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Overview

▶ Background, and motivations
▶ Recent results
▶ What is a β-ensemble?
▶ (Meta) Theorems
▶ What are we missing?
▶ Future developments

• T. Grava, M. Gisonni, G.Gubbiotti, and G.M. Discrete integrable systems
and random Lax matrices.
• G. M., and R. Memin: Large Deviations for Ablowitz-Ladik lattice, and the

Schur flow.
• G. M., and T. Grava: Generalized Gibbs ensemble of the Ablowitz-Ladik

lattice, circular β-ensemble and double confluent Heun equation.

1 / 18



Overview

▶ Background, and motivations
▶ Recent results
▶ What is a β-ensemble?
▶ (Meta) Theorems
▶ What are we missing?
▶ Future developments

• T. Grava, M. Gisonni, G.Gubbiotti, and G.M. Discrete integrable systems
and random Lax matrices.
• G. M., and R. Memin: Large Deviations for Ablowitz-Ladik lattice, and the

Schur flow.
• G. M., and T. Grava: Generalized Gibbs ensemble of the Ablowitz-Ladik

lattice, circular β-ensemble and double confluent Heun equation.

1 / 18



Integrable systems

Consider a Poisson manifold (M, { , }), such that { , } is non-degenerate.
Let x = (x1, . . . , x2N) be coordinates on M. The evolution x(0)→ x(t) according
to Hamilton equations with Hamiltonian H(x)

dxj
dt = ẋj = {xj,H}, j = 1, . . . , 2N

is integrable if there are H1 = H,H2, . . .HN independent conserved quantities
(Ḣk = 0) that Poisson commute: {Hj,Hk} = 0. (Liouville)
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Lax Pair

The integrable Hamilton equations

ẋj = {xj,H}, j = 1, . . . , 2N

admits a Lax pair formulation if there exist two square matrices L = L(x) and
A = A(x) such that

L̇ = [A, L] := LA− AL←→ ẋj = {xj,H}, j = 1, . . . , 2N

Then, TrLk, k integer, are constant of motions: d
dtTrLk = 0
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Gibbs measure
Consider the Gibbs measure

µ =
1

Z(V)e−Tr(V(L(x)))µ̃ , µ̃ = m(x)dx1, . . . dx2N ,

here V is a continuous function, and µ̃ is invariant for the dynamics, thus also µ
is invariant.

In particular, we consider Gibbs measure of the form

µ =
1

Z(V, α)

N∏
j=1

F(xj, α)
2N∏

j=N
G(xj, α)e−Tr(V(L(x)))dx

µ −→ L

thus L becomes a Random Matrix.
▶ How do the correlation functions look like

S(j, t) = E(xj(t)xℓ(0))−E(xj(t))E(xℓ(0)) behave when N→∞ and t→∞?
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Why:
Correlation functions → Transport properties

For a general dynamical system, the computation of a general correlation
function S(j, t) as t,N→∞ is a challenging question. Rigorous mathematical
results in dimension bigger or equal to 3 (Lukkarinen-Spohn 2011). Numerical
simulations show that:

S(j, t) ≃ 1
λtγ f

(
j− vt
λtδ

)
.

▶ Non-integrable systems, such as DNLS, FPUT, etc, γ = δ = 2
3 and

f = FTW.
▶ Non-linear integrable systems, such as Toda, AL, γ = δ = 1 and

f = e−x2 .
▶ Short range harmonic chain, we can perfectly describe the behaviour of

the correlation functions (Mazur;…, M - Grava - McLaughlin -
Kriecherbauer).
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Specific 1D phenomenon: conductivity diverges as the length of the chain grows
(Anomalous transport).
Surprisingly, this is measured experimentally:

(Nature Nanotechnology 2021)
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Breakthrough

▶ H. Spohn was able to characterize the density of states for the GGE of the
Toda lattice with polynomial potential in terms of the equilibrium measure
of the Gaussian β ensemble at high temperature (β = 2α/N).

Applying the theory of Generalized Hydrodynamic, he argued that the decay
of correlation functions is ballistic. (δ = γ = 1)

▶ A. Guionnet, and R. Memin generalized Spohn results, obtaining a Large
deviations principle for the empirical measures with continuous potential.
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β-ensemble at high temperature Integrable System

Gaussian Toda lattice
(Spohn; Guionnet-Memin)

Circular Defocusing Ablowitz-Ladik lattice
(Spohn, Grava-M.; Memin-M.)

Jacobi Defocusing Schur flow
(Spohn; Memin-M. )

Laguerre Exponential Toda lattice
(Gisonni-Grava-Gubbiotti-M.)

Antisymmetric Gaussian Volterra lattice
(Gisonni-Grava-Gubbiotti-M.)

What is a β-ensemble at high
temperature?
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β - ensembles
Models of Coulomb gas with external potential, and particles constrained to
some subset of the real line.

H(x) = β
N∑

i<j=1
log(|xj − xi|) +

N∑
j=1

V(xj) ,

ν ∼ exp(−H(x))dx
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Properties

▶ The Gibbs measure can be realized as the joint eigenvalue density of some
sparse random matrix;

▶ The density of states of these matrices can be characterized as the
minimizer of

F(V, β) =
∫
I

V(x)σ(dx) + β

∫
I×I\{x=y}

log(|x− y|)σ(dx)σ(dy) .
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High temperature

In particular, we are interested in the regime as β = 2α
N .

The minimizing functional reads:

Fht(V, β) =
∫
I

V(x)σ(dx)+2α
∫
I×I\{x=y}

log(|x−y|)σ(dx)σ(dy)+
∫
I
log(σ(x))σ(dx) .

The distribution of the entries of the matrices reads

ν =
1

Z(V, α)

N∏
j=1

F
(

xj, α

(
1− j

N

)) 2N∏
j=N

G
(

xj, α

(
1− j

N

))
e−Tr(V(L(x)))dx
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They look similar...

ν =
1

Z(V, α)

N∏
j=1

F
(

xj, α

(
1− j

N

)) 2N∏
j=N

G
(

xj, α

(
1− j

N

))
e−Tr(V(L(x)))dx

µ =
1

Z(V, α)

N∏
j=1

F(xj, α)
2N−1∏
j=N

G(xj, α)e−Tr(V(L(x)))dx

ramp vs. slide
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Metatheorem

β-ensemble at high temperature Integrable System
Gaussian Toda lattice
Circular Defocusing Ablowitz-Ladik lattice
Jacobi Defocusing Schur flow

Laguerre Exponential Toda lattice
Antisymmetric Gaussian Volterra lattice

▶ L is just the periodic version of L;

▶ µ, ν are as before;
▶ V is nice enough;

L =



a1 b1 0 . . . bN

b1 a2 b2
. . . ...

0 b2 a3
. . . 0

... . . . . . . . . . bN−1
bN . . . 0 bN−1 aN


,
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then:

∂αανL(x) = µL(x)

1
N
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j=1

δ
λ
(L)
j
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Why is it relevant?

1
NE

[
Tr
(

Lk
)]
−→ ∂α∂tαF(V + itxk, α)|t=0

1
N
(
E
[
Tr
(
Lk)Tr

(
Lℓ
)]
− E[Tr

(
Lk)]E[Tr

(
Lℓ
)
]
)
→ ∂α∂t1∂t2αF(V+ it1xk+ it2xℓ, α)|t1=t2=0

These quantities are relevant for the Theory of generalized hydrodynamics,
indeed they are one of the building block of this theory.
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β-ensemble at high temperature Integrable System
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Laguerre Exponential Toda lattice
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Antisymmetric Gaussian Volterra lattice
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Soon (hopefully): generalization for polynomial potential.
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Missing pieces: Currents

Due to the periodicity and local properties of the systems at hand

Tr
(

Lk
)
=

M∑
j=1

Q[k]
j ,

so
˙Q[k]
j = J[k]j+1 − J[k]j ,

we are interested in
E[J[k]j ] .
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Toda numerics

H. Spohn was able to compute such quantities for the Toda lattice:
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Recap
▶ There is a deep connection between integrable systems and random matrix

theory;

▶ We have a metatheorem, which still need to be completely proved;
▶ GHD does an amazing job ad predicting the shape of the correlation

functions for the Toda lattice
Next:

▶ Prove the metatheorem;
▶ Apply the GHD to other integrable systems;
▶ Numerically explore the behaviour of correlation for short-range integrable

systems,

ȧj = aj

(
ℓ∑

k=1
ak+j −

ℓ∑
k=1

a−k+j

)
, ȧj = aj

(
ℓ∏

k=1
ak+j −

ℓ∏
k=1

a−k+j

)
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ȧj = aj

(
ℓ∑

k=1
ak+j −

ℓ∑
k=1

a−k+j

)
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Next:

▶ Prove the metatheorem;
▶ Apply the GHD to other integrable systems;
▶ Numerically explore the behaviour of correlation for short-range integrable

systems,

ȧj = aj

(
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)
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)
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Thank you for the attention!
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