Renormalized spectral zeta function of Rabi model

Fumio Hiroshima
Kyushu University
Fukuoka, Japan

The Rabi model describes a two-level atom coupled to a single mode photon by the dipole interaction term. The single photon is represented by the 1D harmonic oscillator. This model is introduced by I.I. Rabi at 1937.

Let $\sigma_{x}, \sigma_{y}, \sigma_{z}$ be the 2×2 Pauli matrices:

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Suppose that the eigenvalues of the two level atom is $\{-\triangle, \Delta\}$. Here $\triangle>0$. Then the Hamiltonian of the two level atom is represented by $\triangle \sigma_{z}$. On the other hand a and a^{\dagger} be the annihilation operator and the creation operator in $L^{2}(\mathbb{R})$. It is given by

$$
a=\frac{1}{\sqrt{2}}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}+x\right), \quad a^{\dagger}=\frac{1}{\sqrt{2}}\left(-\frac{\mathrm{d}}{\mathrm{~d} x}+x\right) .
$$

They satisfy the canonical commutation relation $\left[a, a^{\dagger}\right]=1$. The harmonic oscillator is given by $a^{\dagger} a$, i.e.,

$$
a^{\dagger} a=-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+\frac{1}{2} x^{2}-\frac{1}{2}
$$

The harmonic oscillator $a^{\dagger} a$ is self-adjoint on $D\left(\frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}\right) \cap D\left(x^{2}\right)$ and the spectrum of $a^{\dagger} a$ is $\sigma\left(a^{\dagger} a\right)=\{n\}_{n=0}^{\infty}$. The Rabi Hamiltonian is defined as a self-adjoint operator on the tensor product Hilbert space $\mathbb{C}^{2} \otimes L^{2}(\mathbb{R})$ by

$$
H_{R a b i}=\triangle \sigma_{z} \otimes \mathbb{1}+\mathbb{1} \otimes a^{\dagger} a+g \sigma_{x} \otimes\left(a+a^{\dagger}\right)
$$

Here

$$
\sigma_{x} \otimes\left(a+a^{\dagger}\right)=\sigma_{x} \otimes \sqrt{2} x
$$

is the interaction term and $g \in \mathbb{R}$ stands for a coupling constant. It can be seen that $H_{\text {Rabi }}$ has the parity symmetry:

$$
\left[H_{R a b i}, \sigma_{z} \otimes(-1)^{a^{\dagger} a}\right]=0
$$

We set $\sigma\left(H_{\text {Rabi }}\right)=\left\{E_{n}(g)\right\}_{n=0}^{\infty}$, where $E_{n}(g) \leq E_{n+1}(g)$ for $n \geq 0$. The spectral zeta function of the Rabi model is defined by

$$
\zeta_{g}(s ; \tau)=\sum_{n=1}^{\infty} \frac{1}{\left(E_{n}(g)+\tau\right)^{s}}, \quad \tau>0
$$

Figure 1: $E_{n}(g) \rightarrow-\infty$ as $|g| \rightarrow \infty$ I. D. Feranchuk, L. I. Komarov and A. P. Ulyanenkov, J. Phys. A: Math. Gen. 29 (1996) 4035-4047.

Since $H_{R a b i}+g^{2} \geq-\triangle$, instead of $\zeta_{g}(s ; \tau)$, we are interested in investigating the asymptotic behaviour of

$$
\zeta_{g}^{\mathrm{ren}}(s ; \tau)=\sum_{n=1}^{\infty} \frac{1}{\left(E_{n}(g)+\tau+g^{2}\right)^{s}}, \quad \tau>0
$$

as $g \rightarrow \infty . \zeta_{g}^{\mathrm{ren}}(s ; \tau)$ is called the renormalized spectral zeta function. Let $\tau>0$ and

$$
\zeta(s ; \tau)=\sum_{n=0}^{\infty} \frac{1}{(n+\tau)^{s}}, \quad s>1
$$

be the Hurwiz zeta function.
Theorem 0.1 It is shown that

$$
\lim _{g \rightarrow \infty} \zeta_{g}^{\mathrm{ren}}(s ; \tau)=2 \zeta(s ; \tau)
$$

Moreover it can be shown that

$$
\begin{aligned}
& \lim _{g \rightarrow \infty} E_{2 n}(g)+g^{2}=n \\
& \lim _{g \rightarrow \infty} E_{2 n+1}(g)+g^{2}=n
\end{aligned}
$$

