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Introduction

Sterile insect technique: Method to fight against public health issues or
massive crop destruction due to the presence of certain insects. Still used
today!

How does it work?:

Sterile males are introduced in a healthy population at a constant
rate.

The reproduction rate is therefore decreased.

With a high enough rate of injection of sterile individuals, the healthy
population becomes extinct.
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Introduction

The model:

Mosquitoes evolve on a discrete and bounded space.

A given site is in state 0 if it is empty, 1 if it only contains healthy
individuals, 2 if it only contains sterile individuals, 3 if it contains
healthy and sterile individuals.

The birth and death dynamics depends on: r , the rate of introduction
of sterile individuals, λ1, the rate of reproduction of sites in state 1
and λ2 ≤ λ1 that of sites in state 3. All individuals die at rate 1.

An exchange dynamics with parameter D models the displacements of
the mosquitoes.

”Slow” reservoirs at the boundary to model migrations/immigrations.
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Introduction

First issue of interest: Hydrodynamic limit (law of large numbers)

Microscopic probabilistic dynamics ⇒ Macroscopic deterministic dynamics

Sequence of empirical measures {πN
t , t ∈ [0, 1]}N≥1 defines a measure

QN on D([0,T ],M+(V )) where V is the underlying continuous space.

Under some appropriate space-time renormalization, QN converges to Q, a
measure on D([0,T ],M+(V )) concentrated on {ρ(t, x)dx , t ∈ [0,T ]},
where ρ is the solution of a PDE (hydrodynamic equation).
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Introduction

Second issue of interest: Hydrostatic limit

Microscopic equilibrium (invariant measure)

⇒ Macroscopic equilibrium (stationary solution of the PDE)

Invariant measure for the microscopic dynamics {πN
t , t ∈ [0, 1]}N≥1 is

associated (under same space time renormalisation) to the unique
stationary solution of the hydrodynamic equation.
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Interacting particle system at play

d ≥ 1, N ∈ N, finite volume VN = {−N, ...,N} × (Z/NZ)d−1.
State space of configurations:

EN = {0, 1, 2, 3}VN

Markovian jump process (ηNt )t≥0 parameterized by N on the state space
EN . For t ≥ 0, N ∈ N and x ∈ VN , η

N
t (x) satisfies:

ηNt (x) =


0 if x is empty,
1 if there are only healthy mosquitoes in x ,
2 if there are only sterile mosquitoes in x ,
3 if there are healthy and sterile mosquitoes in x .
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Interacting particle system at play

The global dynamics is a superposition of three dynamics: a generalized
contact dynamics, an exchange and a boundary dynamics.

Rates for the generalized contact dynamics: 0 < λ2 < λ1, and r > 0.
Denote ni (x , η) the number of neighbors of x in state i in η.

- Birth rates:

0 → 1 : at rate λ1n1(x , η) + λ2n3(x , η), 0 → 2 : at rate r

2 → 3 : at rate λ1n1(x , η) + λ2n3(x , η), 1 → 3 : at rate r

- Death rates:

1 → 0, 2 → 0, 3 → 1, 3 → 2 : at rate 1
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Interacting particle system at play

Rates for the exchange dynamics: two neighbouring sites exchange
states at rate DN2 with D > 0, i.e. for x , y ∈ VN two neighbours,

(η(x), η(y)) → (η(y), η(x)) : at rate DN2.

For the boundary dynamics: fix a function b̂ = (b1, b2, b3) : Γ → R3

and two slow-down parameters θℓ, θr ≥ 0. For x ∈ Γ+N and
i ∈ {0, 1, 2, 3},

η(x) → i : at rate N2−θrbi (x/N)

with b0 = 1− b1 − b2 − b3 and η0 = 1− η1 − η2 − η3. For x ∈ Γ−N ,
replace θr by θℓ in the above rates.
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Hydrodynamic limit

Denote V = [−1, 1]× Td−1 the continuous macroscopic counterpart of

VN . For t ≥ 0, denote π̂N
t ∈

(
M+(V )

)3
the vector of empirical measures

associated to the configuration ηNt :

π̂N
t =

( 1

Nd

∑
x∈VN

ηNt,1(x)δx/N ,
1

Nd

∑
x∈VN

ηNt,2(x)δx/N ,
1

Nd

∑
x∈VN

ηNt,3(x)δx/N

)
where δx/N is the Dirac measure on x/N and ηNt,i (x) = 1ηNt (x)=i .

Fix a time horizon T > 0.

(ηNt )t∈[0,T ] ∈ D
(
[0,T ],EN

)
⇒ (π̂N

t )t≥0 ∈ D
(
[0,T ],

(
M+(V )

)3)
.

Question: Asymptotic behavior of

(π̂N
t )t≥0 when N → ∞?
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Hydrodynamic limit

Fix θ̂ = (θℓ, θr ). Denote (Q θ̂
N)N≥1 the law of (π̂N

t )t∈[0,T ] in the Skorohod

space of measure trajectories D
(
[0,T ],

(
M+(V )

)3)
. The hydrodynamic

limit is given by the following system of coupled non linear equations with
mixed boundary conditions depending on the values of θℓ and θr :

Bulk equation: ρ̂ = (ρ1, ρ2, ρ3) : [0,T ]× V → [0, 1]3

∂t ρ̂ = D∆ρ̂+ F̂ (ρ̂) in V × (0,T )

where F̂ = (F1,F2,F3) : [0, 1]
3 → R3 will be given by

F1(ρ1, ρ2, ρ3) = 2d(λ1ρ1 + λ2ρ3)ρ0 + ρ3 − (r + 1)ρ1
F2(ρ1, ρ2, ρ3) = rρ0 + ρ3 − 2d(λ1ρ1 + λ2ρ3)ρ2 − ρ2
F3(ρ1, ρ2, ρ3) = 2d(λ1ρ1 + λ2ρ3)ρ2 + rρ1 − 2ρ3

with ρ0 = 1− ρ1 − ρ2 − ρ3.
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Hydrodynamic limit

Boundary conditions:
- Dirichlet regime: for θr ∈ [0, 1), resp. θℓ ∈ [0, 1), for 0 < t ≤ T ,

ρ̂(t, .)|Γ+ = b̂|Γ+ , resp. ρ̂(t, .)|Γ− = b̂|Γ− .

- Neumann regime: for θr > 1, resp. θℓ > 1, for 0 < t ≤ T ,

∂e1 ρ̂(t, .)|Γ+ = 0, resp. ∂e1 ρ̂(t, .)|Γ− = 0.

Theorem

The sequence of measures (Q θ̂
N)N≥1 is relatively compact and any limit Q θ̂

is a Dirac measure concentrated on trajectories which are absolutely
continuous with respect to the Lebesgue measure. The density trajectory
must satisfy one of the above PDEs with mixed boundary conditions
depending on θ̂, as well as some regularity assumptions.
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Hydrodynamic limit

Uniqueness of the limit: If for any Ĝ = (G1,G2,G3) : V → R3,

lim sup
N→∞

EµN

[∣∣∣ < π̂N , Ĝ > −
∫
V
γ̂(x).Ĝ (x)dx

∣∣∣] = 0,

Then, (Q θ̂
N)N≥1 converges to the Dirac measure concentrated on

{ρ̂(t, x)dx , t ∈ [0,T ]} where ρ̂ is the unique solution of the PDE
corresponding to θ̂ with initial condition γ̂.
Proof:

Martingale problem, entropy method

Analysis of coupled equations in dimensions d ≥ 2.
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Hydrostatic limit

Macroscopic equilibrium:
Under conditions (1), for a given θ̂, there exists a unique stationary
solution ρ of the hydrodynamic equation associated to θ̂ and we refer to it
as a macroscopic equilibrium.

D ≥ 1
r + 1 > 2d(λ1 − λ2)
1 > 2dλ2.

(1)

The invariant measure and the stationary profile are related by the
Hydrostatic limit which states as follows:
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Hydrostatic limit

Theorem (Mourragui, Saada, V.)

Suppose (1) holds and consider a θ̂ ∈ (R+)2. For any continuous
Ĝ = (G1,G2,G3) : [−1, 1]× Td−1 → R3,

lim sup
N→∞

E
µN
ss(θ̂)

[∣∣∣ < π̂N , Ĝ > − < ρ, Ĝ >
∣∣∣] = 0

where ρ is the unique stationary solution of the hydrodynamic equation
associated to θ̂.

=⇒ The sequence of probability measures (µN
ss(θ̂))N≥1 is associated to ρ.

14/24



Sketch of the proof of the Hydrostatic limit

Consider µNk
ss (θ̂) a subconverging sequence of µN

ss(θ̂). By stationarity of
µss
N (θ̂), for any continuous Ĝ and any T ≥ 0,

E
µ
Nk
ss (θ̂)

(∣∣∣ < π̂N , Ĝ > − < ρ, Ĝ >
∣∣∣) = E

µ
Nk
ss (θ̂)

(∣∣∣ < π̂N
T , Ĝ > − < ρ, Ĝ >

∣∣∣).

lim
k→∞

E
µ
Nk
ss (θ)

(∣∣∣ < π̂N
T , Ĝ > − < ρ, Ĝ >

∣∣∣)
≤

3∑
i=1

∥Gi∥∞Eµ∗
ss(θ)

( 3∑
i=1

∥ρi (T , .)− ρi (.)∥1
)

where we used the Hydrodynamic limit to replace π̂N
T by its associated

density limit ρ̂(T , .) = (ρ1(T , .), ρ2(T , .), ρ3(T , .)) and the triangular
inequality.
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Sketch of the proof of the Hydrostatic principle

The last term is bounded by

sup
ρ̂

3∑
i=1

∥Gi∥∞
( 3∑

i=1

∥ρi (T , .)− ρi (.)∥1
)
,

where the supremum is carried over all solutions of the hydrodynamic
equation.

16/24



Hydrostatic limit

Theorem

Suppose conditions (1) hold. For any θ̂ = (θℓ, θr ) ∈ (R+)2, the
hydrodynamic equation with mixed boundary conditions associated to θ̂
has a unique stationary solution ρ. Furthermore, given ρ̂ = (ρ1, ρ2, ρ3) a
solution to that equation with arbitrary initial condition,

lim
t→∞

3∑
i=1

∥ρi (t, .)− ρi (.)∥1 = 0.

(1) :


D ≥ 1
r + 1 > 2d(λ1 − λ2)
1 > 2dλ2.
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Sketch of the proof of the Hydrostatic limit

For that, prove that the ”best” solution and ”worst” one converge to the
same thing by using a comparison principle.

Difficulty: No comparison principle for (ρ1, ρ2, ρ3). Instead:

Work under the change of coordinates

(ρ1, ρ2, ρ3) ↔ (ρ1, ρ1 + ρ3, 1− (ρ2 + ρ3)) =: (β1, β2, β3)

Prove a comparison principle to get that β̂1 the solution starting from
(β1, β2, β3) = (1, 1, 1) is decreasing, β̂0 the solution starting from
(β1, β2, β3) = (0, 0, 0) is non decreasing.

Prove that

lim
t→∞

3∑
i=1

∥β1
i − β0

i ∥1 = 0.

18/24
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Hydrostatic limit

Necessity to have conditions on the parameters?

F1
(
0,

r

r + 1
, 0
)
= F2

(
0,

r

r + 1
, 0
)
= F3

(
0,

r

r + 1
, 0
)
= 0.

So the constant function ρ̂ =
(
0, r

r+1 , 0
)
is a stationary solution of

∂t ρ̂ = D∆ρ̂+ F̂ (ρ̂)

with Neumann boundary conditions. Simulations show that when
conditions (1) are not satisfied, solutions to the PDE do not necessarily

converge to
(
0, r

r+1 , 0
)
hence non uniqueness.
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Simulations in one dimension for Neumann boundary
conditions

On the left, we started from the initial profile (ρ1, ρ2, ρ3) = (1, 0, 0) and
on the right, with (ρ1, ρ2, ρ3) = (0, 1, 0).
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x

0.00

0.25

0.50

0.75
rho_1
rho_1+rho_3
1-rho_2-rho_3

Figure: λ1 = 0.75, λ2 = 0.25,
ρ̂(0, .) = (1, 0, 0).
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Figure: λ1 = 0.75, λ2 = 0.25,
ρ̂(0, .) = (0, 1, 0).
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Simulations in one dimension for Neumann boundary
conditions

On the left, we started from the initial profile (ρ1, ρ2, ρ3) = (1, 0, 0) and
on the right, with (ρ1, ρ2, ρ3) = (0, 1, 0).

0.0 0.2 0.4 0.6 0.8 1.0
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0.25

0.50

0.75
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rho_1+rho_3
1-rho_2-rho_3

Figure: λ1 = 1, λ2 = 0.75,
ρ̂(0, .) = (1, 0, 0).
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Figure: λ1 = 1, λ2 = 0.75,
ρ̂(0, .) = (0, 1, 0).
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Some perspectives

Infinite volume case.

Large deviations and fluctuations.

Microscopic dynamics: information about the invariant measure for
the superposed dynamics with reservoirs.
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Thank you for listening!
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Microscopic equilibrium in infinite volume for the birth and
death process

Theorem

There exists a value λc(d) = λc such that

(i) For λ2 < λ1 ≤ λc , for any r ≥ 0, the birth and process dies out.

(ii) For λc < λ2 < λ1, for every r ≥ 0, the birth and death process
survives.

(iii) If λ2 < λc < λ1 are fixed,

• There exists r0 ∈ (0,∞) such that if r < r0, the process survives.
• There exists r1 ∈ (0,∞) such that if r > r1, the process dies out.

K. Kevin. Phase transition for a contact process with random slowdowns.
Markov Processes And Related Fields, 22(1):53–86, 2016.
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