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@ Introduction

© Phenomenological Approach to CR transport in the Galaxy
© Non-linear theory of CRs escaping a SNR

©Q TeV Halos

© Conclusions and Outlook
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@ The overabundant elements show steeper spectra than the other nuclei

o Interpretation of these observations: The secondary CRs are produced via

spallation of primaries

[AMS Collaboration 2021; http://www.srl.caltech.edu]
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o Secondary over primary ratios let you infer a grammage = traversed column

density of CRs on their way to Earth

@ energy dependent quantity

[DAMPE Collaboration 2022]
Benedikt Schroer (GSSI)
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o Presence of radioactive nuclei can give hints about residence time of CRs in

the Galaxy

@ Production cross sections of Be isotopes are comparable, but 1°Be has a half
time of 74 ~ 2 Myrs

o = !0Be/°Be ratio depends on confinement time of CRs in the Galaxy
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o Presence of radioactive nuclei can give hints about residence time of CRs in
the Galaxy

o Production cross sections of Be isotopes are comparable, but 1°Be has a half
time of 74 ~ 2 Myrs

o = 19Be/?Be ratio depends on confinement time of CRs in the Galaxy

o Measurements show this ratio to be roughly ~ 0.1 at 100 MeV/n, suggesting
a residence time much larger than 74 [Connell 1998]

@ On the other hand, CRs would accumulate the inferred grammage in the disc
after ~ X/(nmc) = 2 Myrs~ p
= CRs spend at least part of their life in low density environments
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. Injection at the sources
Diffusion Spallation losses

Production via Spallation

@ What causes diffusion of charged particles?

G S
I

Benedikt Schroer (GSSI) December 15, 2022 6 / 46



d [D %] +uV(’5)0a5(z)é: 2hyd0.4(p)5(2) +Z%5(z)fa,

—a_ a
0z 0z =
| L — L.
—_— Injection at the sources
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Production via Spallation

o What causes diffusion of charged particles? — resonant scattering off
magnetic perturbations

o Resonance condition: ks =1/r

o Diffusion coefficient

X —= GS
|
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o Different types of turbulence, e.g., extrinsic turbulence from, e.g., SNR

o Self-generated turbulence: Particles moving in a background plasma can
excite electromagnetic waves, that grow exponentially — magnetic
instabilities

o Instabilities are fundamental for CR physics, for the purpose of this talk we
can divide the self-generated turbulence into two types:

o Non-resonant streaming
instability [Bell 2004]

o Grows on scales much smaller
than r,

o Resonant streaming instability
[Kulsrud & Pearce 1969]
o Grows on resonant scales

k~r 1
C . o Impacts transport after
o Immediate impact on particle . .
saturation and cascading to
transport

larger scales
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o The biggest success of this transport model is how it combines many different
observables into one coherent picture

o Secondary and primary nuclei fluxes, as well as fluxes of unstable nuclei are
well reproduced

o Connects the inferred presence of turbulent magnetic fields [Rand & Kulkarni
1989] with diffusive behavior of the particles

o Radio emission from high Galactic latitudes can be interpreted as synchrotron
emission of diffusing electrons [Orlando & Strong 2013]
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o The biggest success of this transport model is how it combines many different
observables into one coherent picture

o Secondary and primary nuclei fluxes, as well as fluxes of unstable nuclei are
well reproduced

o Connects the inferred presence of turbulent magnetic fields [Rand & Kulkarni
1989] with diffusive behavior of the particles

o Radio emission from high Galactic latitudes can be interpreted as synchrotron
emission of diffusing electrons [Orlando & Strong 2013]

o New findings can uncover additional effects leading to a more complete
picture of transport
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[AMS Collaboration 2021]
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o It is "natural" to extend the standard model in order to keep the existing
agreement with available data
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o It is "natural" to extend the standard model in order to keep the existing
agreement with available data

@ The slope of antiprotons and positrons motivated speculations about
abandoning some of the underlying principles of the standard approach
[Cowsik & Burch 2010; Lipari 2017]

o ldea: CRs accumulate most of their grammage close to the sources and an
energy-independent grammage during transport

o However, these models need to be tested against all other observations that
support the standard model
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o Same equation used by different groups with two different approaches:
solving the equation numerically [Korsmeier & Cuoco 2021; Boschini et al.
2021; De La Torre Luque et al. 2022] or semianalytically [Evoli et al. 2019;
Weinrich et al. 2020; Schroer et al. 2021, PRD]

o Big differences can arise from different cross-section models used

o Uncertainties in production cross sections of ~ 20 — 30 % are often limiting
factor to reach conclusions

o Focus has been on elements lighter than O but since the release of AMS-02
data of heavier nuclei, the whole nucleus chain was incorporated into the
models [Boschini et al. 2021; Schroer et al. 2021, PRD; De La Torre Luque
et al. 2022]

@ Main difference in our analysis: All primaries are injected with the same slope
v, expected from zeroth order diffuse shock acceleration
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[Schroer et al. 2021, PRD]
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o H and He require a different

slope than other nuclei and
each other, confirms result of
previous study [Evoli et al.
2019] and independently
confirmed by [Weinrich et al.
2020]

Puzzling result as even theories
that explain different slope of H
and He predict same slope of
He and heavier nuclei [Malkov
et al. 2012]

Raises the question: Is there an
observable trend of the

acceleration slope with particle

mass? GS
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10°

o Our model is
compatible with all
available data
except AMS-02

o Additionally:
AMS-02 data
incompatible with
HEAQ3-C2 data in
same energy range

o Fe data might
require to
incorporate a new
or so far neglected
effect into our
model

G S
I

December 15, 2022 17 / 46



So far we tested different possible shortcomings of our model:

o lIron suffers severe energy losses, maybe ionization or spallation are not
properly accounted for.
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So far we tested different possible shortcomings of our model:

be 5 times higher or spallation 40%

properhy-accountedfor- lonization has to
larger to obtain a somewhat better fit
o The spallation inside the halo could become important

G S
I

December 15, 2022 18 / 46

Benedikt Schroer (GSSI)



So far we tested different possible shortcomings of our model:

properly-aceceunted-for: lonization has to
larger to obtain a somewhat better fit

o Fhe-spallation—inside-the-halo-could-becomeimpeortant Effect of
halogrammage stays of %-order for reasonable halo densities

o Maybe iron experiences slightly different solar modulation for some unknown
reason.

es higher or spallation 40%

be 5 tim
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So far we tested different possible shortcomings of our model:

properly-aceceunted-for: lonization has to
larger to obtain a somewhat better fit

o Fhe-spallation—inside-the-halo-could-becomeimpeortant Effect of

halogrammage stays of %-order for reasonable halo densities

be 5 times higher or spallation 40%

o Mavbe oR—experence oh d o N o rodwlation—fo

reason- lron would need a 70% stronger modulation potential without any
theoretical motivation

@ Iron could have another injection slope
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So far we tested different possible shortcomings of our model:

pmpe#y—aeeetm%ed—fe& Ionlzatlon has to be 5 times h|gher or spallatlon 40%
larger to obtain a somewhat better fit

Fhe-spallation-insidethe-halo-could-becomeimportant Effect of

halogrammage stays of %-order for reasonable halo densities

reasen- Iron would need a 70% stronger modulation potential without any
theoretical motivation

Hon—could-have-anetherinjection—slope Does not give a satisfying fit either
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o Bottom line: CR fluxes can be well explained by imposing a single injection
slope for nuclei heavier than He compatible with the expectation of zeroth
order diffusive shock acceleration

o Only exception: the Fe measurement, where additionally AMS-02 and
HEAO3-C2 disagree with each other

o Limiting factor: cross sections, see Mg flux
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o Bottom line: CR fluxes can be well explained by imposing a single injection
slope for nuclei heavier than He compatible with the expectation of zeroth
order diffusive shock acceleration

o Only exception: the Fe measurement, where additionally AMS-02 and
HEAO3-C2 disagree with each other

o Limiting factor: cross sections, see Mg flux

o Everything is nicely explained assuming the grammage is accumulated during
transport, but how solid is this picture?
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o In standard model: Most Galactic CRs (E < 1PeV)are thought to originate
from SNRs, so-called SNR paradigm

o In order to accelerate CRs to ~ PeV energies at SNR shocks, strong magnetic
turbulence and field amplification is required

o Main candidate to provide this field amplification: CRs generating the
non-resonant streaming instability [Bell 2004]

o Requirement in all models in the literature: CRs of the highest energy escape
during the Sedov-Taylor phase in order to excite this instability and trap lower
energy particles [Bell et al. 2013; Caprioli et al. 2009; Reville et al. 2009]

o Escape Flux from the shock can be obtained as:

_ npd? 1
H(E > E) = —In(Emax/Eo)E

corresponding to the injection term in the previous model
G S
|
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o Once particles leave the source they diffuse on Galactic scales

o interstellar magnetic field is coherent on scales of 10-50pc [Ptuskin et al.
2008]

1/2 - -

@ mean free path \ = % ~1- Ec.év pc = ballistic escape initially
Early FLux TuBE SCENARIO Late
Time Time

s
/‘—\’

ZEe—= Z ==

/’\v /’\v

Coherence Length Galactic 3

o = CR escape preferentially along magnetic field lines and are ballistic above
a certain energy = 1D problem
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o Once particles leave the source they diffuse on Galactic scales

o interstellar magnetic field is coherent on scales of 10-50pc [Ptuskin et al.
2008]

@ mean free path \ = % ~1- Eéés pc = ballistic escape initially

Early FLUx TuBE SCENARIO Late
Time Time

s
/’\

ZEe—= Z ==

/’\v /’\v

Coherence Length Galactic 3

o = CR escape preferentially along magnetic field lines and are ballistic above
a certain energy = 1D problem

o Under the flux tube approximation analytical solutions [Ptuskin et al. 2008;
Malkov et al. 2013] were derived for a CR cloud expanding in a tube and
exciting the resonant streaming instability, corresponding to a faded
accelerator
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o Analytical and numerical solutions investigated the excitation of the
resonant streaming instability [Malkov et al. 2013; D'Angelo et al. 2016;
Nava et al.2016 & 2019; Recchia et al. 2022]

o Strong self-confinement in the circum-source region is found, becoming less
effective towards higher energies

o As a result particles acquire a grammage in the circum-source region, while
being trapped

o Estimates of this grammage range from it being negligible [Nava et al. 2019;
Recchia et al. 2022] to being significant [D’Angelo et al. 2016]

o Strongly depends on relevant damping mechanisms
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o Inject a flux of particles into a flux tube with the injected flux = flux escaping
the shock

o Growth Condition: [Bell 2004]

E0>>—0

QSCR(E > Eo) B2
c 4
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o Inject a flux of particles into a flux tube with the injected flux = flux escaping
the shock

o Growth Condition: [Bell 2004]

Eo >

ocr(E > Eo) Bs
c 4m

ArpcrEo

R 100 | [Schroer et al. 2021, ApJL]
0

o For typical, young SNR

o very fast growing mode 7,1, ~ 1.1(E/2.5TeV) yr, saturates after
~5— 107max
o happens in very short time compared to typical age of SNR ~ 10*¢yr
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o When particles start to diffusive, number density and pressure increase

o = pressure in CR exceeds gas pressure — breaks 1D geometry because

overpressurized region will expand in transverse direction
BUBBLE SCENARIO

P
Coherence Length Galactic 8
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o Hybrid particle in
cell simulation with Simulation Box
dHybridR
[Haggerty & >
Caprioli 2019] B

o Solve Maxwell
equations and -
equations of motion
for macroparticles

\

o Electromagnetic
fields from the
motion of the
particles

\J
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[Schroer et al. 2021, ApJL]
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[Schroer et al. PoS(ICRC2021)]
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o What are the observational consequences?

G S
[Schroer et al. 2022, MNRAS] |
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yld;

o What are the observational consequences?

o Possible v—ray morphology

Ncr* Ngas/ NG nes - B2/(noB3)
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[Schroer et al. 2022, MNRAS]
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o What are the observational consequences?

o Possible v—ray morphology

Ncr* Ngas/ NG nes - B2/(noB3)
0.0000 0.0015 0.0030 0.0000 0.0015 0.0030

o o Strong particle trapping influences the
- grammage accumulated by the particles

oo /‘} o Strongly dependent on achieved

RN < suppression of diffusion coefficient £ and
0 the gas density inside the bubble w.r.t.
o the ISM density n

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
x/d; xld;

Xbubble - 3 X 10_17’] ( L )2
XGalactic (6/1072) 50pc

o = With n = 1 this gives ~ 10%, contributes an additional grammage
component to the fits of CR nuclei, but not the major part G S

[Schroer et al. 2022, MNRAS] |
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Observation

H.E.S.S.
>250 GeV
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o Hints for strongly reduced diffusion coefficient observed near SNRs [Fujita et
al. 2009; Gabici et al. 2010]

o Difficult task to detect due to specific necessary conditions, like presence of
nearby molecular clouds

G S
[MAGIC Collaboration 2010; HESS Collaboration 2008] |
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o We have seen that large energy densities and strong gradients close to
sources modify the source environment
= We found a reduced diffusion coefficient and a cavity in the background
gas

o Candidates for similar effects might be other sources, e.g., PWNe

G S
I

Benedikt Schroer (GSSI) December 15, 2022 31 / 46






23

Geminga

18 @

PSR B0656+14

Dec. [deg]

13

109 104
R.A. [deg]

-4 -3 -2 -1 0 1 2 3 4 5
Significance [sigmas]

o Hints for strongly reduced diffusion
around at least three PWNe

[HAWC Collaboration 2017; LHAASO Collaboration 2021]
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@ Many open Questions:
o What is the origin of the suppressed diffusion? [Evoli et al. 2018;
Mukhopadhyay & Linden 2021; Fang et al. 2019]
o How large is the suppressed diffusion region? [Di Mauro et al. 2019]
o How strong is the suppression?

o How common are these objects? [Giacinti et al. 2020; Sudoh et al. 2019,
Martin et al. 2022 ]
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@ Many open Questions:
o What is the origin of the suppressed diffusion? [Evoli et al. 2018;
Mukhopadhyay & Linden 2021; Fang et al. 2019]
o How large is the suppressed diffusion region? [Di Mauro et al. 2019]
o How strong is the suppression?
o How common are these objects? [Giacinti et al. 2020; Sudoh et al. 2019,
Martin et al. 2022 ]

o Viability of theories of their origin depends on size and amount of
suppression, existing theories have problems explaining the commonly
adopted size ~ 50 pc and suppression ~ 1000

o Results of population studies of PWNe explaining the et fraction might be
influenced by the presence of halos

o Without halos rather steep et spectra with mean spectral indices v ~ 2.8 are
inferred [Evoli et al. 2021] while multiwavelength studies suggest ~ 2.5
[Bucciantini et al. 2011; Torres et al. 2014]
= effect of a common halo?
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o Goal: Investigate effect of halo around Geminga on the spectral index of the
released particle spectrum and critically reasses the halos properties

o Use Green function approach to solve transport equation of pairs analytically:

w _ rlza,(ﬁD(E, N, n(E, r,t))
+ Oe (b(E)n(E, r.1)) + Q(E. . 1)

o With two different diffusion coefficients, inside and outside of halo

o Boundary conditions: nis(r0) = nout(ro) and Dind;rninlr=r, = DoutOrNout|r=r
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o Goal: Investigate effect of halo around Geminga on the spectral index of the
released particle spectrum and critically reasses the halos properties

o Use Green function approach to solve transport equation of pairs analytically:

OnE.rt) _ 1y (2D(E. Non(E, . 1)

ot r2
+ O (b(E)n(E, r,t)) + Q(E,r,t)

o With two different diffusion coefficients, inside and outside of halo
o Boundary conditions: nj,(ro) = nout(ro) and DinOrninlr=r, = DoutOr Nout|r=ro

@ In the literature so far an incorrect two-zone model was used
= Difference becomes important for small halo size / large loss lengths or
positron flux calculations [Osipov et al. 2020]

G S
I

Benedikt Schroer (GSSI) December 15, 2022 34 / 46



o Spectra of e* released by bow shock PWNe are well fit by broken power laws
[Bykov et al. 2017; Bucciantini et al. 2010]

e\ ¢t

(£) " E<B
E —H

(£) ".E<E

o Typically: vy ~1—1.9 and vy ~ 2.5, E, ~ 300 — 1000 GeV and potential
drop E. =~ 300 TeV for Geminga today

o Normalization related to spin-down luminosity

Q(E, t) = Qo(t)e &0

( + tage/TO

el
(t) (1—|- t/To)"—

/dEQEt)

o Here we fix E, = 1 TeV for Geminga and v, = 1.5 because they are
degenerate with the injection efficiency and vary only vy
o Conversion efficiency of viable solutions is required to be < 100 % G S
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o Spatial profile can be reproduced by an escape-dominated scenario

o Disy ~4-10%°cm?/s

Benedikt Schroer (GSSI)

December 15, 2022

G S
I

36 / 46



le—13
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o Loss-dominated scenario: Spatial profile depends only on loss length G S
for large enough halos = degenerate B and Dy |
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o Total flux gives way to disentangle equivalent spatial morphologies
o Low magnetic field seems preferred supporting results of X-ray study [Liu@tS
al. 2019] |
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@ Some models speculate that iron nuclei are stripped off the pulsar surface and
are photodisintegrated into protons
= monoenergetic injection of protons at the pulsar [Venkatesan et al. 1997;
Blasi et al. 2000; Amato & Arons 2006]:

Qp(Ep, t) = 77p’vGJ(t)5(Ep — E(t)),
o This leads to typically very hard spectra oc E~("=1)/2 which gives E~! for
n=3

o For the first time we consider that these protons can produce TeV ~-rays that
might influence the inferred spectral index of electrons from observations

o Expected ~-rays dependent on gas density, here assumed as 1cm—3
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—— IC emission
—— Including hadronic component n=2
_ —— Including hadronic component n=3
'T'm —— Including hadronic component n=2, ro =100 pc
o~
|
IS
(S
3 107
2
>
<
K
w
1070 .
103 104 10%

E [GeV]

o Proton component might be important for large halos or small diffusion G S

coefficients |
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S
~
W
I Injected Particles
10% 4 —— ro=50pc, B=3UG, Do =3.2-1027<2
—— rp=100pc, B=3uG, Do=3.2-1027<2
—— ro=50pc, B=6G, Do=9.6-102<"
—— ro=50pc, B=14G, Do = 1.6 107"
1047 T . — — .
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. . tage
o Escape flux defined as: [ dtDO,f|,—p,

o With a low magnetic field the spectrum is steepened w.r.t. the injected one
o We obtain an effective cutoff after propagation that can be relevant for tige §

positron fraction
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—— rp=50pc, y=2.5
— rp=50pc, y=2.3

o —— ro=20pc, y=2, Do =3.2-10%82
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o Steeper spectra — higher contribution to local flux
o Data at higher energies will allow constrain on minimum halo size around

Geminga
o New corrected model important
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@ CR composition:

o able to reproduce flux of all elements with same injection spectrum except H
and He which require a different slope

o Able to reproduce new data without refitting
o There seems to be an issue with Fe, that we still have to understand

o Currently no need for model modifications such as an additional source
grammage or an extended disc model, but they could prove useful for future
measurements

Future plans:

o Study the impact of low diffusivity zones on the standard model
= model CR fluxes with an extended disc model

o Include antiprotons in our transport model

G S
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o New insights about the escape of CRs from their sources:
o Current of escaping particles generates a non-resonant instability which slows
down their escape
o Leads to the formation of CR bubbles around sources with reduced diffusivity
o Important implications:

o Enhanced v-ray emission from circumsource region

o Accumulated grammage of trapped CRs might be significant for
secondary-to-primary ratios but does not represent the major grammage
component
= Supporting the standard model

Future plans:

o Extend our work on SNR escape using MHD+PIC codes to achieve
larger length and time scales
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@ new insights about the Geminga TeV halo:
o Geminga halo has to be at least 20 pc large

o Diffusion coefficient is uncertain by a factor of ~ 10 but still requires
suppression of ~ 100

o Taking into account the total flux, small magnetic field with intermediately
steep spectra v. ~ 2 — 2.3 are able to explain observations

o Contribution of protons most likely negligible, except for very large halos
and/or small diffusion coefficients (small B)

o Presence of halo steepens released spectra, a possible explanation for the
inferred steep slope of the population study in [Evoli et al. 2021]

Future plans:

o Investigate the origin of TeV halos: low diffusivity + small magnetic
field seem similar to SNR bubble
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o "Tracing the origin of low diffusivity and CR bubbles around sources”,
Schroer et al. 2021, PoS(ICRC2021)

o "Dynamical Effects of Cosmic Rays on the Medium Surrounding Their
Sources", Schroer et al. 2021, ApJL, 914, L13

o "Intermediate-mass and heavy Galactic cosmic-ray nuclei: The case of new
AMS-02 measurements", Schroer et al. 2021, PRD, 103, 123010

o "Cosmic-ray generated bubbles around their sources"”, Schroer et al. 2022,
MNRAS, 512, 1

o In preparation, Schroer et al. 2023
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One can rewrite as equation in terms of grammage and flux I,(E) = 4rAp>f,(p):

WE) , d ( (%)ﬁ(%)] 'a(E)>

X.(E) T dE
2
+Ia(E) _ 2hAap qa(p) + Z Ia (E)
cr,a uv

O3 —a
a’>a

@ where we introduced the critical grammage X, := 7+ and the grammage
vaH

traversed by nuclei a X,(E) := £~ (1 — e‘T)
o Without energy losses I,(E) o E~7*2 for X,(E) > X.. and

1.(E) oc EZ77279 for X,(E) < Xera
o = Secondary over primary ratios flat at low E and oc E~% at high E
@ Solutions only sensitive to ratio g
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o Spatial transport, including diffusion and advection, comprises 7
free-parameters: Dg, 0, va, H, Ry, Ad, s:
(R/GV)’
[1+ (R/Rp)2%/<]e

D(R) = 2vaH + BDy

motivated by [Recchia et al. 2016]

o The injection efficiencies €, of the species H, He, C, N, O, Ne, Mg, Si, S and
Fe

o Injection slope ~, assumed to be the same for all of them without any break
o Solar modulation potential ¢

o Total of 19 parameters

o Restrict ourselves to R > 10 GV to reduce the impact of low-energy effects
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o Some isotopes are short-lived on Myr time scales and never leave the Galactic
disc
= these isotopes are not propagated but taken into account as instantaneous
decay
= ghost nuclei

o Example 2?Na with life time 74 = 4.8 kyr:

O')(g_)zzNe = Ox_22Ne + Ox 22N, 3(22Na —22 Ne) (2)

o In general, 7y < Tres is an energy dependent statement = Assumption might
break at high energies for certain nuclei
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@ Some short-lived nuclei like
22Na are treated as ghost nuclei
(instantaneously decaying inside
the disc), but might leave the
disc at high rigidities

o | developed an extended-disc
model to properly capture this
effect

o Current data only marginally

sensitive to this effect
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o CALET measurement shows different normalization than AMS-02, but

confirms slope

o However does not cover the part of the spectrum where we see the large
deviations from our model and other experiments GS

[CALET Collaboration 2021]
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The electron number density is fixed to the ion number density n. = n; to ensure
quasi neutrality of the system resulting in V- E =0 and J = en;(V; — V)
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Macro particles are propagated according to:

d;;’ — gE+ v % B
The electric field is obtained via
E:—E><B—lVPe:—&><B—i—i><B—lVPe
c en c enc en

assuming: va < ¢, ncg < nj and Vi < c.
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o c/va=20

o 5000 x 7000 d2, with 7500x 10500 cells (1200 x 1200 x 1200 d3, with
1440 1440% 1440 cells in 3D)

o gas: Nppe =4, CRs: Nppe = 16, ncg = 0.0133 (0.01 in 3D), pcr = 100 mva,
rg,i = d,', i.e. B,’ = 2vt2h7,-/v§ =2

o Reproduce the ratio of energy densities of CR particles and thermal energy
~ (ncr/no)(c/va)®y ~ 26

o Bell condition fulfilled by: o = 2% PmnZd ~ 5 in 3D o ~ 20
i iVa

_ o~ 1 (1
o Growth rate ymax = %5% ~ 35 (15 for 3D)
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E
OLCRZG—TSSA

o Used quantities: Esy = 10%! erg, Ts = 300years, Rs = 3pc, € = 0.1,
Bo =3 uG, Epax = 1PeV, Enin = 1GeV

Lcr
E>E)=-——F __
or(E > £o) = 5 Rang,
4 E
o For typical, young SNR % ~ 100
0
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o The differential particle flux in energy that escapes is
Qesc(E, t) = Qs(E, t)ES(E — Ejax(t)) with Qs(E, t) the flux injected and
accelerated at the shock

o nL(t) = inpu —fE""“ dEEQ(E, t)

o ¢(E>E)= sz dE' Qesc(E') = Qo(te)E1“O(E — )

779“ npu” pa 77E5NUE 1 2nEsy 4

!
ocr(E' > E) = RN - T 5rRITsrA

with pu?mR3 = Esy and R/u = —T5N
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n(E,r t) = /Ot_tBs dto b(f((é;)) Q(E(to), t — to + tas)H(r, E, to)
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E?-0,[GeVcm~2s71]
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E3- ¢o+ [GeV2cm 25 1sr71]
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1 B dN, dN.,,
)= g | B G E) (B

o Total Flux:

oo Fmax
o (E) =21 / al / drrér, (E,. 1, 1)
—d 0
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