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Motivation

Stochastic integrable systems of interacting particles is a tool to study
such phenomena as random growth of interfaces:

borders of bacterial colonies
shapes of crystals
combustion and wetting fronts
polymers in random media
traffic flows

The common point is the universal behaviour at large scales.

Universality classes

Kardar-Parisi-Zhang (KPZ)
Edwards-Wilkinson (EW)

To describe random many-particle systems we need exactly solvable
models with stochastic dynamics. Universal scaling exponents and
crossover scaling functions can be obtained from exact results in the
scaling limit.
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Outline

Definition: Asymmetric avalanche model and its particle current

Methods: stationary state analysis, Bethe anzats approach and
Baxter’s TQ-equation

Results: Present exact formulas for mean particle current and
diffusion coefficient. Obtain scaling exponents and crossover scaling
functions in the thermodynamic limit
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Asymmetric Avalanche Process

is a 1-dimensional stochastic process on a ring evolving in continuous time

States η(t) : R≥0 → {0, 1}Z/NZ with exactly p particles and no more
than one particle per site;

Evolution:
▶ all particles occupy different sites: jump randomly and independently

having waited for P(t(ηk) < T ) = 1− e−T either left or right,
R + L = 1

▶ particle comes to already occupied site the avalanche dynamics starts

(Priezzhev, Ivashkevich, Povolotsky, Hu, 2001)
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Avalanche dynamics

with probability µn, n particles go to the next site;

with probability 1− µn, n − 1 particles go to the next site and one
particle stays at the current site.

occurs instantly
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transition rate u(η′ → η) = R

transition rate u(η′ → η) = Lµ2(1− µ2)
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Master equation

Pt(η) := P(η(t) = η) - probability to be at state η at time t.

Given an initial distribution P0(η), Pt(η) satisfies forward Kolmogorov
equation

∂tPt(η) = LPt(η),

LPt(η) =
∑
η′

(u(η′ → η)Pt(η
′)− u(η → η′)Pt(η))

Bethe ansatz integrability condition + positivity of rates (Priezzhev,
Ivashkevich, Povolotsky, Hu, 2001)

µn = 1− [n]q = 1− 1− qn

1− q
, −1 < q < 0
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Why this process is interesting ?

Unstable states may appear randomly

Specific transition into a totally unstable state, when ρ → ρc and an
avalanche never stops in the thermodynamic limit
(p,N → +∞, ρ = const)

Unusual universal scaling behaviour, for ex. for the average particle
current per site jN

Figure: jN for q = −0.5, ρc = 2/3 and q = −0.125, ρc = 8/9.
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Stationary probability measure

is extremely simple Pst(x) =
1

Cp
N

.

Analysis of discretized AAP stationary measure reveals the structure of
avalanches resulting in

jN =
(1− q)

Cp
N

p−1∑
m=0

(m + 1)
(−1)mCp−m−1

N

1− qm+1
(Rqm − L)

=
(1− q)

Cp
N

∮
(1 + z)N

zp

[
Rg ′(zq)− Lg ′(z)

] dz

2πi
.

in terms of

g(z) = −
∞∑
k=0

(−z)k+1

1− qk+1
=

∞∑
k=0

qiz

1 + qiz
.

(it has poles zi = −qi , i ≥ 0)
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Total distance Yt

Y0 = 0,
Yt : Ω×R → Z≥0 - random variable of total number of jumps made by all
particles

Yt → Yt +∆Yt , ∆Yt ∈ {1,−1, n ≤ p}

The behaviour of moment generating function in the large time limit
t → ∞ is dominated by the largest eigenvalue λ(γ) of the deformed model
generator L(γ)

λ(γ) = lim
t→∞

lnEeγYt

t
=

∞∑
n=1

cn
γn

n!
,

First and second scaled cumulants:

J := c1 = lim
t→∞

E(Yt)

t
, ∆ := c2 = lim

t→∞

E(Y 2
t )− E(Yt)

2

t
,

Methods: Bethe anzatz, Baxter’s TQ-equation
(Baxter, 1972, Prolhac, Mallick, 2008)
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Mean particle current

Introducing normalized differential

DN,p(t) :=
dz

2πi

1

Cp
N

(1 + t)N

tp+1
.

we reproduce the stationary state result

jN = RjRN − LjLN

jRN = (1− q)

∮
DN,p(z)zg

′(zq), jLN = (1− q)

∮
DN,p(z)zg

′(z).
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The group diffusion coefficient is

∆ = R∆R − L∆L, where both right and left parts are given by the formula

∆I = ϵ(I )pNj IN + 2N2
∞∑
i=0

∮ ∮
DN,p(t)DN,p(y)ty

aI (y)

t − qiy

+2N2
∞∑
i=1

∮ ∮
DN,p(t)DN,p(y)ty

qiaI (qiy)

t − qiy

for I ∈ {R, L}, where function ϵ(R) = 1, ϵ(L) = −1 stands for sign and
functions

aR(y) = (1− q)g ′(qy)−
jRN

ρ(1 + y)
,

aL(y) = (1− q)g ′(y)−
jLN

ρ(1 + y)
.
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Asymptotic analysis in the thermodynamic limit
p,N → ∞, p/N = ρ

The critical density is a point of model phase transition ρc = 1
1−q .

jN(ρ) ≃


ρ(1−ρ)(Rρc+(1−ρc )L)

(ρ−ρc )2
+ j reg∞ (ρ), ρ < ρc ,

N(Rρc + L(1− ρc)), ρ = ρc ,

N3/2eNs(ρ|ρc )
√

2πρ(1−ρ)

ρc (1−ρc )
(ρ− ρc)(ρcR + (1− ρc)L), ρ > ρc ,

where

j reg∞ (ρ) =
ρcR + (1− ρc)L

ρc(1− ρc)

∞∑
k=1

k

[
(ρc−1)2

ρ−1
ρ
ρ2c

]k
1−

[
ρc−1
ρc

]k − Lρ(1− ρ)

ρc

s(ρ|ρc) = (1− ρ) ln

(
1− ρ

1− ρc

)
+ ρ ln

(
ρ

ρc

)
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Crossover function for jN

Result 2: Under the scaling of

β =

√
N(ρc − ρ)√
ρc(1− ρc)

the particle current is described by

jN(ρ) = N(Rρc + L(1− ρc))F(β) + O(N
1
2 ),

where

F(β) = 1−
√

π

2
β erfc

(
β√
2

)
e

β2

2 .

erfc(x) =
2√
π

∫ +∞

x
e−t2dt.
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Asymptotic analysis in the thermodynamic limit
p,N → ∞, p/N = ρ

∆N(ρ) ≃


N3/2

(
f (ρ)

2(ρ−ρc )4
+∆reg

∞ (ρ)
)
, ρ < ρc

N7/2(Rρc + L(1− ρc))
√

πρc(1− ρc), ρ = ρc

N4e2Ns(ρ|ρc )4π(ρ− ρc)(Rρc + L(1− ρc))
ρ(1−ρ)
ρc (1−ρc )

, ρ > ρc

where

f (ρ) =
√
π(Rρc + L(1− ρc))(ρc(1− ρc))

3/2(ρ2c − 2ρc(1− ρ)− ρ)

∆reg
∞ (ρ) ≃

√
π(Rρc + L(1− ρc))

4
√
ρ(1− ρ)ρc(1− ρc)

∞∑
k=1

[
(ρc−1)2

ρ−1
ρ
ρ2c

]k
1−

[
ρc−1
ρc

]k (
k2(1− 2ρ)− k3

)
−

√
π(ρ(1− ρ))3/2

4ρc
L.
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Result 3: Under the scaling of

β =

√
N(ρc − ρ)√
ρc(1− ρc)

the group diffusion coefficient is

∆N(ρ) = N
7
2 (Rρc + L(1− ρc))

√
ρc(1− ρc) G(β) + O(N3)

where the crossover function is

G(β) =
√
π(2F(

√
2β)−F (β))
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Thank you!
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