Integrable Systems and Random Matrices

Guido, Mazzuca
mazzuca@kth.se

March 30, 2023

Overview

- Background, and motivations
- Recent results
- What is a β-ensemble?
- (Meta) Theorems
- What are we missing?
- Future developments

Overview

- Background, and motivations
- Recent results
- What is a β-ensemble?
- (Meta) Theorems
- What are we missing?
- Future developments
- T. Grava, M. Gisonni, G.Gubbiotti, and G.M. Discrete integrable systems and random Lax matrices.
- G. M., and R. Memin: Large Deviations for Ablowitz-Ladik lattice, and the Schur flow.
- G. M., and T. Grava: Generalized Gibbs ensemble of the Ablowitz-Ladik lattice, circular β-ensemble and double confluent Heun equation.

Integrable systems

Consider a Poisson manifold $(M,\{\}$,$) , such that \{$,$\} is non-degenerate.$ Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{2 N}\right)$ be coordinates on M. The evolution $\boldsymbol{x}(0) \rightarrow \boldsymbol{x}(t)$ according to Hamilton equations with Hamiltonian $H(\boldsymbol{x})$

$$
\frac{d x_{j}}{d t}=\dot{x}_{j}=\left\{x_{j}, H\right\}, \quad j=1, \ldots, 2 N
$$

is integrable if there are $H_{1}=H, H_{2}, \ldots H_{N}$ independent conserved quantities ($\dot{H}_{k}=0$) that Poisson commute: $\left\{H_{j}, H_{k}\right\}=0$. (Liouville)

Lax Pair

The integrable Hamilton equations

$$
\dot{x}_{j}=\left\{x_{j}, H\right\}, \quad j=1, \ldots, 2 N
$$

admits a Lax pair formulation if there exist two square matrices $L=L(\boldsymbol{x})$ and $A=A(x)$ such that

$$
\dot{L}=[A, L]:=L A-A L \longleftrightarrow \dot{x}_{j}=\left\{x_{j}, H\right\}, \quad j=1, \ldots, 2 N
$$

Then, $\operatorname{Tr} L^{k}, k$ integer, are constant of motions: $\frac{d}{d t} \operatorname{Tr} L^{k}=0$

Gibbs measure

Consider the Gibbs measure

$$
\mu=\frac{1}{Z(V)} e^{-\operatorname{Tr}(V(L(x)))} \tilde{\mu}, \quad \tilde{\mu}=m(x) d x_{1}, \ldots d x_{2 N}
$$

here V is a continuous function, and $\tilde{\mu}$ is invariant for the dynamics, thus also μ is invariant.

Gibbs measure

Consider the Gibbs measure

$$
\mu=\frac{1}{Z(V)} e^{-\operatorname{Tr}(V(L(x)))} \tilde{\mu}, \quad \tilde{\mu}=m(x) d x_{1}, \ldots d x_{2 N}
$$

here V is a continuous function, and $\tilde{\mu}$ is invariant for the dynamics, thus also μ is invariant.
In particular, we consider Gibbs measure of the form

$$
\mu=\frac{1}{Z(V, \alpha)} \prod_{j=1}^{N} F\left(x_{j}, \alpha\right) \prod_{j=N}^{2 N} G\left(x_{j}, \alpha\right) e^{-\operatorname{Tr}(V(L(x)))} d \mathbf{x}
$$

Gibbs measure

Consider the Gibbs measure

$$
\mu=\frac{1}{Z(V)} e^{-\operatorname{Tr}(V(L(x)))} \tilde{\mu}, \quad \tilde{\mu}=m(x) d x_{1}, \ldots d x_{2 N}
$$

here V is a continuous function, and $\tilde{\mu}$ is invariant for the dynamics, thus also μ is invariant.
In particular, we consider Gibbs measure of the form

$$
\begin{gathered}
\mu=\frac{1}{Z(V, \alpha)} \prod_{j=1}^{N} F\left(x_{j}, \alpha\right) \prod_{j=N}^{2 N} G\left(x_{j}, \alpha\right) e^{-\operatorname{Tr}(V(L(x)))} d \mathbf{x} \\
\mu \longrightarrow L
\end{gathered}
$$

thus L becomes a Random Matrix.

Gibbs measure

Consider the Gibbs measure

$$
\mu=\frac{1}{Z(V)} e^{-\operatorname{Tr}(V(L(x)))} \tilde{\mu}, \quad \tilde{\mu}=m(x) d x_{1}, \ldots d x_{2 N}
$$

here V is a continuous function, and $\tilde{\mu}$ is invariant for the dynamics, thus also μ is invariant.
In particular, we consider Gibbs measure of the form

$$
\mu=\frac{1}{Z(V, \alpha)} \prod_{j=1}^{N} F\left(x_{j}, \alpha\right) \prod_{j=N}^{2 N} G\left(x_{j}, \alpha\right) e^{-\operatorname{Tr}(V(L(x)))} d \mathbf{x}
$$

$$
\mu \longrightarrow L
$$

thus L becomes a Random Matrix.

- How do the correlation functions look like $S(j, t)=\mathbb{E}\left(x_{j}(t) x_{\ell}(0)\right)-\mathbb{E}\left(x_{j}(t)\right) \mathbb{E}\left(x_{\ell}(0)\right)$ behave when $N \rightarrow \infty$ and $t \rightarrow \infty$?

Correlation functions \rightarrow Transport properties

Why:

Correlation functions \rightarrow Transport properties
Specific 1D phenomenon: conductivity diverges as the length of the chain grows (Anomalous transport).
Surprisingly, this is measured experimentally:

(Nature Nanotechnology 2021)

Why:
Correlation functions \rightarrow Transport properties
For a general dynamical system, the computation of a general correlation function $S(j, t)$ as $t, N \rightarrow \infty$ is a challenging question. Rigorous mathematical results in dimension bigger or equal to 3 (Lukkarinen-Spohn 2011).

Why:

Correlation functions \rightarrow Transport properties
For a general dynamical system, the computation of a general correlation function $S(j, t)$ as $t, N \rightarrow \infty$ is a challenging question. Rigorous mathematical results in dimension bigger or equal to 3 (Lukkarinen-Spohn 2011). Numerical simulations show that:

$$
S(j, t) \simeq \frac{1}{\lambda t^{\gamma}} f\left(\frac{j-v t}{\lambda t^{\delta}}\right)
$$

- Non-integrable systems, such as DNLS, FPUT, etc, $\gamma=\delta=\frac{2}{3}$ and $f=F_{T W}$.

$$
\text { Correlation functions } \rightarrow \text { Transport properties }
$$

For a general dynamical system, the computation of a general correlation function $S(j, t)$ as $t, N \rightarrow \infty$ is a challenging question. Rigorous mathematical results in dimension bigger or equal to 3 (Lukkarinen-Spohn 2011). Numerical simulations show that:

$$
S(j, t) \simeq \frac{1}{\lambda t^{\gamma}} f\left(\frac{j-v t}{\lambda t^{\delta}}\right)
$$

- Non-integrable systems, such as DNLS, FPUT, etc, $\gamma=\delta=\frac{2}{3}$ and $f=F_{T W}$.
- Non-linear integrable systems, such as Toda, AL, $\gamma=\delta=1$ and $f=e^{-x^{2}}$.

Correlation functions \rightarrow Transport properties
For a general dynamical system, the computation of a general correlation function $S(j, t)$ as $t, N \rightarrow \infty$ is a challenging question. Rigorous mathematical results in dimension bigger or equal to 3 (Lukkarinen-Spohn 2011). Numerical simulations show that:

$$
S(j, t) \simeq \frac{1}{\lambda t^{\gamma}} f\left(\frac{j-v t}{\lambda t^{\delta}}\right)
$$

- Non-integrable systems, such as DNLS, FPUT, etc, $\gamma=\delta=\frac{2}{3}$ and $f=F_{T W}$.
- Non-linear integrable systems, such as Toda, AL, $\gamma=\delta=1$ and $f=e^{-x^{2}}$.
- Short range harmonic chain, we can perfectly describe the behaviour of the correlation functions (Mazur;..., M - Grava - McLaughlin Kriecherbauer).

Breakthrough

- H. Spohn was able to characterize the density of states for the GGE of the Toda lattice with polynomial potential in terms of the equilibrium measure of the Gaussian β ensemble at high temperature $(\beta=2 \alpha / N)$.

Breakthrough

- H. Spohn was able to characterize the density of states for the GGE of the Toda lattice with polynomial potential in terms of the equilibrium measure of the Gaussian β ensemble at high temperature $(\beta=2 \alpha / N)$.
Applying the theory of Generalized Hydrodynamic, he argued that the decay of correlation functions is ballistic. $(\delta=\gamma=1)$

Breakthrough

- H. Spohn was able to characterize the density of states for the GGE of the Toda lattice with polynomial potential in terms of the equilibrium measure of the Gaussian β ensemble at high temperature $(\beta=2 \alpha / N)$.
Applying the theory of Generalized Hydrodynamic, he argued that the decay of correlation functions is ballistic. $(\delta=\gamma=1)$
- A. Guionnet, and R. Memin generalized Spohn results, obtaining a Large deviations principle for the empirical measures with continuous potential.

β-ensemble at high temperature	Integrable System
Gaussian	Toda lattice (Spohn; Guionnet-Memin)
Circular	Defocusing Ablowitz-Ladik lattice (Spohn, Grava-M.; Memin-M.)
Jacobi	Defocusing Schur flow (Spohn; Memin-M.)
Laguerre	Exponential Toda lattice (Gisonni-Grava-Gubbiotti-M.)
Antisymmetric Gaussian	Volterra lattice (Gisonni-Grava-Gubbiotti-M.)

β-ensemble at high temperature	Integrable System GaussianToda lattice (Spohn; Guionnet-Memin)
Circular	Defocusing Ablowitz-Ladik lattice (Spohn, Grava-M.; Memin-M.)
Jacobi	Defocusing Schur flow (Spohn; Memin-M.)
Laguerre	Exponential Toda lattice (Gisonni-Grava-Gubbiotti-M.)
Antisymmetric Gaussian	Volterra lattice (Gisonni-Grava-Gubbiotti-M.)

What is a β-ensemble at high temperature?

β - ensembles

Models of Coulomb gas with external potential, and particles constrained to some subset of the real line.

Coulomb Interaction

β - ensembles

Models of Coulomb gas with external potential, and particles constrained to some subset of the real line.

Coulomb Interaction

$$
\begin{aligned}
& H(\mathbf{x})=\beta \sum_{i<j=1}^{N} \log \left(\left|x_{j}-x_{i}\right|\right)+\sum_{j=1}^{N} V\left(x_{j}\right) \\
& \nu \sim \exp (-H(\mathbf{x})) d \mathbf{x}
\end{aligned}
$$

Properties

- The Gibbs measure can be realized as the joint eigenvalue density of some sparse random matrix;

Properties

- The Gibbs measure can be realized as the joint eigenvalue density of some sparse random matrix;
- The density of states of these matrices can be characterized as the minimizer of

$$
\mathcal{F}(V, \beta)=\int_{\mathcal{I}} V(x) \sigma(d x)+\beta \int_{\mathcal{I} \times \mathcal{I} \backslash\{x=y\}} \log (|x-y|) \sigma(d x) \sigma(d y)
$$

High temperature

In particular, we are interested in the regime as $\beta=\frac{2 \alpha}{N}$.

High temperature

In particular, we are interested in the regime as $\beta=\frac{2 \alpha}{N}$.
The minimizing functional reads:

$$
\mathcal{F}^{h t}(V, \beta)=\int_{\mathcal{I}} V(x) \sigma(d x)+2 \alpha \int_{\mathcal{I} \times \mathcal{I} \backslash\{x=y\}} \log (|x-y|) \sigma(d x) \sigma(d y)+\int_{\mathcal{I}} \log (\sigma(x)) \sigma(d x) .
$$

High temperature

In particular, we are interested in the regime as $\beta=\frac{2 \alpha}{N}$.
The minimizing functional reads:

$$
\mathcal{F}^{h t}(V, \beta)=\int_{\mathcal{I}} V(x) \sigma(d x)+2 \alpha \int_{\mathcal{I} \times \mathcal{I} \backslash\{x=y\}} \log (|x-y|) \sigma(d x) \sigma(d y)+\int_{\mathcal{I}} \log (\sigma(x)) \sigma(d x) .
$$

The distribution of the entries of the matrices reads

$$
\nu=\frac{1}{\mathcal{Z}(V, \alpha)} \prod_{j=1}^{N} F\left(x_{j}, \alpha\left(1-\frac{j}{N}\right)\right) \prod_{j=N}^{2 N} G\left(x_{j}, \alpha\left(1-\frac{j}{N}\right)\right) e^{-\operatorname{Tr}(V(\mathcal{L}(x)))} d \mathbf{x}
$$

They look similar...

$$
\begin{gathered}
\nu=\frac{1}{\mathcal{Z}(V, \alpha)} \prod_{j=1}^{N} F\left(x_{j}, \alpha\left(1-\frac{j}{N}\right)\right) \prod_{j=N}^{2 N} G\left(x_{j}, \alpha\left(1-\frac{j}{N}\right)\right) e^{-\operatorname{Tr}(V(\mathcal{L}(x)))} d \mathbf{x} \\
\mu=\frac{1}{Z(V, \alpha)} \prod_{j=1}^{N} F\left(x_{j}, \alpha\right) \prod_{j=N}^{2 N-1} G\left(x_{j}, \alpha\right) e^{-\operatorname{Tr}(V(L(x)))} d \mathbf{x}
\end{gathered}
$$

ramp vs. slide

Metatheorem

β-ensemble at high temperature	Integrable System
Gaussian	Toda lattice
Circular	Defocusing Ablowitz-Ladik lattice
Jacobi	Defocusing Schur flow
Laguerre	Exponential Toda lattice
Antisymmetric Gaussian	Volterra lattice

- L is just the periodic version of \mathcal{L};

$$
L=\left(\begin{array}{ccccc}
a_{1} & b_{1} & 0 & \cdots & b_{N} \\
b_{1} & a_{2} & b_{2} & \ddots & \vdots \\
0 & b_{2} & a_{3} & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & b_{N-1} \\
b_{N} & \cdots & 0 & b_{N-1} & a_{N}
\end{array}\right)
$$

Metatheorem

β-ensemble at high temperature	Integrable System
Gaussian	Toda lattice
Circular	Defocusing Ablowitz-Ladik lattice
Jacobi	Defocusing Schur flow
Laguerre	Exponential Toda lattice
Antisymmetric Gaussian	Volterra lattice

- L is just the periodic version of \mathcal{L};

$$
\mathcal{L}=\left(\begin{array}{ccccc}
a_{1} & b_{1} & 0 & \ldots & 0 \\
b_{1} & a_{2} & b_{2} & \ddots & \vdots \\
0 & b_{2} & a_{3} & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & b_{N-1} \\
0 & \ldots & 0 & b_{N-1} & a_{N}
\end{array}\right)
$$

Metatheorem

β-ensemble at high temperature	Integrable System
Gaussian	Toda lattice
Circular	Defocusing Ablowitz-Ladik lattice
Jacobi	Defocusing Schur flow
Laguerre	Exponential Toda lattice
Antisymmetric Gaussian	Volterra lattice

- L is just the periodic version of \mathcal{L};
- μ, ν are as before;

Metatheorem

β-ensemble at high temperature	Integrable System
Gaussian	Toda lattice
Circular	Defocusing Ablowitz-Ladik lattice
Jacobi	Defocusing Schur flow
Laguerre	Exponential Toda lattice
Antisymmetric Gaussian	Volterra lattice

- L is just the periodic version of \mathcal{L};
- μ, ν are as before;
- V is nice enough;

β-ensemble at high temperature	Integrable System
Gaussian	Toda lattice
Circular	Defocusing Ablowitz-Ladik lattice
Jacobi	Defocusing Schur flow
Laguerre	Exponential Toda lattice
Antisymmetric Gaussian	Volterra lattice

- L is just the periodic version of \mathcal{L};
- μ, ν are as before;
then:
- V is nice enough;

$$
\begin{aligned}
& \partial_{\alpha} \alpha \mathcal{F}(V, \alpha)=F(V, \alpha) \\
& \mathcal{F}(V, \alpha)=-\lim _{N \rightarrow \infty} \frac{1}{N} \mathcal{Z}(V, \alpha)
\end{aligned}
$$

Metatheorem

β-ensemble at high temperature	Integrable System
Gaussian	Toda lattice
Circular	Defocusing Ablowitz-Ladik lattice
Jacobi	Defocusing Schur flow
Laguerre	Exponential Toda lattice
Antisymmetric Gaussian	Volterra lattice

- L is just the periodic version of \mathcal{L};
- μ, ν are as before;

$$
\begin{aligned}
& \partial_{\alpha} \alpha \nu_{\mathcal{L}}(x)=\mu_{L}(x) \\
& \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_{j}^{(L)}} \rightharpoonup \mu_{L}
\end{aligned}
$$

Why is it relevant?

$$
\begin{gathered}
\frac{1}{N} \mathbb{E}\left[\operatorname{Tr}\left(L^{k}\right)\right] \longrightarrow \partial_{\alpha} \partial_{t} \alpha \mathcal{F}\left(V+i t x^{k}, \alpha\right)_{\mid t=0} \\
\frac{1}{N}\left(\mathbb{E}\left[\operatorname{Tr}\left(L^{k}\right) \operatorname{Tr}\left(L^{\ell}\right)\right]-\mathbb{E}\left[\operatorname{Tr}\left(L^{k}\right)\right] \mathbb{E}\left[\operatorname{Tr}\left(L^{\ell}\right)\right]\right) \rightarrow \partial_{\alpha} \partial_{t_{1}} \partial_{t_{2}} \alpha \mathcal{F}\left(V+i t_{1} x^{k}+i t_{2} \chi^{\ell}, \alpha\right)_{\left.\right|_{t_{1}=t_{2}=0}}
\end{gathered}
$$

Why is it relevant?

$$
\begin{gathered}
\frac{1}{N} \mathbb{E}\left[\operatorname{Tr}\left(L^{k}\right)\right] \longrightarrow \partial_{\alpha} \partial_{t} \alpha \mathcal{F}\left(V+i t x^{k}, \alpha\right)_{\left.\right|_{t=0}} \\
\frac{1}{N}\left(\mathbb{E}\left[\operatorname{Tr}\left(L^{k}\right) \operatorname{Tr}\left(L^{\ell}\right)\right]-\mathbb{E}\left[\operatorname{Tr}\left(L^{k}\right)\right] \mathbb{E}\left[\operatorname{Tr}\left(L^{\ell}\right)\right]\right) \rightarrow \partial_{\alpha} \partial_{t_{1}} \partial_{t_{2}} \alpha \mathcal{F}\left(V+i t_{1} x^{k}+i t_{2} \chi^{\ell}, \alpha\right)_{\left.\right|_{t_{1}=t_{2}=0}}
\end{gathered}
$$

These quantities are relevant for the Theory of generalized hydrodynamics, indeed they are one of the building block of this theory.

β-ensemble at high temperature	Integrable System
Gaussian	Toda lattice (Spohn; Guionnet-Memin)
Circular	Defocusing Ablowitz-Ladik lattice (Spohn, Grava-M.; Memin-M.)
Jacobi	Defocusing Schur flow (Spohn; Memin-M.)
Laguerre	Exponential Toda lattice (Gisonni-Grava-Gubbiotti-M.)
Antisymmetric Gaussian	Volterra lattice (Gisonni-Grava-Gubbiotti-M.)

β-ensemble at high temperature	Integrable System
Gaussian	Toda lattice (Spohn; Guionnet-Memin)
Circular	Defocusing Ablowitz-Ladik lattice (Spohn, Grava-M.; Memin-M.)
Jacobi	Defocusing Schur flow (Spohn; Memin-M.)
Laguerre	Exponential Toda lattice (Gisonni-Grava-Gubbiotti-M.)
Antisymmetric Gaussian	Volterra lattice (Gisonni-Grava-Gubbiotti-M.)

β-ensemble at high temperature	Integrable System GaussianToda lattice (Spohn; Guionnet-Memin)
Circular	Defocusing Ablowitz-Ladik lattice (Spohn, Grava-M.; Memin-M.)
Jacobi	Defocusing Schur flow (Spohn; Memin-M.)
Laguerre	Exponential Toda lattice (Gisonni-Grava-Gubbiotti-M.)
Antisymmetric Gaussian	Volterra lattice (Gisonni-Grava-Gubbiotti-M.)

Soon (hopefully): generalization for polynomial potential.

Missing pieces: Currents

Due to the periodicity and local properties of the systems at hand

$$
\operatorname{Tr}\left(L^{k}\right)=\sum_{j=1}^{M} Q_{j}^{[k]}
$$

Missing pieces: Currents

Due to the periodicity and local properties of the systems at hand

$$
\operatorname{Tr}\left(L^{k}\right)=\sum_{j=1}^{M} Q_{j}^{[k]}
$$

so

$$
Q_{j}^{[k]}=J_{j+1}^{[k]}-J_{j}^{[k]},
$$

Missing pieces: Currents

Due to the periodicity and local properties of the systems at hand

$$
\operatorname{Tr}\left(L^{k}\right)=\sum_{j=1}^{M} Q_{j}^{[k]}
$$

so

$$
Q_{j}^{[k]}=J_{j+1}^{[k]}-J_{j}^{[k]},
$$

we are interested in

$$
\mathbb{E}\left[J_{j}^{[k]}\right]
$$

Toda numerics

H. Spohn was able to compute such quantities for the Toda lattice:

- There is a deep connection between integrable systems and random matrix theory;

Recap

- There is a deep connection between integrable systems and random matrix theory;
- We have a metatheorem, which still need to be completely proved;

Recap

- There is a deep connection between integrable systems and random matrix theory;
- We have a metatheorem, which still need to be completely proved;
- GHD does an amazing job ad predicting the shape of the correlation functions for the Toda lattice

Recap

- There is a deep connection between integrable systems and random matrix theory;
- We have a metatheorem, which still need to be completely proved;
- GHD does an amazing job ad predicting the shape of the correlation functions for the Toda lattice

Next:

- Prove the metatheorem;

Recap

- There is a deep connection between integrable systems and random matrix theory;
- We have a metatheorem, which still need to be completely proved;
- GHD does an amazing job ad predicting the shape of the correlation functions for the Toda lattice

Next:

- Prove the metatheorem;
- Apply the GHD to other integrable systems;

Recap

- There is a deep connection between integrable systems and random matrix theory;
- We have a metatheorem, which still need to be completely proved;
- GHD does an amazing job ad predicting the shape of the correlation functions for the Toda lattice

Next:

- Prove the metatheorem;
- Apply the GHD to other integrable systems;
- Numerically explore the behaviour of correlation for short-range integrable systems,

$$
\dot{a}_{j}=a_{j}\left(\sum_{k=1}^{\ell} a_{k+j}-\sum_{k=1}^{\ell} a_{-k+j}\right), \quad \dot{a}_{j}=a_{j}\left(\prod_{k=1}^{\ell} a_{k+j}-\prod_{k=1}^{\ell} a_{-k+j}\right)
$$

Thank you for the attention!

