GRAN SASSO SCIENCE INSTITUTE

Multiscale Cosmic-Ray Transport and Non-linear Feedback

Benedikt Schroer

Supervisor: Pasquale Blasi

G S

Co-Supervisor: Carmelo Evoli

December 15, 2022

Introduction

Phenomenological Approach to CR transport in the Galaxy

On-linear theory of CRs escaping a SNR

Introduction

Observations

The overabundant elements show steeper spectra than the other nuclei
Interpretation of these observations: The secondary CRs are produced via spallation of primaries

[AMS Collaboration 2021; http://www.srl.caltech.edu]

Benedikt Schroer (GSSI)

PhD Defense

GS

Grammage

- Secondary over primary ratios let you infer a grammage = traversed column density of CRs on their way to Earth
- energy dependent quantity

[DAMPE Collaboration 2022]

G

4

- Presence of radioactive nuclei can give hints about residence time of CRs in the Galaxy
- Production cross sections of Be isotopes are comparable, but $^{10}{\rm Be}$ has a half time of $\tau_d\sim 2\,{\rm Myrs}$
- $\bullet \Rightarrow {}^{10}\text{Be}/{}^{9}\text{Be}$ ratio depends on confinement time of CRs in the Galaxy

December 15, 2022

- Presence of radioactive nuclei can give hints about residence time of CRs in the Galaxy
- Production cross sections of Be isotopes are comparable, but $^{10}{\rm Be}$ has a half time of $\tau_d\sim 2\,{\rm Myrs}$
- \bullet \Rightarrow $^{10}\text{Be}/^{9}\text{Be}$ ratio depends on confinement time of CRs in the Galaxy
- Measurements show this ratio to be roughly \sim 0.1 at 100 MeV/n, suggesting a residence time much larger than τ_d [Connell 1998]
- On the other hand, CRs would accumulate the inferred grammage in the disc after $\sim X/(nmc) \approx 2$ Myrs $\sim \tau_D$
 - \Rightarrow CRs spend at least part of their life in low density environments

December 15, 2022

Standard Picture of CR Transport

GS

Standard Picture of CR Transport

What causes diffusion of charged particles?

G

Standard Picture of CR Transport

- \bullet What causes diffusion of charged particles? \rightarrow resonant scattering off magnetic perturbations
- Resonance condition: $k_{res} = 1/r_L$
- Diffusion coefficient

$$D = \frac{1}{3} \frac{v r_L}{P(k_{\rm res})} \propto \frac{1}{\delta B^2}$$

- Different types of turbulence, e.g., extrinsic turbulence from, e.g., SNR
- Self-generated turbulence: Particles moving in a background plasma can excite electromagnetic waves, that grow exponentially \rightarrow magnetic instabilities
- Instabilities are fundamental for CR physics, for the purpose of this talk we can divide the self-generated turbulence into two types:
 - Resonant streaming instability [Kulsrud & Pearce 1969]
 - Grows on resonant scales $k \sim r_l^{-1}$
 - Immediate impact on particle transport

- Non-resonant streaming instability [Bell 2004]
- Grows on scales much smaller than *r*_L
- Impacts transport after saturation and cascading to larger scales

- The biggest success of this transport model is how it combines many different observables into one coherent picture
- Secondary and primary nuclei fluxes, as well as fluxes of unstable nuclei are well reproduced
- Connects the inferred presence of turbulent magnetic fields [Rand & Kulkarni 1989] with diffusive behavior of the particles
- Radio emission from high Galactic latitudes can be interpreted as synchrotron emission of diffusing electrons [Orlando & Strong 2013]

December 15, 2022

- The biggest success of this transport model is how it combines many different observables into one coherent picture
- Secondary and primary nuclei fluxes, as well as fluxes of unstable nuclei are well reproduced
- Connects the inferred presence of turbulent magnetic fields [Rand & Kulkarni 1989] with diffusive behavior of the particles
- Radio emission from high Galactic latitudes can be interpreted as synchrotron emission of diffusing electrons [Orlando & Strong 2013]
- New findings can uncover additional effects leading to a more complete picture of transport

Possible Caveat

Benedikt Schroer (GSSI)

GS

Other Possible Caveats

[AMS Collaboration 2021; Pamela Collaboration 2013]

Benedikt Schroer (GSSI)

PhD Defense

December 15, 2022

• It is "natural" to extend the standard model in order to keep the existing agreement with available data

December 15, 2022

- It is "natural" to extend the standard model in order to keep the existing agreement with available data
- The slope of antiprotons and positrons motivated speculations about abandoning some of the underlying principles of the standard approach [Cowsik & Burch 2010; Lipari 2017]
- Idea: CRs accumulate most of their grammage close to the sources and an energy-independent grammage during transport
- However, these models need to be tested against all other observations that support the standard model

Phenomenological Approach to CR transport in the Galaxy

Benedikt Schroer (GSSI)

GS

н Ra 2h disc Halo $-\frac{\partial}{\partial z} \left[D_a \frac{\partial f_a}{\partial z} \right] + v_A \frac{\partial f_a}{\partial z} - \frac{dv_A}{dz} \frac{p}{3} \frac{\partial f_a}{\partial p}$ $+\frac{1}{p^2}\frac{\partial}{\partial p}\left|p^2\left(\frac{dp}{dt}\right)_{a,ion}f_a\right|+\frac{\mu v(p)\sigma_a}{m}\delta(z)f_a +\frac{f_a}{\hat{\tau}_{d,a}}$ $= 2h_d q_{0,a}(p)\delta(z) + \sum_{a'>a} \frac{\mu v(p)\sigma_{a'\to a}}{m}\delta(z)f_{a'} + \sum_{a'>a} \frac{f_{a'}}{\hat{\tau}_{d,a'}}$

G S

G S

G S

G S

- Same equation used by different groups with two different approaches: solving the equation numerically [Korsmeier & Cuoco 2021; Boschini et al. 2021; De La Torre Luque et al. 2022] or semianalytically [Evoli et al. 2019; Weinrich et al. 2020; Schroer et al. 2021, PRD]
- Big differences can arise from different cross-section models used
- Uncertainties in production cross sections of $\sim 20-30\,\%$ are often limiting factor to reach conclusions
- Focus has been on elements lighter than O but since the release of AMS-02 data of heavier nuclei, the whole nucleus chain was incorporated into the models [Boschini et al. 2021; Schroer et al. 2021, PRD; De La Torre Luque et al. 2022]
- Main difference in our analysis: All primaries are injected with the same slope
 γ, expected from zeroth order diffuse shock acceleration

G

Fit to light Ratios

[Schroer et al. 2021, PRD]

Benedikt Schroer (GSSI)

December 15, 2022

GS

Fit to light Ratios

GS

He and H Results

- H and He require a different slope than other nuclei and each other, confirms result of previous study [Evoli et al. 2019] and independently confirmed by [Weinrich et al. 2020]
- Puzzling result as even theories that explain different slope of H and He predict same slope of He and heavier nuclei [Malkov et al. 2012]
- Raises the question: Is there an observable trend of the acceleration slope with particle mass?

[Schroer et al. 2021, PRD]

Benedikt Schroer (GSSI)

GS

Our Results

- Requiring the same slope leads to reasonably good fits
- Possible tensions can be lifted with cross-section uncertainties (see Mg)

[Schroer et al. 2021, PRD]

Benedikt Schroer (GSSI)

Results

- Our model is compatible with all available data except AMS-02
- Additionally: AMS-02 data incompatible with HEAO3-C2 data in same energy range
- Fe data might require to incorporate a new or so far neglected effect into our model

[Schroer et al. 2021, PRD]

Benedikt Schroer (GSSI)

So far we tested different possible shortcomings of our model:
Iron suffers severe energy losses, maybe ionization or spallation are not properly accounted for.
- Iron suffers severe energy losses, maybe ionization or spallation are not properly accounted for. Ionization has to be 5 times higher or spallation 40% larger to obtain a somewhat better fit
- The spallation inside the halo could become important

December 15, 2022

- Iron suffers severe energy losses, maybe ionization or spallation are not properly accounted for. Ionization has to be 5 times higher or spallation 40% larger to obtain a somewhat better fit
- The spallation inside the halo could become important Effect of halogrammage stays of %-order for reasonable halo densities
- Maybe iron experiences slightly different solar modulation for some unknown reason.

- Iron suffers severe energy losses, maybe ionization or spallation are not properly accounted for. Ionization has to be 5 times higher or spallation 40% larger to obtain a somewhat better fit
- The spallation inside the halo could become important Effect of halogrammage stays of %-order for reasonable halo densities
- Maybe iron experiences slightly different solar modulation for some unknown reason. Iron would need a 70% stronger modulation potential without any theoretical motivation
- Iron could have another injection slope

- Iron suffers severe energy losses, maybe ionization or spallation are not properly accounted for. Ionization has to be 5 times higher or spallation 40% larger to obtain a somewhat better fit
- The spallation inside the halo could become important Effect of halogrammage stays of %-order for reasonable halo densities
- Maybe iron experiences slightly different solar modulation for some unknown reason. Iron would need a 70% stronger modulation potential without any theoretical motivation
- Iron could have another injection slope Does not give a satisfying fit either

G

- Bottom line: CR fluxes can be well explained by imposing a single injection slope for nuclei heavier than He compatible with the expectation of zeroth order diffusive shock acceleration
- Only exception: the Fe measurement, where additionally AMS-02 and HEAO3-C2 disagree with each other
- Limiting factor: cross sections, see Mg flux

December 15, 2022

- Bottom line: CR fluxes can be well explained by imposing a single injection slope for nuclei heavier than He compatible with the expectation of zeroth order diffusive shock acceleration
- Only exception: the Fe measurement, where additionally AMS-02 and HEAO3-C2 disagree with each other
- Limiting factor: cross sections, see Mg flux
- Everything is nicely explained assuming the grammage is accumulated during transport, but how solid is this picture?

Non-linear theory of CRs escaping a SNR

CR Acceleration at SNR

- In standard model: Most Galactic CRs (E < 1 PeV)are thought to originate from SNRs, so-called SNR paradigm
- $\bullet\,$ In order to accelerate CRs to $\sim {\rm PeV}$ energies at SNR shocks, strong magnetic turbulence and field amplification is required
- Main candidate to provide this field amplification: CRs generating the non-resonant streaming instability [Bell 2004]
- Requirement in all models in the literature: CRs of the highest energy escape during the Sedov-Taylor phase in order to excite this instability and trap lower energy particles [Bell et al. 2013; Caprioli et al. 2009; Reville et al. 2009]
- Escape Flux from the shock can be obtained as:

$$\phi(E > E_2) = \frac{\eta \rho u^3}{\ln(E_{max}/E_0)} E^{-1}$$

corresponding to the injection term in the previous model

G

Source in the ISM

- Once particles leave the source they diffuse on Galactic scales
- interstellar magnetic field is coherent on scales of 10-50pc [Ptuskin et al. 2008]
- mean free path $\lambda=rac{3D}{v}pprox 1\cdot E_{
 m GeV}^{1/2}\,
 m pc$ \Rightarrow ballistic escape initially

• \Rightarrow CR escape preferentially along magnetic field lines and are ballistic above a certain energy \Rightarrow 1D problem

(i

Source in the ISM

- Once particles leave the source they diffuse on Galactic scales
- interstellar magnetic field is coherent on scales of 10-50pc [Ptuskin et al. 2008]
- mean free path $\lambda=rac{3D}{v}pprox 1\cdot E_{
 m GeV}^{1/2}\,
 m pc$ \Rightarrow ballistic escape initially

- \Rightarrow CR escape preferentially along magnetic field lines and are ballistic above a certain energy \Rightarrow 1D problem
- Under the flux tube approximation analytical solutions [Ptuskin et al. 2008; Malkov et al. 2013] were derived for a CR cloud expanding in a tube and exciting the resonant streaming instability, corresponding to a faded accelerator

- Analytical and numerical solutions investigated the excitation of the **resonant streaming instability** [Malkov et al. 2013; D'Angelo et al. 2016; Nava et al.2016 & 2019; Recchia et al. 2022]
- Strong self-confinement in the circum-source region is found, becoming less effective towards higher energies
- As a result particles acquire a grammage in the circum-source region, while being trapped
- Estimates of this grammage range from it being negligible [Nava et al. 2019; Recchia et al. 2022] to being significant [D'Angelo et al. 2016]
- Strongly depends on relevant damping mechanisms

Non-resonant Streaming Instability

- Inject a flux of particles into a flux tube with the injected flux = flux escaping the shock
- Growth Condition: [Bell 2004]

$$\frac{\phi_{CR}(E>E_0)}{c}E_0\gg\frac{B_0^2}{4\pi}$$

G

46

Non-resonant Streaming Instability

- Inject a flux of particles into a flux tube with the injected flux = flux escaping the shock
- Growth Condition: [Bell 2004]

$$\frac{\phi_{CR}(E > E_0)}{c}E_0 \gg \frac{B_0^2}{4\pi}$$
• For typical, young SNR $\frac{4\pi\phi_{CR}E_0}{cB_0^2} \approx 100$ [Schroer et al. 2021, ApJL]
• very fast growing mode $\gamma_{max}^{-1} \approx 1.1(E/2.5TeV)$ yr, saturates after
 $\sim 5 - 10\gamma_{max}^{-1}$
• happens in very short time compared to typical age of SNR $\sim 10^{4..6}$ yr

G

- When particles start to diffusive, number density and pressure increase
- $\bullet \Rightarrow {\rm pressure \ in \ CR \ exceeds \ gas \ pressure \ } \rightarrow {\rm breaks \ 1D \ geometry \ because}$ overpressurized region will expand in transverse direction

BUBBLE SCENARIO

Simulation

- Hybrid particle in cell simulation with dHybridR [Haggerty & Caprioli 2019]
- Solve Maxwell equations and equations of motion for macroparticles
- Electromagnetic fields from the motion of the particles

Evolution in 2D

December 15, 2022

S G

Evolution in 3D

Implications

• What are the observational consequences?

[Schroer et al. 2022, MNRAS]

Benedikt Schroer (GSSI)

GS

Implications

- What are the observational consequences?
- Possible γ -ray morphology

[Schroer et al. 2022, MNRAS]

Benedikt Schroer (GSSI)

Implications

- What are the observational consequences?
- Possible γ -ray morphology

- Strong particle trapping influences the grammage accumulated by the particles
- Strongly dependent on achieved suppression of diffusion coefficient ξ and the gas density inside the bubble w.r.t. the ISM density η

$$\frac{X_{\textit{bubble}}}{X_{\textit{Galactic}}} \approx \frac{3 \times 10^{-1} \eta}{(\xi/10^{-2})} \left(\frac{L}{50 pc}\right)^2$$

• \Rightarrow With $\eta = 1$ this gives $\sim 10\%$, contributes an additional grammage component to the fits of CR nuclei, but not the major part

[Schroer et al. 2022, MNRAS]

Benedikt Schroer (GSSI)

PhD Defense

GS

46

Observation

- Hints for strongly reduced diffusion coefficient observed near SNRs [Fujita et al. 2009; Gabici et al. 2010]
- Difficult task to detect due to specific necessary conditions, like presence of nearby molecular clouds

[MAGIC Collaboration 2010; HESS Collaboration 2008]

Benedikt Schroer (GSSI)

PhD Defense

GS

- We have seen that large energy densities and strong gradients close to sources modify the source environment
 ⇒ We found a reduced diffusion coefficient and a cavity in the background gas
- Candidates for similar effects might be other sources, e.g., PWNe

December 15, 2022

TeV Halos

Observations and Motivation

 Hints for strongly reduced diffusion coefficients observed in extended region around at least three PWNe
 G S

[HAWC Collaboration 2017; LHAASO Collaboration 2021]

Benedikt Schroer (GSSI)

PhD Defense

December 15, 2022

Open Questions

Many open Questions:

- What is the origin of the suppressed diffusion? [Evoli et al. 2018; Mukhopadhyay & Linden 2021; Fang et al. 2019]
- How large is the suppressed diffusion region? [Di Mauro et al. 2019]
- How strong is the suppression?
- How common are these objects? [Giacinti et al. 2020; Sudoh et al. 2019, Martin et al. 2022]

December 15, 2022

Open Questions

Many open Questions:

- What is the origin of the suppressed diffusion? [Evoli et al. 2018; Mukhopadhyay & Linden 2021; Fang et al. 2019]
- How large is the suppressed diffusion region? [Di Mauro et al. 2019]
- How strong is the suppression?
- How common are these objects? [Giacinti et al. 2020; Sudoh et al. 2019, Martin et al. 2022]
- Viability of theories of their origin depends on size and amount of suppression, existing theories have problems explaining the commonly adopted size $\sim 50 \,\mathrm{pc}$ and suppression ~ 1000
- Results of population studies of PWNe explaining the e⁺ fraction might be influenced by the presence of halos
 - Without halos rather steep e[±] spectra with mean spectral indices $\gamma \sim 2.8$ are inferred [Evoli et al. 2021] while multiwavelength studies suggest ~ 2.5 [Bucciantini et al. 2011; Torres et al. 2014]
 - \Rightarrow effect of a common halo?

G

Model

- Goal: Investigate effect of halo around Geminga on the spectral index of the released particle spectrum and critically reasses the halos properties
- Use Green function approach to solve transport equation of pairs analytically:

$$\frac{\partial n(E,r,t)}{\partial t} = \frac{1}{r^2} \partial_r (r^2 D(E,r) \partial_r n(E,r,t)) + \partial_E (b(E)n(E,r,t)) + Q(E,r,t)$$

- With two different diffusion coefficients, inside and outside of halo
- Boundary conditions: $n_{in}(r_0) = n_{out}(r_0)$ and $D_{in}\partial_r n_{in}|_{r=r_0} = D_{out}\partial_r n_{out}|_{r=r_0}$

Model

- Goal: Investigate effect of halo around Geminga on the spectral index of the released particle spectrum and critically reasses the halos properties
- Use Green function approach to solve transport equation of pairs analytically:

$$\frac{\partial n(E,r,t)}{\partial t} = \frac{1}{r^2} \partial_r (r^2 D(E,r) \partial_r n(E,r,t)) + \partial_E (b(E) n(E,r,t)) + Q(E,r,t)$$

- With two different diffusion coefficients, inside and outside of halo
- Boundary conditions: $n_{in}(r_0) = n_{out}(r_0)$ and $D_{in}\partial_r n_{in}|_{r=r_0} = D_{out}\partial_r n_{out}|_{r=r_0}$
- In the literature so far an incorrect two-zone model was used
 ⇒ Difference becomes important for small halo size / large loss lengths or positron flux calculations [Osipov et al. 2020]

Injection

 Spectra of e[±] released by bow shock PWNe are well fit by broken power laws [Bykov et al. 2017; Bucciantini et al. 2010]

$$Q(E,t) = Q_0(t) e^{-rac{E}{E_c(t)}} \left\{ egin{array}{c} \left(rac{E}{E_b}
ight)^{-\gamma_L}, E < E_b \ \left(rac{E}{E_b}
ight)^{-\gamma_H}, E_b < E \end{array}
ight.$$

- Typically: $\gamma_L \sim 1 1.9$ and $\gamma_H \sim 2.5$, $E_b \sim 300 1000$ GeV and potential drop $E_c \approx 300$ TeV for Geminga today
- Normalization related to spin-down luminosity

$$\epsilon L(t) = \epsilon L_0 \frac{(1 + t_{age}/\tau_0)^{\frac{n+1}{n-1}}}{(1 + t/\tau_0)^{\frac{n+1}{n-1}}} := \int \mathrm{d}E \ Q(E, t)$$

- Here we fix $E_b = 1$ TeV for Geminga and $\gamma_L = 1.5$ because they are degenerate with the injection efficiency and vary only γ_H
- $\bullet\,$ Conversion efficiency of viable solutions is required to be $<100\,\%$

S

G

Halo Size

• $D_{ISM} \approx 4 \cdot 10^{30} \,\mathrm{cm}^2/\mathrm{s}$

Benedikt Schroer (GSSI)

December 15, 2022

GS

Different Magnetic Fields

Total Flux

• Total flux gives way to disentangle equivalent spatial morphologies

 Low magnetic field seems preferred supporting results of X-ray study [Liu @t S al. 2019]

Benedikt Schroer (GSSI)

Protons

 Some models speculate that iron nuclei are stripped off the pulsar surface and are photodisintegrated into protons
 ⇒ monoenergetic injection of protons at the pulsar [Venkatesan et al. 1997;

Blasi et al. 2000; Amato & Arons 2006]:

$$Q_{\rho}(E_{\rho},t) = \eta_{\rho}\dot{N}_{GJ}(t)\delta(E_{\rho}-E_{c}(t)),$$

- This leads to typically very hard spectra $\propto E^{-(n-1)/2}$ which gives E^{-1} for n=3
- For the first time we consider that these protons can produce TeV γ -rays that might influence the inferred spectral index of electrons from observations
- Expected γ -rays dependent on gas density, here assumed as $1\,{\rm cm}^{-3}$

Protons

Proton component might be important for large halos or small diffusion G coefficients

Benedikt Schroer (GSSI)

S

Escape Flux

• Escape flux defined as: $\int_0^{t_{age}} \mathrm{d}t D \partial_r f|_{z=r_0}$

- With a low magnetic field the spectrum is steepened w.r.t. the injected one
- We obtain an effective cutoff after propagation that can be relevant for the S positron fraction
Positron Flux

- Steeper spectra ightarrow higher contribution to local flux
- Data at higher energies will allow constrain on minimum halo size around Geminga
- New corrected model important

Benedikt Schroer (GSSI)

PhD Defense

S

42 / 46

Conclusions and Outlook

Conclusions

• CR composition:

- able to reproduce flux of all elements with same injection spectrum except H and He which require a different slope
- Able to reproduce new data without refitting
- There seems to be an issue with Fe, that we still have to understand
- Currently no need for model modifications such as an additional source grammage or an extended disc model, but they could prove useful for future measurements

Future plans:

- Study the impact of low diffusivity zones on the standard model
 ⇒ model CR fluxes with an extended disc model
- Include antiprotons in our transport model

G

Conclusions

• New insights about the escape of CRs from their sources:

- Current of escaping particles generates a non-resonant instability which slows down their escape
- Leads to the formation of CR bubbles around sources with reduced diffusivity
- Important implications:
 - Enhanced γ -ray emission from circumsource region
 - Accumulated grammage of trapped CRs might be significant for secondary-to-primary ratios but does not represent the major grammage component
 - \Rightarrow Supporting the standard model

Future plans:

• Extend our work on SNR escape using MHD+PIC codes to achieve larger length and time scales

G

• new insights about the Geminga TeV halo:

- Geminga halo has to be at least 20 pc large
- Diffusion coefficient is uncertain by a factor of \sim 10 but still requires suppression of \sim 100
- Taking into account the total flux, small magnetic field with intermediately steep spectra $\gamma_e \sim 2-2.3$ are able to explain observations
- Contribution of protons most likely negligible, except for very large halos and/or small diffusion coefficients (small B)
- Presence of halo steepens released spectra, a possible explanation for the inferred steep slope of the population study in [Evoli et al. 2021]

Future plans:

 Investigate the origin of TeV halos: low diffusivity + small magnetic field seem similar to SNR bubble

- "Tracing the origin of low diffusivity and CR bubbles around sources", Schroer et al. 2021, PoS(ICRC2021)
- "Dynamical Effects of Cosmic Rays on the Medium Surrounding Their Sources", Schroer et al. 2021, ApJL, 914, L13
- "Intermediate-mass and heavy Galactic cosmic-ray nuclei: The case of new AMS-02 measurements", Schroer et al. 2021, PRD, 103, 123010
- "Cosmic-ray generated bubbles around their sources", Schroer et al. 2022, MNRAS, 512, 1
- In preparation, Schroer et al. 2023

Appendix

CR nuclei

Our Model

One can rewrite as equation in terms of grammage and flux $I_a(E) = 4\pi A p^2 f_a(p)$:

$$\frac{I_{a}(E)}{X_{a}(E)} + \frac{\mathrm{d}}{\mathrm{d}E} \left(\left[\left(\frac{\mathrm{d}E}{\mathrm{d}x} \right)_{ad} + \left(\frac{\mathrm{d}E}{\mathrm{d}x} \right)_{ion,a} \right] I_{a}(E) \right) + \frac{I_{a}(E)}{X_{\mathrm{cr,a}}} = 2h \frac{A_{a}p^{2}q_{a}(p)}{\mu v} + \sum_{a' > a} \frac{I_{a'}(E)}{m} \sigma_{a' \to a}$$

- where we introduced the critical grammage $X_{cr,a} := \frac{m}{\sigma_a}$ and the grammage traversed by nuclei a $X_a(E) := \frac{\mu v}{2v_A} \left(1 e^{-\frac{v_A H}{D}}\right)$
- Without energy losses $I_a(E) \propto E^{-\gamma+2}$ for $X_a(E) \gg X_{cr,a}$ and $I_a(E) \propto E^{-\gamma+2-\delta}$ for $X_a(E) \ll X_{cr,a}$
- ullet \Rightarrow Secondary over primary ratios flat at low E and \propto $E^{-\delta}$ at high E
- Solutions only sensitive to ratio $\frac{H}{D}$

Fitting Parameters

 Spatial transport, including diffusion and advection, comprises 7 free-parameters: D₀, δ, v_A, H, R_b, Δδ, s:

$$D(R) = 2v_A H + \beta D_0 rac{(R/\mathrm{GV})^{\delta}}{[1+(R/R_b)^{\Delta\delta/s}]^s},$$

motivated by [Recchia et al. 2016]

- The injection efficiencies $\epsilon_{\rm a}$ of the species H, He, C, N, O, Ne, Mg, Si, S and Fe
- Injection slope γ , assumed to be the same for all of them without any break
- Solar modulation potential ϕ
- Total of 19 parameters
- Restrict ourselves to $R > 10 \,\text{GV}$ to reduce the impact of low-energy effects

G

Some isotopes are short-lived on Myr time scales and never leave the Galactic disc

 \Rightarrow these isotopes are not propagated but taken into account as instantaneous decay

- \Rightarrow ghost nuclei
- Example ²²Na with life time $\tau_d = 4.8$ kyr:

$$\sigma_{X \to 2^2 N e}^{\mathcal{C}} = \sigma_{X \to 2^2 N e} + \sigma_{X \to 2^2 N a} \mathcal{B}(^{22} N a \to ^{22} N e)$$
⁽²⁾

 In general, τ_d ≪ τ_{res} is an energy dependent statement ⇒ Assumption might break at high energies for certain nuclei

G

Thick Disc Model

Benedikt Schroer (GSSI)

Thick Disc Model

- Some short-lived nuclei like ²²Na are treated as ghost nuclei (instantaneously decaying inside the disc), but might leave the disc at high rigidities
- I developed an extended-disc model to properly capture this effect

Thick Disc Model

- Some short-lived nuclei like ²²Na are treated as ghost nuclei (instantaneously decaying inside the disc), but might leave the disc at high rigidities
- I developed an extended-disc model to properly capture this effect
- Current data only marginally sensitive to this effect

Predictions

Benedikt Schroer (GSSI)

CALET Fe Measurement

- CALET measurement shows different normalization than AMS-02, but confirms slope
- However does not cover the part of the spectrum where we see the large deviations from our model and other experiments

[CALET Collaboration 2021]

Benedikt Schroer (GSSI)

Fit to the Ratios

SNR Escape

Benedikt Schroer (GSSI)

PhD Defense

December 15, 2022

[Schroer et al. 2021, MNRAS]

Benedikt Schroer (GSSI)

PhD Defense

[Schroer et al. 2021, MNRAS]

Benedikt Schroer (GSSI)

[Schroer et al. 2021, MNRAS]

Benedikt Schroer (GSSI)

PhD Defense

[Schroer et al. 2021, MNRAS]

Benedikt Schroer (GSSI)

PhD Defense

dHybridR

$$\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \nabla f_s + \frac{q_s}{m_s} (\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}} f_s = 0$$
$$\frac{\partial \mathbf{B}}{\partial t} = -c\nabla \times \mathbf{E}$$
$$\frac{\partial \mathbf{E}}{\partial t} = c\nabla \times \mathbf{B} - 4\pi \mathbf{J}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \cdot \mathbf{E} = \sum_s q_s n_s$$

The electron number density is fixed to the ion number density $n_e = n_i$ to ensure quasi neutrality of the system resulting in $\nabla \cdot E = 0$ and $J = en_i(V_i - V_e)$

Macro particles are propagated according to:

1

$$m_i rac{\mathrm{d}\gamma\mathsf{v}}{\mathrm{d}t} = q\mathsf{E} + rac{q}{c}\mathsf{v} imes\mathsf{B}$$

The electric field is obtained via

$$\mathsf{E} = -\frac{\mathsf{V}_e}{c} \times \mathsf{B} - \frac{1}{en} \nabla P_e = -\frac{\mathsf{V}_i}{c} \times \mathsf{B} + \frac{\mathsf{J}}{enc} \times \mathsf{B} - \frac{1}{en} \nabla P_e$$

assuming: $v_A \ll c$, $n_{CR} \ll n_i$ and $V_{bkg} \ll c$.

GS

/ 26

• $c/v_A = 20$

- $5000 \times 7000 d_i^2$, with 7500×10500 cells ($1200 \times 1200 \times 1200 d_i^3$, with $1440 \times 1440 \times 1440$ cells in 3D)
- gas: $N_{ppc} = 4$, CRs: $N_{ppc} = 16$, $n_{CR} = 0.0133$ (0.01 in 3D), $p_{CR} = 100 \ mv_A$, $r_{g,i} = d_i$, i.e. $\beta_i = 2v_{th,i}^2/v_A^2 = 2$
- Reproduce the ratio of energy densities of CR particles and thermal energy $\sim (n_{\rm CR}/n_0)(c/v_A)^2\gamma \sim 26$
- Bell condition fulfilled by: $\sigma = \frac{n_{CR}}{n_i} \frac{p_{min}v_d}{m_i v_a^2} \approx 5$, in 3D $\sigma \approx 20$
- Growth rate $\gamma_{max} = \frac{n_{CR}}{2n_i} \frac{v_d}{v_A} \approx \frac{1}{40} \left(\frac{1}{10} \text{ for 3D}\right)$

SNR estimate

• $L_{CR} = \frac{\epsilon E_{SN}}{T_c}$ • Used quantities: $E_{SN} = 10^{51}$ erg, $T_S = 300$ years, $R_S = 3$ pc, $\epsilon = 0.1$, $B_0 = 3 \mu G$, $E_{max} = 1 \text{ PeV}$, $E_{min} = 1 \text{ GeV}$ $\phi_{CR}(E > E_0) = \frac{L_{CR}}{2\pi R_c^2 \Lambda E_0}$ • For typical, young SNR $\frac{4\pi\phi_{CR}E_0}{cB_0^2}\approx 100$

Gi

• The differential particle flux in energy that escapes is

$$Q_{esc}(E, t) = Q_s(E, t)E\delta(E - E_{max}(t))$$
 with $Q_s(E, t)$ the flux injected and
accelerated at the shock
• $\eta L(t) = \frac{1}{2}\eta\rho u^3 = \int_{E_0}^{E_{max}} dEEQ_s(E, t)$
• $\phi(E > E_2) = \int_{E_2} dE'Q_{esc}(E') = Q_0(t_E)E^{1-\alpha}\Theta(E - E_2)$
 $\phi_{CR}(E' > E) = \frac{\eta\rho u^3}{\Lambda}E^{-1} = \frac{\eta E_{SN}u}{\pi R^3\Lambda}E^{-1} = \frac{2\eta E_{SN}}{5\pi R^2 T_{ST}\Lambda}E^{-1}$
with $\rho u^2\pi R^3 = E_{SN}$ and $R/u = \frac{5}{2}T_{SN}$

Solution

18 / 26

Two Zone Model

$$\begin{split} H(r,E,t) &= \int_0^\infty \mathrm{d}\psi \frac{\xi e^{-\psi}}{\pi^2 \lambda_0^2 (A^2(\psi) + B^2(\psi))} \\ & \begin{cases} \frac{\sin(2\sqrt{\psi} \frac{r}{\lambda_0})}{r} & , 0 < r < r_0 \\ A(\psi) \frac{\sin(2\sqrt{\psi} \frac{r\xi}{\lambda_0})}{r} + B(\psi) \frac{\cos(2\sqrt{\psi} \frac{r\xi}{\lambda_0})}{r} & , r \ge r_0, \end{cases} \end{split}$$

with

$$\begin{aligned} \mathcal{A}(\psi) &= \xi \cos(2\sqrt{\psi} \frac{r_0}{\lambda_0}) \cos(2\xi \sqrt{\psi} \frac{r_0}{\lambda_0}) \\ &+ \sin(2\sqrt{\psi} \frac{r_0}{\lambda_0}) \sin(2\xi \sqrt{\psi} \frac{r_0}{\lambda_0}) \\ &+ \frac{\lambda_0}{2\sqrt{\psi}r_0} (\frac{1-\xi^2}{\xi} \sin(2\sqrt{\psi} \frac{r_0}{\lambda_0}) \cos(2\xi \sqrt{\psi} \frac{r_0}{\lambda_0}) \end{aligned}$$

and

$$B(\psi) = \frac{\sin(2\sqrt{\psi}\frac{r_0}{\lambda_0}) - A(\psi)\sin(2\xi\sqrt{\psi}\frac{r_0}{\lambda_0})}{\cos(2\xi\sqrt{\psi}\frac{r_0}{\lambda_0})}$$

Benedikt Schroer (GSSI)

GS

19 / 26

GeV halo

G S S I 20 / 26

December 15, 2022

Different Injection Slope

Benedikt Schroer (GSSI)

GS

21 / 26

Different Injection Slope

Different ISRF

Wrong Two Zone Model

GS

24 / 26
Positron Flux

Benedikt Schroer (GSSI)

December 15, 2022

GS

25 / 26

Emission

$$\phi_{\gamma}(E_{\gamma}) = \frac{1}{4\pi d^2} \int_0^{E_{max}} \mathrm{d}E_e \frac{dN_e}{dE_e}(E_e) \frac{dN_{\gamma}}{hd\nu dt}(E_e)$$

$$\Phi_{\gamma}(E) = 2\pi \int_{-d}^{\infty} \mathrm{d}I \int_{0}^{r_{\max}} \mathrm{d}rr\phi_{\gamma}(E_{\gamma}, r, l)$$

GS