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Box-Ball system

by Takahashi-Satsuma (1990) [29]

Box at each z ∈ Z. Ball configuration η ∈ {0, 1}Z

η(z) = 0 empty box, η(z) = 1 ball at z

Carrier visits boxes from left to right.

Carrier picks balls from occupied boxes.

Carrier deposits one ball, if carried, at empty boxes.

0 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 η
0 0 1 0 1 2 1 0 0 1 2 3 2 3 2 1 0 0 0 carrier load

0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 1 0 0 Tη

Tη : configuration after the carrier visited all boxes.
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Motivation: Korteweg & de Vries equation

u̇ = u′′′ + u u′

Figure from Rendiconti di Matematica,
Serie VII, 11, p.351-376, 1991

Interacting soliton solutions

Soliton: a solitary wave that propagates with little loss of energy and
retains its shape and speed after colliding with another such wave.
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Related mathematical works

Kato, Tsujimoto and Zuk [19], spectral decomposition of BBS.

Levine, Lyu and Pike [23] big solitons in a semi-infinite interval.

Kuniba and Lyu [21] one-sided multicolor solitons.

Croydon and Sasada: Invariant measures [7], Pitman transformation
[11], Hydrodynamics [10],

Linearizations: Kirillov-Sakamoto [20], Kuniba, Okado,
Sakamoto,Takagi, Yamada [22] F, Nguyen, Rolla, Wang [17]

Mucciconi, Sasada, Sasamoto, Suda [24] relation between linearizations

F. Gabrielli [15, 16]: Big family of excursion based invariant measures.
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Soliton Identification
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Walk representation

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1
η

ξ

ξ(z) − ξ(z − 1) = 2η(z) − 1, ξ(0) = 0

Records: {z : ξ(y) > ξ(z) for all y < z} (non-local function of η).

Excursion: configuration between two successive records
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Soliton identification for excursions [16, 29]

Let ti, si the localization of maxima and minima of the excursion.

runs: segments induced by broken lines of the walk: [si−1, ti] or [ti, si]

(1) Look for the shortest run I. Let L be its length, and s, t its extremes.

Identify the interval of length 2L centered at t as an L-soliton. Call it γ.
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(2) Ignore previously identified solitons γ̃ by gluing inf γ̃ with sup γ̃.

Iterate.

Solitons may be broken to give place to smaller solitons.
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Soliton identification for infinite configurations
Assume that the path ξ has all records.

Apply the identification algorithm to each excursion.

Records are black, solitons are colored.

Any site is either a record or belongs to a soliton.

Call s(γ) and t(γ) the positions of the path min and max contained in γ.
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Dynamics: BBS and Pitman transformation
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Pitman transformation [6, 9, 12, 18,26]

Reflect each excursion with respect to the current minimum of the walk:

The dynamics is well defined if all excursions are finite.

Call Tξ the path obtained after one iteration of ξ.

Pitman transformation yields BBS for the derivative: η(Tξ) = Tη(ξ).
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BBS conserves solitons

Proposition [29],[17] For any path ξ:

ξ has L-soliton γ with maximum t(γ)
if and only if
Tξ has L-soliton γ′ with minimum s(γ′) = t(γ).

Corollary: We can follow solitons along time.
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Generalized hydrodynamics

ball density = 0.25
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Effective soliton speeds in the stationary regime

Theorem (F-Nguyen-Rolla-Wang [17])
Let µ be a shift-ergodic T -invariant measure on the ball configuration
space.

x(γt) := position of leftmost box of k-soliton γ at time t.

There exists deterministic effective velocities v = (vk)k≥1 such that

lim
t→∞

x(γt)
t

= vk, µ-a.s.

And v satisfies

vk = k +
∑
m̸=k

2(m ∧ k) ρ̄m (vk − vm)

ρ̄k := mean number of k-solitons per site.
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Ball density = 0.15
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Hydrodynamics

Sequence of initial ball configurations ηϵ. Empirical density measures:

Kϵ
tφ := ϵ

∑
x∈Z

Tt/εηϵ(x) φ(ϵx)

Kϵ
k,tφ := ϵ

∑
x∈Z

Sk,t/εηϵ(x) φ(ϵx)

φ test function; Sk,tη(x) := 1{x is leftmost box of a k-soliton in Ttη}.

Theorem (Croydon and Sasada [10]) Assume uniformly bounded solitons
and no ball at negative sites. Let gk,0 be densities such that

lim
ϵ→0

Kϵ
k,tφ =

∫
gk,t(x) φ(x) dx, k ≥ 1, (1)

holds for t = 0. Then (1) holds for t > 0, where gk,t satisfy

∂

∂t
gk,t(x) = − ∂

∂x
vk,t(x) gk,t(x),
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and the effective instantaneous velocities vk,t satisfy

vk,t(x) = k −
∑

j≥12(k ∧ j) gj,t(x) (vj,t(x) − vk,t(x)),

Furthermore, the ball empirical measure converges:

lim
ϵ→0

Kϵ
tφ =

∑
k≥1

k
∫

gk,t(x) φ(x)

Universality of speed equations

Toda lattice: Cao, Bulchadani, Spohn [5].

Hard-rods: Boldrighini, Dobrushin, Suhov [2, 3], F, Franceschini,
Grevino, Spohn [14], F, Olla [25]

Surveys: Bulchandani-Cao-Moore [4], Doyon [13], Spohn [27,28],. . .



18

Continuous BBS

b b b b bb b b b
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Space of continuous excursions

ε : x 7→ ε(x), |ε′(x)| = 1 at all x but at maxima/minima located at

tn = (t1, . . . , tn) sn−1 = (s1, . . . , sn−1):

b b b b bb b b b

E(n) := Set of (tn, sn−1) representing excursions with n maxima.
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Soliton identification

Same as in the discrete setup.

Look for shortest run I, denote L, s, t its length and extremes.

Identify γ = interval centered at t with length 2L.

Glue extremes of previous identified solitons and iterate

b b b b bb b b b
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Slot set

Denote L1 > · · · > Ln > 0 the maxima of ε ∈ E(n).

Define L-slot set of ε:

S(L|ε) := [0, sn] \ ∪n
i=1

(
ti − (L ∧ Li), ti + (L ∧ Li)

)
,

where sn = 2(L1 + · · · + Ln) is the excursion size.

b b b b bb b b b

L-slot set is the set of points where an L-soliton may be inserted.
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Slot set

b b b b bb b b b

Slot sets of L5, . . . , L2. There is only one slot point for L1 (blue).



23

Attachement slot

ui :=
∣∣S(Li|εn) ∩ [0, inf γi]

∣∣
This is the Li-slot length of [0, inf γi].

b b b b bb b b b

bbb

b

b

b
b

This is u5
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Attachement slot

ui := Li-slot length in [0, inf γi].

b b b b bb b b b

bbb

b

b

b
b

These are u5, . . . , u2, u1 = 0 is the origin of the excursion.
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Slot diagram

The slot diagram of the excursion ε is the set of points

(u1, L1), . . . , (un, Ln):

bbb

b

b

b
b

Horizontal: attachement slot ui,

Vertical: soliton size Li.
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Space of slot diagrams with n points

S(n) :=
{

(un, Ln) : L1 > · · · > Ln > 0,

u1 = 0; 0 < ui ≤ 2
n∑

j=1

[
Lj − (Lj ∧ Li)

]
, i = 2, . . . , n

}

Bijection between excursions and slot diagrams

The function

Φ : (tn, sn−1) 7→ (un, Ln)

is a bijection between E(n) and S(n).
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Construction of Φ−1

We start with the slot diagram (u1, L1), . . . , (un, Ln):

bbb

b

b

b
b

Horizontal: attachement slot ui,

Vertical: soliton size Li.
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Construction of Φ−1

(1) Insert biggest soliton L1 at the origin.

bbb

b

b

b
b

bbb

b

b

b
b
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Construction of Φ−1

(2) Insert second biggest soliton L2 at L2 slot distance u2:

bbb

b

b

b
b

bbb

b

b

b
b
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Construction of Φ−1

(3) Insert third soliton L3 at L3-slot distance u3:

bbb

b

b

b
b

bbb

b

b

b
b
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Construction of Φ−1

(4-5) Insert remainig solitons L4 and L5 at slot distance u4 and u5:

bbb

b

b

b
b

bbb

b

b

b
b

Move slots sets together with the solitons containing them.
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Slot decomposition of infinite paths

b

b

b

b

b b
b

b

b

b
b

Concatenate the slot diagrams of the excursions

Keeping the same separation distances Di.

Translate points associated to εi to the left so that the left boundary of
each diagram is at distance Di for all y.
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Slot decomposition of infinite paths

b

b

b

b

b b
b

b

b

b
b

b

b

b

b b
b b

b

b

b

b

b

b b
b

b
b

b
b

b

b

b
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Slot decomposition of an infinite path is a discrete set of points

b

b

b

b

b

b

b

b

b

b

b

b b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

Illustration, the points in this picture do not correspond to the slot decomposition of the path

Similar construction gives a point configuration in the left semiplane.

Analogous to discrete BBS FNRW [17] and FG [16].
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Random excursions
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Soliton based measures µα

Probability measures on E = ∪nE(n),

α : R+ → [0, 1) is a parameter function.

µα(ε) := 1
Z(α)

n∏
i=1

α(Li) dtn dsn−1 , ε = (tn, sn−1) ∈ E(n) ,

Z(α) :=
+∞∑
n=1

∫
E(n)

dtn dsn−1

n∏
i=1

α(Li) ,

L1, . . . Ln are the heigths of the solitons of ε.

dtn := dt1 . . . dtn.
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Example: Zig-zag excursion

Xt continuous time Markov process on {−1, +1} [1, 8]

Rates c(−1, 1) = λ− and c(1, −1) = λ+. λ− < λ+.

ε(t) :=
∫ t

0
Xs ds, X0 := 1

ε :=
(
ε(t)

)
t∈[0,τ ] τ := hitting time of 0.

b b b b bb b b b

Excursion ε has law µα, with

α(L) = e−(λ++λ−)Lλ−λ+, Z(α) = λ−.
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Poisson(q) process

Let q : R+ → R+ be integrable:∫ +∞

0
q(L)dL < +∞

Let N ⊂ R × R+ be a Poisson process with intensity

du q(L) dL.

b

b

b

b

b

b

b

b

b

b

b b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b
b

b
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Slot diagram based measures

(u1, L1) := leftmost positive point in N

Grow region at rate twice the number of points in it

g(ℓ) = 2
∑

(u,L)∈A(ℓ)(L − ℓ)+ G(ℓ) :=
∫ ℓ

0 g(ℓ′)dℓ′.

A(ℓ) = {(u′, ℓ′) : u1 < u′ < G(ℓ′); ℓ ≤ ℓ′ ≤ L1}.

b

b

b

b

b

b

b

b

b

b

b
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Random slot diagram

(u1, L1) := leftmost positive point in N

Grow region at rate twice the number of points in it

g(ℓ) = 2
∑

(u,L)∈A(ℓ)(L − ℓ)+ G(ℓ) :=
∫ ℓ

0 g(ℓ′)dℓ′.

A(ℓ) = {(u′, ℓ′) : u1 < u′ < G(ℓ′); ℓ ≤ ℓ′ ≤ L1}.

b

b

b

b

b

b

b

b

b

b

b

Sort A(0) ∩ N to get {(u1, L1), . . . , (un, Ln)}. (n depends on N )

Shift by u1:

ε(N ) := Φ−1(
(0, L1), (u2 − u1, L2), . . . , (un − u1, Ln)

)
∈ S(n)
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Lemma The distribution of ε(N ) is given by

νq(du, dL) := 1∫ +∞
0 q(z)dz

n∏
i=1

e
−2

∫ Li

0
(Li−y)q(y)dy

q(Li) dLi

n∏
i=2

dui

Proof. Explore the points of the Poisson process according to the construction
of Φ−1.

Equivalence of measures

Proposition If α(L) = q(L)e−2
∫ L

0
(L−y)q(y)dy, then

µα = νq,

and Z(α) =
∫ +∞

0 q(L)dL.

Proof. The Jacobian is 1: dy
n

dsn−1 = dun dLn.

The identity is immediate.
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Relation between α and q

Call Q(L) =
∫ L

0 q(z)dz. Integrating q(L)e−2
∫ L

0
(L−y)q(y)dy by parts gives

q(L) = α(L)e2
∫ L

0
Q(z)dz

.

Calling M(L) =
∫ L

0 Q(z)dz, this is equivalent to{
M ′′(L) = α(L)e2M(L) ,
M(0) = M ′(0) = 0 .
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Explicit q for the Zig-zag excursion

Proposition If α(L) = e−(λ++λ−)L λ−λ+, then the solution q of

α(L) = q(L) e
−2

∫ L

0
(L−y)q(y)dy

is given by

q(L) = E
[
sinh

(√
E(L + K)

)]−2
,

E := λ2
+ + λ2

− + λ−λ+

K := 1√
E

coth−1
(√

1 + λ+λ−
E

)
.

Normalized q is the distribution of the maximum of an excursion with law µα.
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Slot decomposition of infinite paths

b

b

b

b

b b
b

b

b

b
b

Concatenate the slot diagrams of the excursions.

Keep the same separation distances Di.

Translate points associated to εi to the left so that the left boundary of each
diagram is at distance Di for all y.
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Slot decomposition of infinite paths
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Slot decomposition of an infinite path is a point process
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Illustration, the points in this picture do not correspond to the slot decomposition of the path

Similar construction gives a point configuration in the left semiplane.

Analogous to discrete BBS FNRW [17] and FG [16].
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µα excursions generate Poisson(q) process
Construct random path ξ:

(1) iid excursions with law µα = νq

(2) iid random variables Di ∼ Exponential(
∫

q(x)dx) separate excursions

b

b

b

b

b

b

b

b

b

b

b

b b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

Illustration, the points in this picture do not correspond to the slot decomposition of the path

Proposition Slot decomposition N (ξ) is a Poisson(q) process

We have constructed a random path ξ with a record at the origin.

Its law µ̂ is invariant by translation to another record.
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Dinamics
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BBS operator commutes with slot decomposition

b

b

b

b b
b

b
b

b
b

b

b

b

b

b b
b

b
b

b
b

b

b

b

b

b b
b

b
b

b
b

b

Theorem [17] Take η with no ball at negative boxes and the origin and
ξ = ξ(η). Then N (Tξ) = T N (ξ).

T N := {(u + L, L) : (u, L) ∈ N }, N contained in positive quadrant.

L-soliton jumps L to the right
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Doubly infinite case
T̂ ξ := “Tξ as seen from record at level 0”.

Theorem [17] Take initial ξ with a record at level 0 at the origin. Then

N (T̂ ξ) = T N (ξ)

T N :=
{(

u + L − o(L, N ), L
)

: (u, L) ∈ N
}

o(L, N ) := flow of L-slots through record 0.

L-soliton jumps L to the right, but L-slot crossing of the origin must be
considered.
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Invariant measures for continuous BBS
Take α such that

∫
L α(L) dL < ∞,

and q compatible with α.

This is equivalent to
∫

y q(y) dy < ∞ (finite maximum mean).

Consider iid excursions εj ∼ µα, separated by iid Aj ∼ Exponential(
∫

q).

We obtain a random path ξ with a record at the origin, and invariant by
translation to any record.

Call µ̂ the distribution of ξ.

Call µ the anti-Palm distribution of µ̂.

µ is translation invariant.

Theorem [17] The measure µ is invariant for T .

Corollary The stationary zigzag process with λ+ > λ− is invariant for T .
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From excursions to trees

b b b b bb b b b

b b b b bb b b b

Vertical slot space
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From excursions to trees

b b b b bb b b b

b b b b bb b b b

Vertical slot space
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To be continued
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