the Earth:

$$\left\langle \frac{dE_{\tau}}{dX} \right\rangle = -a(E_{\tau}) - b(E_{\tau})E_{\tau}$$

 $a(E_{\tau})$ corresponds to constant ionization losses

- $b(E_{\tau})$ corresponds to radiative losses
- Bremsstrahlung
- Electron-positron pair production
- Photonuclear interactions
- Propagated in steps ΔL such that 0.1% of the primary energy is lost
- Check for decay with probability: $P_{\text{decay}}(E_{\tau}) = 1 - e^{-\Delta L/\gamma(E_{\tau})ct_{\tau}}$ $\circ \text{ If decayed, sample neutrino energy from decay} \qquad \begin{array}{c} 0.75 \\ 0.50 \\ 0.25 \\ 0.00 \end{array}$

0.0

2.00

1.75

1.50

1.25

 v_{τ} Energy Spectra from Relativistic τ -lepton Decay

Earth Emergence Probability

- Defined as the number of charged leptons emerging from the Earth divided by the number of simulated neutrinos
- Muon Earth emergence probability exceeds τ -lepton Earth emergence probability until parent neutrino energies of about 100 PeV

• At PeV energies, factor of 600!

• While τ -leptons experience $v_{q} \rightarrow \ell \rightarrow v_{q}$ regeneration, muons do not, as muon decays happen at characteristically small energies

Earth-Emergent Charged Lepton Energy Distributions

Energy reconstruction inherently limited by the physics of propagation

G S S I

Outline

- Introduction (UHECRs, Neutrinos, and the Earth-skimming Detection Technique)
- Neutrino Propagation in the Earth
- Shower Modeling (Cherenkov Emission)
- Neutrino Detection Capabilities and Outlook
- Above-the-Limb Cosmic Ray Detection Capabilities and Outlook
- Summary and Future Perspectives

Optical Cherenkov Simulation

•	Goal: return the properties of arriving Cherenkov photons on	~ 3000
	a predefined detection plane, from a given shower:	(E) 5
	 Spatial 	2000
	 Wavelength 	
	 Timing 	1000
	 Angular 	
•	Taking into account:	
	 Underlying charged particle properties 	-1000
	 Atmospheric Effects 	
		-2000
	Current simulations are unequipped to handle	
	upward going showers, except in the case of a flat	-3000
	atmosphere	
	 Unreliable arrival times of arriving photons 	

1TeV proton EAS with θ_{sh} = 90° (perfectly vertical), 350 nm < λ <450 nm, observed from 400km

S

G

τ -lepton Induced EAS

- τ -lepton decay branches: $\tau^{\mp} \rightarrow \text{hadrons} + \nu_{\tau}(\bar{\nu}_{\tau}) \approx 64.79\%$ 1.4 1.2 $\tau^{\mp} \rightarrow e^{\mp} + \bar{\nu}_e(\nu_e) + \nu_\tau(\bar{\nu}_\tau) \approx 17.82\%$ 1.0 0.8 0.8 $\tau^{\mp} \rightarrow \mu^{\mp} + \bar{\nu}_{\mu}(\nu_{\mu}) + \nu_{\tau}(\bar{\nu}_{\tau}) \approx 17.39\%$ 0.6 Average fractional energy of $e/\mu \approx 42\%$ 0.4 Average fractional energy deposited into hadrons ≈ 58% 0.2 0.0 • Well justified in approximating longitudinal profile with that
- of a proton induced EAS
- Long decay length: $4.9 \times (E_{\tau}/10^{17} \text{ eV}) \text{ km}$

Muon Induced EAS

- Large one-time energy depositions
 - Bremsstrahlung
 - Pair-production
 - Photonuclear interactions
- In near-limb trajectories, a significant fraction of muons can interact:
 - Below $\theta_{sh} = 5^{\circ}$, ~10% chance a muon deposits 10% or more of its energy into a single interaction
- Due to long interaction lengths, muons can initiate EAS anywhere along their trajectories
- Can approximate longitudinal profile with that of a proton induced EAS
 - Most significant energy loss process corresponds to photonuclear interactions

*Dot-dashed lines correspond to total thickness of atmosphere provided for trajectories of Earth-emergence angle: 30°, 20°, 10°, 5°, 1°, 0°

Cherenkov Emission from EAS

- Charged particles in the EAS generate Cherenkov emission
- Superposition of all particle emission forms the measurable signal
- Consider only electrons within the EAS
 - EAS is e^+/e^- dominant
 - Cherenkov threshold of π^+/π^- , μ is >200x larger
- Electron properties:
 - Energy Ο
 - Angular Ο
 - Lateral Ο
 - Timing Ο
 - Geomagnetic deflection Ο

HESS Collaboration

Ě 10

M. Hillas, J. Phys. G : Nucl. Phys. 8 (1982) 1461-1473. Electron Energy Distribution

- Electrons have a nontrivial distribution in energy that changes with shower evolution
- Overall, electrons which propagate during late shower ages are of characteristically lower energies
- For the purpose of this work, we implement the model of Hillas (1982)

Electron Angular Distribution

- The angular distribution of electrons in the shower varies strongly with the electron energy and minimally with the shower age
- Although, the average electron energy does change with shower development
- High energy electrons are typically confined near the shower axis, while low energy electrons are able to spread much further
- For the purpose of this work, we implement the model of Hillas (1982)

Electron Lateral Distribution

- The lateral distribution of electrons has a poor universality throughout the shower and can be rescaled by the Moliere Radius
- High energy electrons have smaller lateral spreads than low energy electrons
- Electrons generated at higher altitudes have larger lateral spreads
 - Competes with Cherenkov scale above 30 km altitude
- For the purpose of this work, we implement the model of Lafebre, et. al. (2009)

Electron Delay Time Distribution

- Lag time measures how much an electron lags an imaginary particle traveling at the speed on light along the shower axis
- The timing distribution of electrons has a poor universality throughout the shower and can be rescaled by the Moliere Radius
- High energy electrons travel closer to the speed of light than low energy electrons
- Electrons generated at higher altitudes have greater time lags
- For the purpose of this work, we implement the model of Lafebre, et. al. (2009)

Atmospheric Effects: Index of Refraction

- Index of refraction model given by:
 - n(z) = 1 + 0.283

We use the standard US atmosphere to describe $\rho(z)$

- This choice influences:
 - The energy threshold for emission
 - $\circ~$ The angle of the emission $\theta_{\rm ch}$
 - atmosphere:

$$t_{\gamma}(z(L)) = \int_{L}^{L}$$

$$\times \ 10^{-3} \frac{\rho(z)}{\rho(0)}$$

• The propagation time of photons through the

 $\frac{det}{dt} \frac{n(z(L'))}{dL'}$

Atmospheric Effects: Light Extinction

Atmospheric Attenuation Coefficient (Rayleigh+Aerosol+Ozone)

The extinction coefficient corresponds to the inverse of the distance light travels to attenuate by a factor of e, and is calculated as:

 $\alpha(z,\lambda) = \sigma(\lambda)\rho_N(z,\lambda)$

- 3 main components:
 - Rayleigh Scattering (Molecular) Aerosol Scattering (Mie)
 - Ο
 - **Ozone Absorption** Ο
- Scattering strong for low altitudes and for λ <350 nm
- Small Earth emergence angles result in extreme atmospheric attenuation

Geomagnetic Separation

- another via Earth's magnetic field
- threshold
 - Ο
- We assume:
 - Ο
 - Ο
 - No negative charge excess Ο

Electrons and positrons can be separated from one

Length scales of the electron radiation length and gyration radius compete for z>25 km at the Cherenkov

Effect is mainly important at very high altitudes

Fairly strong geomagnetic field (50 μ T) Field oriented perpendicular to the shower axis

Cherenkov Spatial Distribution

- Increasing the emergence angle and starting altitude avoids atmospheric attenuation of the Cherenkov light
- For showers which begin close to the limb (θ_{sh} < 5°), the gains in intensity with increasing starting altitude grow dramatically
 - High energy τ -leptons
 - Muons of any energy
- In principle, muons can mimic *τ*-leptons of higher energy

Cherenkov Wavelength Distribution

- Increasing the emergence angle and starting altitude avoids atmospheric attenuation of the Cherenkov light
- Wavelength spectrum of Cherenkov photons is "blue-shifted" towards smaller wavelengths • Original Cherenkov spectrum $\propto 1/\lambda^2$
- Strong attenuation below 300 nm from Ozone attenuation
 - Dip near 600 nm due to Ozone scattering cross section
- Typical spectrum within 300 nm-1000 nm

S

Cherenkov Angular Distribution

- The further away from the Cherenkov angle the photons are observed, the larger angular spread they have
 - Later shower ages are sampled measuring further from the shower axis
- Most Cherenkov emission is observed within scales of 0.1°
- The pixel FOV of POEMMA is 0.084° x 0.084° while EUSO-SPB2 has 0.4° x 0.4°
 - Light is well constrained within a single pixel (well focused)

36

S
Cherenkov Time Distribution

- The further away from the Cherenkov angle the photons are observed, the larger time spread they have
- Time width of the arriving Cherenkov pulse grows from ~20 ns near shower axis up to ~1 μ s
- The electronic integration time of POEMMA/EUSO-SPB2 is 20/10 ns to optimize on-axis observations
 - Larger time spreads result in decreased SNR for observations in the tails of the distribution

Geomagnetic Effects

40000

y (m)

Fixed arrival angle (θ tr=85°)

- 400

- 350

- 300

- 250

200

150

50

10000 20000 30000 0 x (m)

Outline

- Introduction (UHECRs, Neutrinos, and the Earth-skimming Detection Technique)
- Neutrino Propagation in the Earth
- Shower Modeling (Cherenkov Emission)
- Neutrino Detection Capabilities and Outlook
- Above-the-Limb Cosmic Ray Detection Capabilities and Outlook
- Summary and Future Perspectives

1-Dimensional Fitting

- amount of computational time
- geometric parameter space Ο
- As a first estimate, we assume:
 - Ο
 - **Optimal focusing** Ο

 - Ο

$$\rho_{ch} = \begin{cases} \rho_0 \\ \rho_0 \\ \rho_1 \end{cases}$$

Simulation of a single shower takes a significant

Useful to fit the shower parameters over a wide Earth emergence angle, decay altitude

No wavelength dependence Geomagnetic separation of e⁺/e⁻ negligible Time spread of photons \approx 20 ns

Fit the spatial distribution of the arriving Cherenkov photons on the detection plane with:

$$\begin{aligned} \theta &\leq \theta_{ch} \\ \frac{\theta}{\theta_{ch}} \Big)^{-\beta} & \theta_{ch} &\leq \theta &\leq \theta_{1} \\ \frac{-(\theta - \theta_{1})}{\theta_{2}} & \theta &\geq \theta_{1} \end{aligned}$$

POEMMA Parameters

EUSO-SPB2 Parameters

S G S

Monte Carlo Methodology

• Analytical estimate of geometry factor given by:

 $\langle A\Omega \rangle(E_{\nu}) = \pi R_{E}^{2} \Delta \phi_{E} \int P_{obs}[E_{\nu}, \theta_{s}(\theta_{E})] \times \cos[\theta_{s}(\theta_{E})] \sin^{2}[\delta(\theta_{E})] \sin\theta_{E} d\theta_{E}$ * P. Motloch, Astropart. Phys. 54 (2014) 40-43

For Tau-Leptons:

- 1. Interpolate Pobs, the Earth emergence probability from NuTauSim
- 2. Sample charged lepton energy given distribution at $[E_v, \theta_s]$ using kernel density estimation
- 3. Sample decay altitude and fractional energy
- 4. Interpolate Cherenkov parameters from generated lookup table
- 5. Calculate $\delta(\theta_{F})$
 - EUSO-SPB2 threshold: 200 γ/m^2
 - POEMMA threshold: 20 γ/m^2

43

Monte Carlo Methodology

For Muons:

- 1. Interpolate Pobs, the Earth emergence probability from NuTauSim
- 2. Sample charged lepton energy given distribution at $[E_v, \theta_s]$ using kernel density estimation
- 3. Sample interaction length from exponential distribution with mean dX inelasticity $y=E/E_{\mu}$ from differential muon cross sections
 - dX = ¹/₅ X_{tot}, the total atmospheric slant depth provided by the trajectory
- 4. Interpolate parameters from lookup table
- 5. Calculate $\delta(\theta_{\rm E})$
- 6. Continue propagation through atmosphere, keeping only the most significant interaction (highest δ)
 - Doesn't consider the superposition of multiple interactions

Neutrino Sensitivities

- Including the muon channels extends sensitivity below 10PeV
 - Muon neutrino channel more relevant than muons Ο from tau decay due to Earth emergence probability
- The POEMMA and EUSO-SPB2 instruments remain most sensitive to the tau neutrino flux
- Even under the most optimistic conditions, neither POEMMA nor EUSO-SPB2 compete with limits set by existing experiments on the diffuse neutrino flux
- **Energy reconstruction very difficult**

*Solid lines correspond to 360° azimuth, while dashed lines are current designs

S

45

How Can We Target the Diffuse Flux?

- Assume optimistic 2π azimuth, POEMMA optics and observation altitude
- Consider lowered detection thresholds
- Consider the most optimistic cosmological evolution of UHECR sources not yet ruled out by existing neutrino limits
 - For a pure proton composition model, assume the evolution of the Stellar Formation Rate (SFR)
 - For a mixed composition, assume the evolution of Active Galactic Nuclei (AGN)

Pure Proton Composition, SFR

	$\nu_{\tau} \to \tau$	$\nu_{\tau} \rightarrow \mu$	$ \nu_{\mu} \rightarrow \mu $
$ ho_{thr}^0$	7.06	5.23×10^{-2}	3.05×10^{-1}
$\rho_{thr}^0/2$	14.46	1.20×10^{-1}	6.62×10^{-1}
$\rho_{thr}^0/10$	61.59	6.83×10^{-1}	3.51

	$\nu_{\tau} \to \tau$	$\nu_{\tau} \rightarrow \mu$	$\nu_{\mu} \rightarrow \mu$		
$ ho_{thr}^0$	2.07×10^{-1}	8.12×10^{-4}	1.54×10^{-2}	G	S
$ ho_{thr}^0/2$	7.99×10^{-1}	2.82×10^{-3}	6.31×10^{-2}	9	
$ ho_{thr}^0/10$	8.86	3.28×10^{-2}	1.03	0	1

Mixed Composition, AGN

Outline

- Introduction (UHECRs, Neutrinos, and the Earth-skimming Detection Technique)
- Neutrino Propagation in the Earth
- Shower Modeling (Cherenkov Emission)
- Neutrino Detection Capabilities and Outlook
- Above-the-Limb Cosmic Ray Detection Capabilities and Outlook
- Summary and Future Perspectives

Above the Limb Observation

- Cosmic rays can skim the atmosphere and initiate upward going EAS like neutrinos
- The Cherenkov cameras of POEMMA and EUSO-SPB2 can look above the Earth and observe these events
- Increased fluxes and interaction rates imply larger event rates
- Expected to have similar Cherenkov properties to EAS initiated by neutrinos

Above the Limb Cosmic Rays

- Cosmic rays from above the Earth limb develop at characteristically high altitudes

 X_{max} occurs close to 25 km
- Cosmic rays deposit the majority of their energy into EAS
- Trajectories near the limb will experience extremely strong atmospheric extinction
- Must now consider:
 - Geomagnetic separation of electrons/positrons
 - The time spread of the arriving photons

Above-the-Limb 1-D Profile Fitting

Example Cherenkov spatial distribution of a 100 PeV shower with 85° viewing angle, observed from 33 km altitude

Spatial distributions fit with:

 $\Phi_{ch} = \begin{cases} \Phi_0 & \theta \leq \theta_{ch} \\ \Phi_0 \left(\frac{\theta}{\theta_{ch}}\right)^{-\beta} & \theta_{ch} \leq \theta \leq \theta_1 \\ \Phi_1 e^{-(\theta - \theta_1)/\theta_2} & \theta \geq \theta_1 \end{cases}$

To bound the maximum effects of the geomagnetic field:

Fit the spatial distributions parallel and perpendicular to the B field

Simulate showers over the parameter space θ_d from limb to 300 g/cm² and X_0 from 0 to 280 g/cm²

Above Limb Monte Carlo

- For shower starting point: sample $\theta_{\rm E}$ flat in cos(θ) constrained by FOV, and $\Phi_{\rm F}$ uniformly from 0-2 π
- For shower trajectory: sample $\theta_{_{\rm S}}$ flat in cos² θ , and $\Phi_{_{\rm S}}$ uniformly from 0-2 π
- Calculate angle between shower trajectory and detector
- Sample interaction length from exponential
- Take Cherenkov spatial profile from lookup table, and calculate the Cherenkov photon density at detector--if higher than threshold, event is accepted
 - EUSO-SPB2 threshold: 200 $\gamma/m^2/20$ ns
 - POEMMA threshold: 20 $\gamma/m^2/20$ ns
- Geometry factor estimated as:

$$A(E) = \pi A_S \frac{N_{\text{accepted}}}{N_{\text{thrown}}}$$

Cosmic Ray Aperture (EUSO-SPB2)

- Energy threshold below 1 PeV
- Higher energy events more visible near the limb
 - Due to atmospheric refraction, higher energy CR can be reconstructed as originating below limb (neutrino) Ο

Cosmic Ray Aperture (POEMMA)

- Energy threshold below 10 PeV
- Higher energy events more visible near the limb
 - Due to atmospheric refraction, higher energy CR can be reconstructed as originating below limb (neutrino) Ο

Cosmic Ray Event Rate

- High event rate
 - 100 events per hour of live time Ο
 - Above EeV energies, similar event rates to radio detection (ANITA) Ο
- Definitive test of the optical Cherenkov detection technique from altitude

 $N = \int$ $\int_{-\infty}^{\infty} \langle A\Omega \rangle(E) \Phi_{CR}(E) dE dt$

 $^{*}\Phi CR(E)$: the all-particle flux measured by Kascade-Grande and Pierre-Auger

Future Work: Energy Reconstruction

- Angular scales are small
 Good knowledge of arrival direction
- Time spread can quantify observation angle
- Signal intensity is proportional to primary energy
- Angular acceptance is energy dependent
 - Acceptance near limb could indicate higher primary energy, for example
- EUSO-SPB2 flight data will help to quantify reconstruction abilities

Future Work: Mass Composition

Using Muons

- Direct Cherenkov light from muons can be used to make composition measurements in ground-based optical Cherenkov telescopes
- Simulations necessary to determine the effect for high altitude observations

Using Multiple Satellites

- Structure within the effective Cherenkov angle can help resolve X
 - Tunka
 - NICHE Ο

arXiv:1610.01794

Semikoz Mirzoyan <u>></u> 2 Neronov, e.Vovk, R.

S G S

58

Outline

- Introduction (UHECRs, Neutrinos, and the Earth-skimming Detection Technique)
- Neutrino Propagation in the Earth
- Shower Modeling (Cherenkov Emission)
- Neutrino Detection Capabilities and Outlook
- Above-the-Limb Cosmic Ray Detection Capabilities and Outlook
- Summary and Future Perspectives

Summary and Future Perspectives

In this work:

- Characterized the Earth-emergent charged lepton flux given a parent flux of τ and μ neutrinos Characterized the optical Cherenkov signal from EAS induced by neutrinos and cosmic rays, considering
- also the muon induced EAS
- Showed that neither POEMMA nor EUSO-SPB2 is competitive with existing experiments for measuring the diffuse neutrino flux
- The full sky coverage and slewing capability do allow for multi-messenger follow-up measurements • Showed that both POEMMA and EUSO-SPB2 will measure copious amounts of cosmic rays. Because the properties of the emission are so similar, these cosmic rays provide an in-flight test source and a verification of the detection technique. Performing and optimizing energy and angular reconstructions on these events allows for readiness for neutrino observations.

What to expect in the near future:

- Simulation work will show whether mass composition measurements are feasible with high-altitude observations
- EUSO-SPB2 will launch from Wanaka, NZ in 2023 and make the first high-altitude observations of Cherenkov emission. EUSO-SPB2 will quantify backgrounds, verify the detection method, and help optimize future space-based missions.
- Terzina will measure backgrounds and UHECR from space-based altitudes for the first time

GRAN SASSO SCIENCE INSTITUTE

Austin Cummings

austinlee.cummings@gssi.it

Indirect Dark Matter

- POEMMA sensitive to indirect dark matter via:
 - \circ Annihilation $\chi\chi \rightarrow \nu \overline{\nu}$
 - Decay $\chi
 ightarrow
 u ar{
 u}$ Ο
- Probe of superheavy DM (E>10¹⁶ eV)
- Observations of the Galactic Center improve sensitivities
- Fluorescence channel vastly improves detection capabilities for E>10²⁰ eV

"Target of Opportunity"

- POEMMA has the ability to follow-up transient astrophysical events
 - Slew to target following multi-messenger alert
- Consider "long-burst" (>1000 s) and "short-burst" (<1000 s) events
- Full-sky view of POEMMA offers a good chance at observing one such event under many different models
- Most promising detection candidates:
 - Jetted Tidal Disruption Events (TDE) Ο
 - **Binary Neutron Star Mergers (BNS)** Ο
 - Binary Black Hole Mergers (BBH) Ο

 $E_{
u}^{2}\phi_{
u} \left[{
m GeV}\,{
m cm}^{-2}
ight]$

63

Detection Thresholds

• Average number of background photons per pixel:

$$\mu = \langle N_{bkg} \rangle = \Phi_{\lambda}^{bkg} \epsilon_Q \Delta \Omega_{pix} \Delta S_{pix} \Delta t_{sig}$$

 Rate of false positive events due to background from Poisson statistics:

$$F(N_{PE},\mu) = 1 - \sum_{k=0}^{N_{PE}-1} e^{-\mu} \frac{\mu^k}{k!}$$

$$\eta = F(N_{PE}, \mu) N_{pix} \frac{\Delta t_{duty}}{\Delta t_{sig}}$$

- Assuming an integration time of 20 ns, a quantum efficiency of 10%, and the spectrum of the night sky airglow emission, the threshold to allow for <0.01 false events per year
 - EUSO-SPB2: 40 PE
 - POEMMA: 10 PE

Photon detection efficiency (%)

photons m⁻² sr⁻¹ nsec⁻¹

sig

Muon Cross Sections

 $\log_{10}(E_{\nu}/eV) = 15$

Kernel Density Estimation Example

 $E_{v} = 10^{18.0} \text{eV}, \ \theta_{sh} = 16.0^{\circ}$

