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Overview

» Background, and motivations
> Recent results

» What is a S-ensemble?

» (Meta) Theorems

» What are we missing?

» Future developments

e T. Grava, M. Gisonni, G.Gubbiotti, and G.M. Discrete integrable systems
and random Lax matrices.

e G. M., and R. Memin: Large Deviations for Ablowitz-Ladik lattice, and the
Schur flow.

e G. M., and T. Grava: Generalized Gibbs ensemble of the Ablowitz-Ladik
lattice, circular 3-ensemble and double confluent Heun equation.
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Integrable systems

Consider a Poisson manifold (M, {, }), such that {, } is non-degenerate.
Let x=(x1,...,Xxon) be coordinates on M. The evolution x(0) — x(t) according
to Hamilton equations with Hamiltonian H(x)

&g _

is integrable if there are Hy = H, H,, ... Hy independent conserved quantities
(Hk = 0) that Poisson commute: {H;, H} = 0. (Liouville)
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Lax Pair

The integrable Hamilton equations
xi={x, H}, j=1,...,2N

admits a Lax pair formulation if there exist two square matrices L = L(x) and
A = A(x) such that

L=[A L :=LA—- AL+ i={x,H}, j=1,...,2N

d
Then, TrLk, k integer, are constant of motions: aTrLk =0
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Gibbs measure
Consider the Gibbs measure

I S 1V (16%) PR
,LL—Z(V)e i, f=m(x)dxy,...dxon,

here V'is a continuous function, and ji is invariant for the dynamics, thus also p
is invariant.
In particular, we consider Gibbs measure of the form

N 2N
__ 1 . e T V(L))
= ZV.a) H F(xj, @) H G(xj, )e dx
j=1 j=N
w— L

thus L becomes a Random Matrix.

» How do the correlation functions look like
S(, t) = E(xj(t)x¢(0)) — E(x(t))E(x¢(0)) behave when N — oo and t — 00?
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Why:

Correlation functions — Transport properties

Specific 1D phenomenon: conductivity diverges as the length of the chain grows
(Anomalous transport).
Surprisingly, this is measured experimentally:

| Nature Nanotechnoloii 2021|



Why:
Correlation functions — Transport properties

For a general dynamical system, the computation of a general correlation
function S(j, t) as t, N — oo is a challenging question. Rigorous mathematical
results in dimension bigger or equal to 3 (Lukkarinen-Spohn 2011).



Why:

Correlation functions — Transport properties

For a general dynamical system, the computation of a general correlation
function S(j, t) as t, N — oo is a challenging question. Rigorous mathematical
results in dimension bigger or equal to 3 (Lukkarinen-Spohn 2011).  Numerical

simulations show that:

1 Jj— vt
S(, t) ~ —f .
U:1) AtY ( At >
» Non-integrable systems, such as DNLS, FPUT, etc, v = 4§ = % and
f=Frw.



Why:

Correlation functions — Transport properties

For a general dynamical system, the computation of a general correlation
function S(j, t) as t, N — oo is a challenging question. Rigorous mathematical
results in dimension bigger or equal to 3 (Lukkarinen-Spohn 2011).  Numerical
simulations show that:

) 1 Jj— vt
S(J,t):mf< Y >

» Non-integrable systems, such as DNLS, FPUT, etc, v = 4§ = % and

f=Frw.
» Non-linear integrable systems, such as Toda, AL, vy =6 =1 and
f=e*



Why:
Correlation functions — Transport properties

For a general dynamical system, the computation of a general correlation
function S(j, t) as t, N — oo is a challenging question. Rigorous mathematical
results in dimension bigger or equal to 3 (Lukkarinen-Spohn 2011).  Numerical
simulations show that:

) 1 Jj— vt
So,t):mf< Y >

» Non-integrable systems, such as DNLS, FPUT, etc, v = 4§ = % and

f=Frw.
» Non-linear integrable systems, such as Toda, AL, vy =6 =1 and
f=e*

» Short range harmonic chain, we can perfectly describe the behaviour of
the correlation functions (Mazur;.., M - Grava - McLaughlin -
Kriecherbauer).
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Breakthrough

» H. Spohn was able to characterize the density of states for the GGE of the
Toda lattice with polynomial potential in terms of the equilibrium measure
of the Gaussian 3 ensemble at high temperature (5 = 2a/N).

Applying the theory of Generalized Hydrodynamic, he argued that the decay
of correlation functions is ballistic. (6 =~y =1)

> A. Guionnet, and R. Memin generalized Spohn results, obtaining a Large
deviations principle for the empirical measures with continuous potential.
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What is a 3-ensemble at high
temperature?



[ - ensembles

Models of Coulomb gas with external potential, and particles constrained to
some subset of the real line.

Coulomb Interaction

& E—PO---0------ - -
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[ - ensembles

Models of Coulomb gas with external potential, and particles constrained to
some subset of the real line.

Coulomb Interaction

N N
H(x) =B ) log(lx— xil) + Y V(x),
=1

i<j=1
v ~ exp(—H(x))dx
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Properties

» The Gibbs measure can be realized as the joint eigenvalue density of some
sparse random matrix;
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Properties

» The Gibbs measure can be realized as the joint eigenvalue density of some
sparse random matrix;

» The density of states of these matrices can be characterized as the
minimizer of

F(V.5) = /I V(x)(dx) + l0(1x — Y)o(dx)o(dy).

IxI\{x=y}
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High temperature

In particular, we are interested in the regime as 3 = ZWO‘
The minimizing functional reads:

]-'ht(V,ﬂ) :/IV(X)U(dx)-I-Za/I Iog(|x—y|)0(dx)a(dy)—|—/I log(o(x))o(dx) .

xI\{x=y}
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High temperature

In particular, we are interested in the regime as 3 = ZWO‘

The minimizing functional reads:

ht = X)o\ax (07 og\ | X—Yy|)o\ax)o ogl\o(x))oldx) .
V) = [ otagaa [ toa(lxyo(@o(d)+ | loglol)o(a

The distribution of the entries of the matrices reads

. 2N .
_ 1 . _ . ) vz
v= g L (oo (1= 7)) TL6 (e (1) ) o 0
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They look similar...

=1
1 N 2N—-1
_ =Tr(V(L() g

ramp vs. slide
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Metatheorem

B-ensemble at high temperature Integrable System
Gaussian Toda lattice
Circular Defocusing Ablowitz-Ladik lattice
Jacobi Defocusing Schur flow
Laguerre Exponential Toda lattice
Antisymmetric Gaussian Volterra lattice

> L is just the periodic version of L;

ai b O . 0
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Metatheorem

[-ensemble at high temperature Integrable System
Gaussian Toda lattice
Circular Defocusing Ablowitz-Ladik lattice
Jacobi Defocusing Schur flow
Laguerre Exponential Toda lattice
Antisymmetric Gaussian Volterra lattice

ramp vs slide
» L is just the periodic version of L; P

> u, v are as before;
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Metatheorem

([-ensemble at high temperature Integrable System
Gaussian Toda lattice
Circular Defocusing Ablowitz-Ladik lattice
Jacobi Defocusing Schur flow
Laguerre Exponential Toda lattice

Antisymmetric Gaussian Volterra lattice
then:

» [ is just the periodic version of L;

> u, v are as before; daF(V,a) = F(V, )

» Vs nice enough; V.oa)= — i lZ V.

F(V,a) = - lim ~Z(V,a)
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Metatheorem

b-ensemble at high temperature Integrable System
Gaussian Toda lattice
Circular Defocusing Ablowitz-Ladik lattice
Jacobi Defocusing Schur flow
Laguerre Exponential Toda lattice
Antisymmetric Gaussian Volterra lattice
then:

> L is just the periodic version of L;
> u, v are as before; Oaavg(x) = pi(x)

» Vs nice enough; 1
2Oy
J:
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Why is it relevant?

%IE [Tr (Lkﬂ — DudiaF(V+ i, @)

le=o

(E [Tr (L¥) Tr ()] — E[Tr (L)]E[Tr (L°)]) = 0y O0naF (V+inx +itX, a),

1
N
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Why is it relevant?

%IIE [Tr (L")} — 00 F(V+ itx, o) _,

|t1:t2:0

N
These quantities are relevant for the Theory of generalized hydrodynamics,

indeed they are one of the building block of this theory.
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B-ensemble at high temperature Integrable System
Gaussian Toda lattice
(Spohn; Guionnet-Memin)
. Defocusing Ablowitz-Ladik lattice
Circular g
pohn, Grava-M.; Memin-M.
Spohn, G M.; M
Jacobi Defocusing Schur flow
(Spohn; Memin-M. )
Lacuerre Exponential Toda lattice
isonni-Grava-Gubbiotti-M.
& G G Gubb
. . . Volterra lattice
Antisymmetric Gaussian o o
(Gisonni-Grava-Gubbiotti-M.)

Soon (hopefully): generalization for polynomial potential.
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Missing pieces: Currents

Due to the periodicity and local properties of the systems at hand

M
Tr (Lk) = Z QJ[.k] ,
j=1
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Missing pieces: Currents

Due to the periodicity and local properties of the systems at hand

M
Tr (Lk) = Z QJ[.k] ,
j=1

o) _
K K
A= - 4
we are interested in
E[M).
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Toda numerics

H. Spohn was able to compute such quantities for the Toda lattice:

Toda, <ej(t)eo(0) >

3] —— t:150
—— t:200
24 —— GHD
1
o
-15 -1.0 -0.5 0.0 05 1.0 15

10-1 4

1073 4

-15 -1.0 —0.5 0.0 0.5 1.0 1.5
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Recap

» There is a deep connection between integrable systems and random matrix
theory;
» We have a metatheorem, which still need to be completely proved;

» GHD does an amazing job ad predicting the shape of the correlation
functions for the Toda lattice

Next:
» Prove the metatheorem;
> Apply the GHD to other integrable systems;

» Numerically explore the behaviour of correlation for short-range integrable
systems,

l L 4 l
=3 D aki— Y aws)| s G=a|]]aei—[[aw
k=1 k=1 k=1 k=1

17/18



Thank you for the attention!
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