

An inverse problem for data-driven prediction in quantum mechanics

Pedro Caro

ikerbasque

Basque Foundation for Science

bcam

basque center for applied mathematics

*Manuel Cañizares, Ioannis Parissis, Alberto Ruiz,
Thanasis Zacharopoulos*

Mathematical Challenges in Quantum Mechanics
7th January 2026

Outline

Forgetting the physics and predicting only with data

Data determine the evolution

The initial-to-final-state inverse problem

A scheme to solve this inverse problem

Restriction-extension of the Fourier transform and Strichartz inequalities

Outline

Forgetting the physics and predicting only with data

Data determine the evolution

The initial-to-final-state inverse problem

A scheme to solve this inverse problem

Restriction-extension of the Fourier transform and Strichartz inequalities

Physical solutions

- Wave functions describe the dynamics of quantum particles:

$$\{u(t, \cdot) : t \in [0, T]\}.$$

Physical solutions

- ▶ Wave functions describe the dynamics of quantum particles:

$$\{u(t, \cdot) : t \in [0, T]\}.$$

- ▶ Under the influence of V and with initial state f , u solves

$$\begin{cases} i\partial_t u = -\Delta u + Vu & \text{in } (0, T) \times \mathbb{R}^n, \\ u(0, \cdot) = f & \text{in } \mathbb{R}^n. \end{cases}$$

Physical solutions

- ▶ Wave functions describe the dynamics of quantum particles:

$$\{u(t, \cdot) : t \in [0, T]\}.$$

- ▶ Under the influence of V and with initial state f , u solves

$$\begin{cases} i\partial_t u = -\Delta u + Vu & \text{in } (0, T) \times \mathbb{R}^n, \\ u(0, \cdot) = f & \text{in } \mathbb{R}^n. \end{cases}$$

- ▶ For suitable V , there is a unique $u \in C([0, T]; L^2(\mathbb{R}^n))$ solution.

Physical solutions

- ▶ Wave functions describe the dynamics of quantum particles:

$$\{u(t, \cdot) : t \in [0, T]\}.$$

- ▶ Under the influence of V and with initial state f , u solves

$$\begin{cases} i\partial_t u = -\Delta u + Vu & \text{in } (0, T) \times \mathbb{R}^n, \\ u(0, \cdot) = f & \text{in } \mathbb{R}^n. \end{cases}$$

- ▶ For suitable V , there is a unique $u \in C([0, T]; L^2(\mathbb{R}^n))$ solution.
- ▶ **Phenomenology-driven prediction** requires the knowledge of $-\Delta + V$ to compute

$$f \in L^2(\mathbb{R}^n) \longmapsto u \in C([0, T]; L^2(\mathbb{R}^n)).$$

Physical solutions

- ▶ Wave functions describe the dynamics of quantum particles:

$$\{u(t, \cdot) : t \in [0, T]\}.$$

- ▶ Under the influence of V and with initial state f , u solves

$$\begin{cases} i\partial_t u = -\Delta u + Vu & \text{in } (0, T) \times \mathbb{R}^n, \\ u(0, \cdot) = f & \text{in } \mathbb{R}^n. \end{cases}$$

- ▶ For suitable V , there is a unique $u \in C([0, T]; L^2(\mathbb{R}^n))$ solution.
- ▶ **Phenomenology-driven prediction** requires the knowledge of $-\Delta + V$ to compute

$$f \in L^2(\mathbb{R}^n) \longmapsto u \in C([0, T]; L^2(\mathbb{R}^n)).$$

- ▶ Such type of solutions are called **physical solutions**.

The playground for suitable $V(t, x)$

- ▶ In the free-space $V = 0$ and with initial state f , the solution u

$$\begin{aligned} u(t, x) &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{ix \cdot \xi} e^{-it|\xi|^2} \widehat{f}(\xi) d\xi \\ &= \frac{1}{(4\pi it)^{n/2}} \int_{\mathbb{R}^n} e^{i\frac{|x-y|^2}{4t}} f(y) dy \end{aligned}$$

The playground for suitable $V(t, x)$

- ▶ In the free-space $V = 0$ and with initial state f , the solution u

$$\begin{aligned} u(t, x) &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{ix \cdot \xi} e^{-it|\xi|^2} \widehat{f}(\xi) d\xi \\ &= \frac{1}{(4\pi it)^{n/2}} \int_{\mathbb{R}^n} e^{i\frac{|x-y|^2}{4t}} f(y) dy \end{aligned}$$

- ▶ Strichartz estimates are derived from

$$\|u(t, \cdot)\|_{L^2(\mathbb{R}^n)} = \|f\|_{L^2(\mathbb{R}^n)} \text{ and } \|u(t, \cdot)\|_{L^\infty(\mathbb{R}^n)} \lesssim |t|^{-n/2} \|f\|_{L^1(\mathbb{R}^n)}.$$

The playground for suitable $V(t, x)$

- ▶ In the free-space $V = 0$ and with initial state f , the solution u

$$\begin{aligned} u(t, x) &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{ix \cdot \xi} e^{-it|\xi|^2} \widehat{f}(\xi) d\xi \\ &= \frac{1}{(4\pi it)^{n/2}} \int_{\mathbb{R}^n} e^{i\frac{|x-y|^2}{4t}} f(y) dy \end{aligned}$$

- ▶ Strichartz estimates are derived from

$$\|u(t, \cdot)\|_{L^2(\mathbb{R}^n)} = \|f\|_{L^2(\mathbb{R}^n)} \text{ and } \|u(t, \cdot)\|_{L^\infty(\mathbb{R}^n)} \lesssim |t|^{-n/2} \|f\|_{L^1(\mathbb{R}^n)}.$$

- ▶ Restriction-extension to the paraboloid $\tau = -|\xi|^2$

$$\phi(t, x) = \frac{1}{(2\pi)^{\frac{n+1}{2}}} \int_{\mathbb{R} \times \mathbb{R}^n} e^{i(t\tau + x \cdot \xi)} \widehat{\phi}(\tau, \xi) d(\tau, \xi)$$

The playground for suitable $V(t, x)$

- ▶ In the free-space $V = 0$ and with initial state f , the solution u

$$\begin{aligned} u(t, x) &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{ix \cdot \xi} e^{-it|\xi|^2} \widehat{f}(\xi) d\xi \\ &= \frac{1}{(4\pi it)^{n/2}} \int_{\mathbb{R}^n} e^{i\frac{|x-y|^2}{4t}} f(y) dy \end{aligned}$$

- ▶ Strichartz estimates are derived from

$$\|u(t, \cdot)\|_{L^2(\mathbb{R}^n)} = \|f\|_{L^2(\mathbb{R}^n)} \text{ and } \|u(t, \cdot)\|_{L^\infty(\mathbb{R}^n)} \lesssim |t|^{-n/2} \|f\|_{L^1(\mathbb{R}^n)}.$$

- ▶ Restriction-extension to the paraboloid $\tau = -|\xi|^2$

$$\phi(t, x) = \frac{1}{(2\pi)^{\frac{n+1}{2}}} \int_{\mathbb{R} \times \mathbb{R}^n} e^{i(t\tau + x \cdot \xi)} \widehat{\phi}(\tau, \xi) d(\tau, \xi)$$

- ▶ General phenomena: $e^{i(k \cdot x - \omega t)}$ angular frequency $\omega = \omega(k)$ depends on the wave vector k .

The data-driven approximate prediction problem

- For $N \in \mathbb{N}$, we define the **initial-to-final-state set with N elements**

$$\mathcal{D}_N = \{(f_1, u_1(T, \cdot)), \dots, (f_N, u_1(T, \cdot))\}.$$

The data-driven approximate prediction problem

- ▶ For $N \in \mathbb{N}$, we define the **initial-to-final-state set with N elements**

$$\mathcal{D}_N = \{(f_1, u_1(T, \cdot)), \dots, (f_N, u_1(T, \cdot))\}.$$

- ▶ **Data-driven approximate prediction problem:** Given $t \in (0, T]$ and initial state $f \in L^2(\mathbb{R}^n)$, when is it possible to compute

$$\mathcal{D}_N \longmapsto u_N(t, \cdot)$$

so that

$$u_N(t, \cdot) \approx u(t, \cdot) \text{ as } N \rightarrow \infty?$$

with u solution with initial state f .

The data-driven approximate prediction problem

- ▶ For $N \in \mathbb{N}$, we define the **initial-to-final-state set with N elements**

$$\mathcal{D}_N = \{(f_1, u_1(T, \cdot)), \dots, (f_N, u_1(T, \cdot))\}.$$

- ▶ **Data-driven approximate prediction problem:** Given $t \in (0, T]$ and initial state $f \in L^2(\mathbb{R}^n)$, when is it possible to compute

$$\mathcal{D}_N \longmapsto u_N(t, \cdot)$$

so that

$$u_N(t, \cdot) \approx u(t, \cdot) \text{ as } N \rightarrow \infty?$$

with u solution with initial state f .

- ▶ The Hamiltonian is assumed to have a particular structure

$$-\Delta + V$$

but the full description of V is ignored.

The data-driven approximate prediction problem

- ▶ For $N \in \mathbb{N}$, we define the **initial-to-final-state set with N elements**

$$\mathcal{D}_N = \{(f_1, u_1(T, \cdot)), \dots, (f_N, u_1(T, \cdot))\}.$$

- ▶ **Data-driven approximate prediction problem:** Given $t \in (0, T]$ and initial state $f \in L^2(\mathbb{R}^n)$, when is it possible to compute

$$\mathcal{D}_N \longmapsto u_N(t, \cdot)$$

so that

$$u_N(t, \cdot) \approx u(t, \cdot) \text{ as } N \rightarrow \infty?$$

with u solution with initial state f .

- ▶ The Hamiltonian is assumed to have a particular structure

$$-\Delta + V$$

but the full description of V is ignored.

- ▶ This means to me: "*Let's forget physics and predict only with data.*"

The data-driven prediction problem

- ▶ For $t \in [0, T]$, consider the bounded map

$$\mathcal{U}_t : f \in L^2(\mathbb{R}^n) \longmapsto u(t, \cdot) \in L^2(\mathbb{R}^n),$$

with u solving

$$\begin{cases} i\partial_t u = -\Delta u + Vu & \text{in } (0, T) \times \mathbb{R}^n, \\ u(0, \cdot) = f & \text{in } \mathbb{R}^n. \end{cases}$$

The data-driven prediction problem

- ▶ For $t \in [0, T]$, consider the bounded map

$$\mathcal{U}_t : f \in L^2(\mathbb{R}^n) \longmapsto u(t, \cdot) \in L^2(\mathbb{R}^n),$$

with u solving

$$\begin{cases} i\partial_t u = -\Delta u + Vu & \text{in } (0, T) \times \mathbb{R}^n, \\ u(0, \cdot) = f & \text{in } \mathbb{R}^n. \end{cases}$$

- ▶ The **data-driven prediction problem** consists in computing

$$\mathcal{U}_T \longmapsto \mathcal{U}$$

without the knowledge of V .

The data-driven prediction problem

- ▶ For $t \in [0, T]$, consider the bounded map

$$\mathcal{U}_t : f \in L^2(\mathbb{R}^n) \longmapsto u(t, \cdot) \in L^2(\mathbb{R}^n),$$

with u solving

$$\begin{cases} i\partial_t u = -\Delta u + Vu & \text{in } (0, T) \times \mathbb{R}^n, \\ u(0, \cdot) = f & \text{in } \mathbb{R}^n. \end{cases}$$

- ▶ The **data-driven prediction problem** consists in computing

$$\mathcal{U}_T \longmapsto \mathcal{U}$$

without the knowledge of V .

- ▶ Same spirit: “*Let's forget physics and predict only with data.*”

The data-driven prediction problem

- ▶ For $t \in [0, T]$, consider the bounded map

$$\mathcal{U}_t : f \in L^2(\mathbb{R}^n) \longmapsto u(t, \cdot) \in L^2(\mathbb{R}^n),$$

with u solving

$$\begin{cases} i\partial_t u = -\Delta u + Vu & \text{in } (0, T) \times \mathbb{R}^n, \\ u(0, \cdot) = f & \text{in } \mathbb{R}^n. \end{cases}$$

- ▶ The **data-driven prediction problem** consists in computing

$$\mathcal{U}_T \longmapsto \mathcal{U}$$

without the knowledge of V .

- ▶ Same spirit: “*Let's forget physics and predict only with data.*”
- ▶ \mathcal{D}_N consists of N points in the graph of \mathcal{U}_T .

Outline

Forgetting the physics and predicting only with data

Data determine the evolution

The initial-to-final-state inverse problem

A scheme to solve this inverse problem

Restriction-extension of the Fourier transform and Strichartz inequalities

Data determine the evolution map when

Theorem (C & Ruiz)

Assume $V_1(t, x)$ and $V_2(t, x)$ to have local critical singularities and super-exponential decay with $n \geq 2$. Then,

$$\mathcal{U}_T^1 = \mathcal{U}_T^2 \Rightarrow \mathcal{U}^1 = \mathcal{U}^2.$$

Data determine the evolution map when

Theorem (C & Ruiz)

Assume $V_1(t, x)$ and $V_2(t, x)$ to have local critical singularities and super-exponential decay with $n \geq 2$. Then,

$$\mathcal{U}_T^1 = \mathcal{U}_T^2 \Rightarrow \mathcal{U}^1 = \mathcal{U}^2.$$

Consider $V = V(t, x)$ so that for some compact $K \subset \mathbb{R}^n$:

- ▶ it has **local critical singularities**:

$$\mathbf{1}_K(x)V \in \begin{cases} L^a((0, T); L^b(\mathbb{R}^n)) & 2 - \frac{2}{a} = \frac{n}{b} \quad (a, b) \neq (\infty, n/2) \\ C([0, T]; L^{n/2}(\mathbb{R}^n)) & n \geq 3 \end{cases}$$

Data determine the evolution map when

Theorem (C & Ruiz)

Assume $V_1(t, x)$ and $V_2(t, x)$ to have local critical singularities and super-exponential decay with $n \geq 2$. Then,

$$\mathcal{U}_T^1 = \mathcal{U}_T^2 \Rightarrow \mathcal{U}^1 = \mathcal{U}^2.$$

Consider $V = V(t, x)$ so that for some compact $K \subset \mathbb{R}^n$:

- ▶ it has **local critical singularities**:

$$\mathbf{1}_K(x)V \in \begin{cases} L^a((0, T); L^b(\mathbb{R}^n)) & 2 - \frac{2}{a} = \frac{n}{b} \quad (a, b) \neq (\infty, n/2) \\ C([0, T]; L^{n/2}(\mathbb{R}^n)) & n \geq 3 \end{cases}$$

- ▶ it has **super-exponential decay**

$$\mathbf{1}_{\mathbb{R}^n \setminus K}(x)e^{\rho|x|}V \in L^\infty((0, T) \times \mathbb{R}^n) \quad \forall \rho > 0.$$

Some comments

- ▶ The need of $C([0, T]; L^{n/2}(\mathbb{R}^n))$ for $n \geq 3$ instead of $L^\infty((0, T); L^{n/2}(\mathbb{R}^n))$ appears in the phenomenological resolution of the IVP.

Some comments

- ▶ The need of $C([0, T]; L^{n/2}(\mathbb{R}^n))$ for $n \geq 3$ instead of $L^\infty((0, T); L^{n/2}(\mathbb{R}^n))$ appears in the phenomenological resolution of the IVP.
- ▶ What does it mean that \mathcal{U}_T determines \mathcal{U} with $H = -\Delta + V$?

$$\left. \begin{array}{l} i \frac{d}{dt} \mathcal{U}_t^j = H_j \mathcal{U}_t^j \quad \text{in } (0, T), j \in \{1, 2\} \\ \mathcal{U}_T^1 = \mathcal{U}_T^2. \end{array} \right\} \Rightarrow \mathcal{U}_t^1 = \mathcal{U}_t^2 \quad \forall t(0, T).$$

Outline

Forgetting the physics and predicting only with data

Data determine the evolution

The initial-to-final-state inverse problem

A scheme to solve this inverse problem

Restriction-extension of the Fourier transform and Strichartz inequalities

The initial-to-final-state inverse problem

- ▶ Recall the **initial-to-final-state map**:

$$\mathcal{U}_T : f \in L^2(\mathbb{R}^n) \longmapsto u(T, \cdot) \in L^2(\mathbb{R}^n).$$

The initial-to-final-state inverse problem

- ▶ Recall the **initial-to-final-state map**:

$$\mathcal{U}_T : f \in L^2(\mathbb{R}^n) \longmapsto u(T, \cdot) \in L^2(\mathbb{R}^n).$$

- ▶ The **initial-to-final-state inverse problem**:
 1. Uniqueness:

$$\mathcal{U}_T^1 = \mathcal{U}_T^2 \Rightarrow V_1 = V_2?$$

The initial-to-final-state inverse problem

- ▶ Recall the **initial-to-final-state map**:

$$\mathcal{U}_T : f \in L^2(\mathbb{R}^n) \longmapsto u(T, \cdot) \in L^2(\mathbb{R}^n).$$

- ▶ The **initial-to-final-state inverse problem**:

1. Uniqueness:

$$\mathcal{U}_T^1 = \mathcal{U}_T^2 \Rightarrow V_1 = V_2?$$

2. Stability:

$$\|V_1 - V_2\| \leq \omega(\|\mathcal{U}_T^1 - \mathcal{U}_T^2\|_*)?$$

The initial-to-final-state inverse problem

- ▶ Recall the **initial-to-final-state map**:

$$\mathcal{U}_T : f \in L^2(\mathbb{R}^n) \longmapsto u(T, \cdot) \in L^2(\mathbb{R}^n).$$

- ▶ The **initial-to-final-state inverse problem**:

1. Uniqueness:

$$\mathcal{U}_T^1 = \mathcal{U}_T^2 \Rightarrow V_1 = V_2?$$

2. Stability:

$$\|V_1 - V_2\| \leq \omega(\|\mathcal{U}_T^1 - \mathcal{U}_T^2\|_*)?$$

3. Reconstruction:

$$\mathcal{U}_T \longmapsto V?$$

The initial-to-final-state inverse problem

- ▶ Recall the **initial-to-final-state map**:

$$\mathcal{U}_T : f \in L^2(\mathbb{R}^n) \longmapsto u(T, \cdot) \in L^2(\mathbb{R}^n).$$

- ▶ The **initial-to-final-state inverse problem**:

1. Uniqueness:

$$\mathcal{U}_T^1 = \mathcal{U}_T^2 \Rightarrow V_1 = V_2?$$

2. Stability:

$$\|V_1 - V_2\| \leq \omega(\|\mathcal{U}_T^1 - \mathcal{U}_T^2\|_*)?$$

3. Reconstruction:

$$\mathcal{U}_T \longmapsto V?$$

- ▶ The resolution of inverse problem solves the data-driven prediction problem.

Uniqueness: unbounded potentials

Theorem (C & Ruiz)

Assume $V_1(t, x)$ and $V_2(t, x)$ to have local critical singularities and super-exponential decay with $n \geq 2$. Then,

$$\mathcal{U}_T^1 = \mathcal{U}_T^2 \Rightarrow V_1 = V_2.$$

Uniqueness: stationary potentials

Theorem (Cañizares, C, Parissis & Zacharopoulos)

Assume $V_1(x)$ and $V_2(x)$ to be bounded and have super-linear decay with $n \geq 2$. Then,

$$\mathcal{U}_T^1 = \mathcal{U}_T^2 \Rightarrow V_1 = V_2.$$

Uniqueness: stationary potentials

Theorem (Cañizares, C, Parissis & Zacharopoulos)

Assume $V_1(x)$ and $V_2(x)$ to be bounded and have super-linear decay with $n \geq 2$. Then,

$$\mathcal{U}_T^1 = \mathcal{U}_T^2 \Rightarrow V_1 = V_2.$$

- ▶ Assume $V \in L^1(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n)$ to have a **super-linear decay**

$$\sum_{j \in \mathbb{N}_0} 2^j \|V\|_{L^\infty(D_j)} < \infty,$$

where

$$D_0 = \{x \in \mathbb{R}^n : |x| \leq 1\}, \quad D_j = \{x \in \mathbb{R}^n : 2^{j-1} < |x| \leq 2^j\}, \quad \forall j \in \mathbb{N}.$$

Related results

- ▶ In a joint collaboration with [Cañizares](#), [Parissis](#) and [Zacharopoulos](#) we have improved this result showing that, for uniqueness, it is enough to have

$$V_1, V_2 \in L^1(\mathbb{R}^n) \cap L^p(\mathbb{R}^n)$$

with $p \geq n/2$ for $n \geq 3$ and $p > 1$ for $n = 2$.

- ▶ Other inverse problems for the dynamical Schrödinger equation have been studied by [Aïcha](#), [Bellasoued](#), [Choulli](#), [Dos Santos Ferreira](#), [Mejri](#)...

Related results

- ▶ In a joint collaboration with [Cañizares](#), [Parissis](#) and [Zacharopoulos](#) we have improved this result showing that, for uniqueness, it is enough to have

$$V_1, V_2 \in L^1(\mathbb{R}^n) \cap L^p(\mathbb{R}^n)$$

with $p \geq n/2$ for $n \geq 3$ and $p > 1$ for $n = 2$.

- ▶ Other inverse problems for the dynamical Schrödinger equation have been studied by [Aïcha](#), [Bellasoued](#), [Choulli](#), [Dos Santos Ferreira](#), [Mejri](#)...
- ▶ Time-dependent Hamiltonian by [Aïcha](#), [Choulli](#), [Eskin](#), [Kian](#), [Soccorsi](#), [Tetlow](#)...

Outline

Forgetting the physics and predicting only with data

Data determine the evolution

The initial-to-final-state inverse problem

A scheme to solve this inverse problem

Restriction-extension of the Fourier transform and Strichartz inequalities

The orthogonality relation

Proposition

We have

$$\mathcal{U}_T^1 = \mathcal{U}_T^2 \implies \int_{\Sigma} (V_1 - V_2) u_1 \overline{v_2} = 0,$$

for all u_1 and v_2 *physical solutions* of

$$(i\partial_t + \Delta - V_1)u_1 = (i\partial_t + \Delta - \overline{V_2})v_2 = 0 \text{ in } \Sigma = (0, T) \times \mathbb{R}^n.$$

The orthogonality relation

Proposition

We have

$$\mathcal{U}_T^1 = \mathcal{U}_T^2 \implies \int_{\Sigma} (V_1 - V_2) u_1 \overline{v_2} = 0,$$

for all u_1 and v_2 *physical solutions* of

$$(i\partial_t + \Delta - V_1)u_1 = (i\partial_t + \Delta - \overline{V_2})v_2 = 0 \text{ in } \Sigma = (0, T) \times \mathbb{R}^n.$$

- ▶ Density of the product $u_1 \overline{v_2}$ would allow to conclude

$$V_1 = V_2.$$

Simplification of the problem

Assume to $F \in L^1(\mathbb{R}; L^1(\mathbb{R}^n)) \cap L^1(\mathbb{R}; L^\infty(\mathbb{R}^n))$ satisfy that

$$\int_{\mathbb{R} \times \mathbb{R}^n} F u \bar{v} = 0$$

for all physical solutions $(i\partial_t + \Delta)u = 0$ and $(i\partial_t + \Delta)v = 0$.

Simplification of the problem

Assume to $F \in L^1(\mathbb{R}; L^1(\mathbb{R}^n)) \cap L^1(\mathbb{R}; L^\infty(\mathbb{R}^n))$ satisfy that

$$\int_{\mathbb{R} \times \mathbb{R}^n} F u \bar{v} = 0$$

for all physical solutions $(i\partial_t + \Delta)u = 0$ and $(i\partial_t + \Delta)v = 0$.

- ▶ Can we ensure that $F = 0$?

Simplification of the problem

Assume to $F \in L^1(\mathbb{R}; L^1(\mathbb{R}^n)) \cap L^1(\mathbb{R}; L^\infty(\mathbb{R}^n))$ satisfy that

$$\int_{\mathbb{R} \times \mathbb{R}^n} F u \bar{v} = 0$$

for all physical solutions $(i\partial_t + \Delta)u = 0$ and $(i\partial_t + \Delta)v = 0$.

- ▶ Can we ensure that $F = 0$?
- ▶ Think of

$$u = e^{-i(|\kappa|^2 t - \mathbf{x} \cdot \kappa)} \text{ and } v = e^{-i(|\eta|^2 t - \mathbf{x} \cdot \eta)}.$$

Simplification of the problem

Assume to $F \in L^1(\mathbb{R}; L^1(\mathbb{R}^n)) \cap L^1(\mathbb{R}; L^\infty(\mathbb{R}^n))$ satisfy that

$$\int_{\mathbb{R} \times \mathbb{R}^n} F u \bar{v} = 0$$

for all physical solutions $(i\partial_t + \Delta)u = 0$ and $(i\partial_t + \Delta)v = 0$.

- ▶ Can we ensure that $F = 0$?
- ▶ Think of

$$u = e^{-i(|\kappa|^2 t - \mathbf{x} \cdot \kappa)} \text{ and } v = e^{-i(|\eta|^2 t - \mathbf{x} \cdot \eta)}.$$

- ▶ The problem becomes

$$\int_{\mathbb{R} \times \mathbb{R}^n} F(t, x) e^{-i(|\kappa|^2 t - \kappa \cdot x)} \overline{e^{-i(|\eta|^2 t - \eta \cdot x)}} d(t, x) = 0 \quad \forall \kappa, \eta \in \mathbb{R}^n.$$

Simplification of the problem

Assume to $F \in L^1(\mathbb{R}; L^1(\mathbb{R}^n)) \cap L^1(\mathbb{R}; L^\infty(\mathbb{R}^n))$ satisfy that

$$\int_{\mathbb{R} \times \mathbb{R}^n} F u \bar{v} = 0$$

for all physical solutions $(i\partial_t + \Delta)u = 0$ and $(i\partial_t + \Delta)v = 0$.

- ▶ Can we ensure that $F = 0$?
- ▶ Think of

$$u = e^{-i(|\kappa|^2 t - \mathbf{x} \cdot \kappa)} \text{ and } v = e^{-i(|\eta|^2 t - \mathbf{x} \cdot \eta)}.$$

- ▶ The problem becomes

$$\int_{\mathbb{R} \times \mathbb{R}^n} F(t, x) e^{-i(|\kappa|^2 t - \kappa \cdot x)} \overline{e^{-i(|\eta|^2 t - \eta \cdot x)}} \, d(t, x) = 0 \quad \forall \kappa, \eta \in \mathbb{R}^n.$$

- ▶ Hence $\hat{F}(|\kappa|^2 - |\eta|^2, \eta - \kappa) = 0$ for all $\kappa, \eta \in \mathbb{R}^n$.

Simplification of the problem

- If $\widehat{F}(|\kappa|^2 - |\eta|^2, \eta - \kappa) = 0$ for all $\kappa, \eta \in \mathbb{R}^n$,
 - Given $(\tau, \xi) \in \mathbb{R} \times \mathbb{R}^n$ so that $\xi \neq 0$, we choose

$$\kappa = -\frac{1}{2} \left(1 + \frac{\tau}{|\xi|^2}\right) \xi, \quad \eta = \frac{1}{2} \left(1 - \frac{\tau}{|\xi|^2}\right) \xi;$$

- since $\eta - \kappa = \xi$ and $|\kappa|^2 - |\eta|^2 = \tau$, we obtain $\widehat{F}(\tau, \xi) = 0$.

Simplification of the problem

- If $\widehat{F}(|\kappa|^2 - |\eta|^2, \eta - \kappa) = 0$ for all $\kappa, \eta \in \mathbb{R}^n$,
 - Given $(\tau, \xi) \in \mathbb{R} \times \mathbb{R}^n$ so that $\xi \neq 0$, we choose

$$\kappa = -\frac{1}{2} \left(1 + \frac{\tau}{|\xi|^2}\right) \xi, \quad \eta = \frac{1}{2} \left(1 - \frac{\tau}{|\xi|^2}\right) \xi;$$

- since $\eta - \kappa = \xi$ and $|\kappa|^2 - |\eta|^2 = \tau$, we obtain $\widehat{F}(\tau, \xi) = 0$.
- Consequently, \widehat{F} vanishes in

$$\{(\tau, \xi) \in \mathbb{R} \times \mathbb{R}^n : \xi \neq 0\}.$$

Simplification of the problem

- If $\widehat{F}(|\kappa|^2 - |\eta|^2, \eta - \kappa) = 0$ for all $\kappa, \eta \in \mathbb{R}^n$,
 - Given $(\tau, \xi) \in \mathbb{R} \times \mathbb{R}^n$ so that $\xi \neq 0$, we choose

$$\kappa = -\frac{1}{2} \left(1 + \frac{\tau}{|\xi|^2}\right) \xi, \quad \eta = \frac{1}{2} \left(1 - \frac{\tau}{|\xi|^2}\right) \xi;$$

- since $\eta - \kappa = \xi$ and $|\kappa|^2 - |\eta|^2 = \tau$, we obtain $\widehat{F}(\tau, \xi) = 0$.
- Consequently, \widehat{F} vanishes in

$$\{(\tau, \xi) \in \mathbb{R} \times \mathbb{R}^n : \xi \neq 0\}.$$

- Since the \widehat{F} is continuous in $\mathbb{R} \times \mathbb{R}^n$ we can conclude that $\widehat{F}(\tau, \xi) = 0$ for all $(\tau, \xi) \in \mathbb{R} \times \mathbb{R}^n$.

Simplification of the problem

- If $\widehat{F}(|\kappa|^2 - |\eta|^2, \eta - \kappa) = 0$ for all $\kappa, \eta \in \mathbb{R}^n$,
 - Given $(\tau, \xi) \in \mathbb{R} \times \mathbb{R}^n$ so that $\xi \neq 0$, we choose

$$\kappa = -\frac{1}{2} \left(1 + \frac{\tau}{|\xi|^2}\right) \xi, \quad \eta = \frac{1}{2} \left(1 - \frac{\tau}{|\xi|^2}\right) \xi;$$

- since $\eta - \kappa = \xi$ and $|\kappa|^2 - |\eta|^2 = \tau$, we obtain $\widehat{F}(\tau, \xi) = 0$.
- Consequently, \widehat{F} vanishes in

$$\{(\tau, \xi) \in \mathbb{R} \times \mathbb{R}^n : \xi \neq 0\}.$$

- Since the \widehat{F} is continuous in $\mathbb{R} \times \mathbb{R}^n$ we can conclude that $\widehat{F}(\tau, \xi) = 0$ for all $(\tau, \xi) \in \mathbb{R} \times \mathbb{R}^n$.
- By the injectivity of the Fourier transform, we have that $F(t, x) = 0$ for a.e. $(t, x) \in \mathbb{R} \times \mathbb{R}^n$.

Back to the full problem

- ▶ Recall that

$$\int_{\Sigma} (V_1 - V_2) u_1 \overline{v_2} = 0,$$

for all u_1 and v_2 physical solutions of $(i\partial_t + \Delta - V_1)u_1 = 0$ and $(i\partial_t + \Delta - \overline{V_2})v_2 = 0$.

Back to the full problem

- ▶ Recall that

$$\int_{\Sigma} (V_1 - V_2) u_1 \overline{v_2} = 0,$$

for all u_1 and v_2 physical solutions of $(i\partial_t + \Delta - V_1)u_1 = 0$ and $(i\partial_t + \Delta - \overline{V_2})v_2 = 0$.

- ▶ Then, we could take

$$u_1 = e^{-i(|\kappa|^2 t - x \cdot \kappa)} + u_1^b,$$

$$v_2 = e^{-i(|\eta|^2 t - x \cdot \eta)} + v_2^b.$$

Back to the full problem

- ▶ Recall that

$$\int_{\Sigma} (V_1 - V_2) u_1 \overline{v_2} = 0,$$

for all u_1 and v_2 physical solutions of $(i\partial_t + \Delta - V_1)u_1 = 0$ and $(i\partial_t + \Delta - \overline{V_2})v_2 = 0$.

- ▶ Then, we could take

$$u_1 = e^{-i(|\kappa|^2 t - x \cdot \kappa)} + u_1^b,$$
$$v_2 = e^{-i(|\eta|^2 t - x \cdot \eta)} + v_2^b.$$

- ▶ The correction u_1^b and v_2^b should be negligible with respect to a free space solutions.

Back to the full problem

- ▶ Recall that

$$\int_{\Sigma} (V_1 - V_2) u_1 \overline{v_2} = 0,$$

for all u_1 and v_2 physical solutions of $(i\partial_t + \Delta - V_1)u_1 = 0$ and $(i\partial_t + \Delta - \overline{V_2})v_2 = 0$.

- ▶ Then, we could take

$$u_1 = e^{-i(|\kappa|^2 t - x \cdot \kappa)} + u_1^b,$$
$$v_2 = e^{-i(|\eta|^2 t - x \cdot \eta)} + v_2^b.$$

- ▶ The correction u_1^b and v_2^b should be negligible with respect to a free space solutions.
- ▶ How can we do that?

Complex geometrical optics

- ▶ Solutions with exponential growth

$$(t, x) \in \mathbb{R} \times \mathbb{R}^n \mapsto e^{i|\nu|^2 t + \nu \cdot x}$$

with $\nu \in \mathbb{R}^n \setminus \{0\}$.

Complex geometrical optics

- ▶ Solutions with exponential growth

$$(t, x) \in \mathbb{R} \times \mathbb{R}^n \mapsto e^{i|\nu|^2 t + \nu \cdot x}$$

with $\nu \in \mathbb{R}^n \setminus \{0\}$.

- ▶ The exponential scale introduced by $e^{\nu \cdot x}$ is good enough to ensure that the corrections terms are negligible with respect to the leading terms. [More about it in a few slides.](#)

Complex geometrical optics

- Solutions with exponential growth

$$(t, x) \in \mathbb{R} \times \mathbb{R}^n \mapsto e^{i|\nu|^2 t + \nu \cdot x}$$

with $\nu \in \mathbb{R}^n \setminus \{0\}$.

- The exponential scale introduced by $e^{\nu \cdot x}$ is good enough to ensure that the corrections terms are negligible with respect to the leading terms. [More about it in a few slides.](#)
- For $(\tau, \xi) \in \mathbb{R} \times \mathbb{R}^n$ so that $\xi \neq 0$, we choose

$$\kappa = -\frac{1}{2} \left(1 + \frac{\tau}{|\xi|^2} \right) \xi, \quad \eta = \frac{1}{2} \left(1 - \frac{\tau}{|\xi|^2} \right) \xi, \quad \nu \cdot \xi = 0, \quad \nu \neq 0;$$

and

$$\begin{aligned} u_1(t, x) &= e^{i|\nu|^2 t + \nu \cdot x} (e^{-i(|\kappa|^2 t - \kappa \cdot x)} + u_1^b(t, x)), \\ v_2(t, x) &= e^{i|\nu|^2 t - \nu \cdot x} (e^{-i(|\eta|^2 t - \eta \cdot x)} + v_2^b(t, x)). \end{aligned}$$

These solutions are called **complex geometrical optics** (CGO).

The stationary vs dynamical potentials

- ▶ Complex geometrical optics

$$u_1(t, x) = e^{i|\nu|^2 t + \nu \cdot x} (e^{-i(|\kappa|^2 t - \kappa \cdot x)} + u_1^b(t, x)),$$
$$v_2(t, x) = e^{i|\nu|^2 t - \nu \cdot x} (e^{-i(|\eta|^2 t - \eta \cdot x)} + v_2^b(t, x)).$$

- ▶ Stationary states at fix energy

$$u_1(t, x) = e^{-i|\kappa|^2 t} (e^{i\kappa \cdot x} + u_1^b(x)),$$

$$v_2(t, x) = e^{-i|\eta|^2 t} (e^{i\eta \cdot x} + v_2^b(x)).$$

with

$$\kappa = -\frac{\xi}{2} + \left(\lambda^2 - \frac{|\xi|^2}{4} \right)^{1/2} \nu, \quad \eta = \frac{\xi}{2} + \left(\lambda^2 - \frac{|\xi|^2}{4} \right)^{1/2} \nu,$$

where $\xi \in \mathbb{R}^n$ is arbitrary, $\nu \cdot \xi = 0$, $|\nu| = 1$ and $\lambda > |\xi|/2$.

Challenges of the proof

- ▶ Construction of the correction terms u_1^b and v_2^b of

$$u_1 = e^{i|\nu|^2 t + \nu \cdot x} (u_1^\sharp + u_1^b),$$

$$v_2 = e^{i|\nu|^2 t - \nu \cdot x} (v_2^\sharp + v_2^b).$$

Challenges of the proof

- ▶ Construction of the correction terms u_1^b and v_2^b of

$$u_1 = e^{i|\nu|^2 t + \nu \cdot x} (u_1^\sharp + u_1^b),$$

$$v_2 = e^{i|\nu|^2 t - \nu \cdot x} (v_2^\sharp + v_2^b).$$

- ▶ New inequalities for the Fourier multiplier yielding the correction terms and for potentials that present **local critical singularities** and **moderate decay**. **More about it in a few slides.**

Challenges of the proof

- ▶ Construction of the correction terms u_1^b and v_2^b of

$$u_1 = e^{i|\nu|^2 t + \nu \cdot x} (u_1^\sharp + u_1^b),$$

$$v_2 = e^{i|\nu|^2 t - \nu \cdot x} (v_2^\sharp + v_2^b).$$

- ▶ New inequalities for the Fourier multiplier yielding the correction terms and for potentials that present **local critical singularities** and **moderate decay**. **More about it in a few slides.**
- ▶ For the construction, we use a trick¹ inspired in the Birman–Schwinger principle.

¹ Levine and Nachman.

Challenges of the proof

- ▶ Construction of the correction terms u_1^b and v_2^b of

$$u_1 = e^{i|\nu|^2 t + \nu \cdot x} (u_1^\sharp + u_1^b),$$

$$v_2 = e^{i|\nu|^2 t - \nu \cdot x} (v_2^\sharp + v_2^b).$$

- ▶ New inequalities for the Fourier multiplier yielding the correction terms and for potentials that present **local critical singularities** and **moderate decay**. **More about it in a few slides.**
- ▶ For the construction, we use a trick¹ inspired in the Birman–Schwinger principle.
- ▶ CGO solutions are not physical. Hence, the orthogonality relation has to be extended. This is why **we need the potentials to decay super-exponentially**.

¹Lavine and Nachman.

Challenges of the proof

- ▶ Construction of the correction terms u_1^b and v_2^b of

$$u_1 = e^{i|\nu|^2 t + \nu \cdot x} (u_1^\sharp + u_1^b),$$

$$v_2 = e^{i|\nu|^2 t - \nu \cdot x} (v_2^\sharp + v_2^b).$$

- ▶ New inequalities for the Fourier multiplier yielding the correction terms and for potentials that present **local critical singularities** and **moderate decay**. **More about it in a few slides.**
- ▶ For the construction, we use a trick¹ inspired in the Birman–Schwinger principle.
- ▶ CGO solutions are not physical. Hence, the orthogonality relation has to be extended. This is why **we need the potentials to decay super-exponentially**.
- ▶ This has been previously addressed in the literature **Novikov, Khenkin, Uhlmann, Vasy**... However, some difficulties have arisen in our situation because of the lack of ellipticity.

¹[Lavine and Nachman](#).

Outline

Forgetting the physics and predicting only with data

Data determine the evolution

The initial-to-final-state inverse problem

A scheme to solve this inverse problem

Restriction-extension of the Fourier transform and Strichartz inequalities

Correction term of the CGO solution

Recall that CGO is a solution of

$$(i\partial_t + \Delta - V)u = 0 \text{ in } \mathbb{R} \times \mathbb{R}^n,$$

in the form

$$u = e^{i|\nu|^2 t + \nu \cdot x} (u^\sharp + u^\flat).$$

Correction term of the CGO solution

Recall that CGO is a solution of

$$(i\partial_t + \Delta - V)u = 0 \text{ in } \mathbb{R} \times \mathbb{R}^n,$$

in the form

$$u = e^{i|\nu|^2 t + \nu \cdot x} (u^\sharp + u^\flat).$$

Since $(i\partial_t + \Delta)(e^{i|\nu|^2 t + \nu \cdot x} u^\sharp) = 0$ in $\mathbb{R} \times \mathbb{R}^n$ we have that

$$(i\partial_t + \Delta + 2\nu \cdot \nabla - V)u^\flat = Vu^\sharp \text{ in } \mathbb{R} \times \mathbb{R}^n.$$

Correction term of the CGO solution

Recall that CGO is a solution of

$$(i\partial_t + \Delta - V)u = 0 \text{ in } \mathbb{R} \times \mathbb{R}^n,$$

in the form

$$u = e^{i|\nu|^2 t + \nu \cdot x} (u^\sharp + u^\flat).$$

Since $(i\partial_t + \Delta)(e^{i|\nu|^2 t + \nu \cdot x} u^\sharp) = 0$ in $\mathbb{R} \times \mathbb{R}^n$ we have that

$$(i\partial_t + \Delta + 2\nu \cdot \nabla - V)u^\flat = Vu^\sharp \text{ in } \mathbb{R} \times \mathbb{R}^n.$$

- ▶ Using Fourier transform we can find an inverse S_ν for $i\partial_t + \Delta + 2\nu \cdot \nabla$. **In the next slide.**

Correction term of the CGO solution

Recall that CGO is a solution of

$$(i\partial_t + \Delta - V)u = 0 \text{ in } \mathbb{R} \times \mathbb{R}^n,$$

in the form

$$u = e^{i|\nu|^2 t + \nu \cdot x} (u^\sharp + u^\flat).$$

Since $(i\partial_t + \Delta)(e^{i|\nu|^2 t + \nu \cdot x} u^\sharp) = 0$ in $\mathbb{R} \times \mathbb{R}^n$ we have that

$$(i\partial_t + \Delta + 2\nu \cdot \nabla - V)u^\flat = Vu^\sharp \text{ in } \mathbb{R} \times \mathbb{R}^n.$$

- ▶ Using Fourier transform we can find an inverse S_ν for $i\partial_t + \Delta + 2\nu \cdot \nabla$. [In the next slide.](#)
- ▶ Multiplication by V can be thought of as a perturbation.

Correction term of the CGO solution

Recall that CGO is a solution of

$$(i\partial_t + \Delta - V)u = 0 \text{ in } \mathbb{R} \times \mathbb{R}^n,$$

in the form

$$u = e^{i|\nu|^2 t + \nu \cdot x} (u^\sharp + u^\flat).$$

Since $(i\partial_t + \Delta)(e^{i|\nu|^2 t + \nu \cdot x} u^\sharp) = 0$ in $\mathbb{R} \times \mathbb{R}^n$ we have that

$$(i\partial_t + \Delta + 2\nu \cdot \nabla - V)u^\flat = Vu^\sharp \text{ in } \mathbb{R} \times \mathbb{R}^n.$$

- ▶ Using Fourier transform we can find an inverse S_ν for $i\partial_t + \Delta + 2\nu \cdot \nabla$. [In the next slide.](#)
- ▶ Multiplication by V can be thought of as a perturbation.
- ▶ Is the operator $S_\nu \circ V$ **quantitatively or qualitatively smaller than Id ?**

$$(\text{Id} - S_\nu \circ V)u^\flat = S_\nu(Vu^\sharp).$$

How to capture this smallness

- ▶ To capture the smallness of $S_\nu \circ V$ one has to understand the interactions between S_ν and V .

How to capture this smallness

- ▶ To capture the smallness of $S_\nu \circ V$ one has to understand the interactions between S_ν and V .
- ▶ Since we want

$$\mathbf{1}_K(x)V \in \begin{cases} L^a((0, T); L^b(\mathbb{R}^n)) & 2 - \frac{2}{a} = \frac{n}{b} \quad (a, b) \neq (\infty, n/2), \\ C([0, T]; L^{n/2}(\mathbb{R}^n)) & n \geq 3, \end{cases}$$

we need to study the boundedness of S_ν in mixed-norm Lebesgue spaces.

How to capture this smallness

- ▶ To capture the smallness of $S_\nu \circ V$ one has to understand the interactions between S_ν and V .
- ▶ Since we want

$$\mathbf{1}_K(x)V \in \begin{cases} L^a((0, T); L^b(\mathbb{R}^n)) & 2 - \frac{2}{a} = \frac{n}{b} \quad (a, b) \neq (\infty, n/2), \\ C([0, T]; L^{n/2}(\mathbb{R}^n)) & n \geq 3, \end{cases}$$

we need to study the boundedness of S_ν in mixed-norm Lebesgue spaces.

The operator S_ν is the Fourier multiplier

$$S_\nu f(t, x) = \frac{1}{(2\pi)^{\frac{n+1}{2}}} \int_{\mathbb{R} \times \mathbb{R}^n} e^{i(t\tau + x \cdot \xi)} \frac{1}{-\tau - |\xi|^2 + i2\nu \cdot \xi} \widehat{f}(\tau, \xi) d(\tau, \xi),$$

which solves $(i\partial_t + \Delta + 2\nu \cdot \nabla)u = f$ in $\mathbb{R} \times \mathbb{R}^n$.

How to capture this smallness

- ▶ To capture the smallness of $S_\nu \circ V$ one has to understand the interactions between S_ν and V .
- ▶ Since we want

$$\mathbf{1}_K(x)V \in \begin{cases} L^a((0, T); L^b(\mathbb{R}^n)) & 2 - \frac{2}{a} = \frac{n}{b} \quad (a, b) \neq (\infty, n/2), \\ C([0, T]; L^{n/2}(\mathbb{R}^n)) & n \geq 3, \end{cases}$$

we need to study the boundedness of S_ν in mixed-norm Lebesgue spaces.

The operator S_ν is the Fourier multiplier

$$S_\nu f(t, x) = \frac{1}{(2\pi)^{\frac{n+1}{2}}} \int_{\mathbb{R} \times \mathbb{R}^n} e^{i(t\tau + x \cdot \xi)} \frac{1}{-\tau - |\xi|^2 + i2\nu \cdot \xi} \widehat{f}(\tau, \xi) d(\tau, \xi),$$

which solves $(i\partial_t + \Delta + 2\nu \cdot \nabla)u = f$ in $\mathbb{R} \times \mathbb{R}^n$. The set

$$\Gamma_\nu = \{(\tau, \xi) \in \mathbb{R} \times \mathbb{R}^n : -\tau - |\xi|^2 + i2\nu \cdot \xi = 0\}$$

is a **paraboloid of codimension 2**.

How to bound S_ν

There are two types of situations: near and far from Γ_ν .

- Far from Γ_ν the symbol

$$\frac{\mathbf{1}_{\text{far}(\Gamma_\nu)}}{-\tau - |\xi|^2 + i2\nu \cdot \xi}$$

is bounded and decay with parabolic properties.

How to bound S_ν

There are two types of situations: near and far from Γ_ν .

- ▶ Far from Γ_ν the symbol

$$\frac{\mathbf{1}_{\text{far}(\Gamma_\nu)}}{-\tau - |\xi|^2 + i2\nu \cdot \xi}$$

is bounded and decay with parabolic properties.

- ▶ When the symbol is supported near Γ_ν , the multiplier can be understood as a **restriction-and-then-extension set-up** in two different sense:

$$\frac{1}{(2\pi)^{\frac{n+1}{2}}} \int_{\mathbb{R} \times \mathbb{R}^n} e^{i(t\tau + x \cdot \xi)} \frac{\mathbf{1}_{\text{near}(\Gamma_\nu)}}{-\tau - |\xi|^2 + i2\nu \cdot \xi} \widehat{f}(\tau, \xi) d(\tau, \xi)$$

How to bound S_ν

There are two types of situations: near and far from Γ_ν .

- ▶ Far from Γ_ν the symbol

$$\frac{\mathbf{1}_{\text{far}(\Gamma_\nu)}}{-\tau - |\xi|^2 + i2\nu \cdot \xi}$$

is bounded and decay with parabolic properties.

- ▶ When the symbol is supported near Γ_ν , the multiplier can be understood as a **restriction-and-then-extension set-up** in two different sense:

$$\frac{1}{(2\pi)^{\frac{n+1}{2}}} \int_{\mathbb{R} \times \mathbb{R}^n} e^{i(t\tau + x \cdot \xi)} \frac{\mathbf{1}_{\text{near}(\Gamma_\nu)}}{-\tau - |\xi|^2 + i2\nu \cdot \xi} \widehat{f}(\tau, \xi) d(\tau, \xi)$$

- ▶ Restriction-and-then-extension either in the paraboloid

$$\{(\tau, \xi) \in \mathbb{R} \times \mathbb{R}^n : \tau = -|\xi|^2\},$$

or the hyperplane

$$\{(\tau, \xi) \in \mathbb{R} \times \mathbb{R}^n : \nu \cdot \xi = 0\}.$$

Estimates with gain in $|\nu|$

For $\hat{\nu} = \nu/|\nu|$ and $s \in \mathbb{R}$,

$$H_{\hat{\nu},s} = \{x \in \mathbb{R}^n : \hat{\nu} \cdot x = s\}.$$

Estimates with gain in $|\nu|$

For $\hat{\nu} = \nu/|\nu|$ and $s \in \mathbb{R}$,

$$H_{\hat{\nu},s} = \{x \in \mathbb{R}^n : \hat{\nu} \cdot x = s\}.$$

Theorem

Consider $n \in \mathbb{N}$. There exists an absolute constant $C > 0$ such that

$$\sup_{s \in \mathbb{R}} \|S_\nu f\|_{L^2(\mathbb{R} \times H_{\hat{\nu},s})} \leq \frac{C}{|\nu|} \int_{\mathbb{R}} \|f\|_{L^2(\mathbb{R} \times H_{\hat{\nu},s})} ds$$

for all $f \in \mathcal{S}(\mathbb{R} \times \mathbb{R}^n)$.

Estimates with gain in $|\nu|$

For $\hat{\nu} = \nu/|\nu|$ and $s \in \mathbb{R}$,

$$H_{\hat{\nu},s} = \{x \in \mathbb{R}^n : \hat{\nu} \cdot x = s\}.$$

Theorem

Consider $n \in \mathbb{N}$. There exists an absolute constant $C > 0$ such that

$$\sup_{s \in \mathbb{R}} \|S_\nu f\|_{L^2(\mathbb{R} \times H_{\hat{\nu},s})} \leq \frac{C}{|\nu|} \int_{\mathbb{R}} \|f\|_{L^2(\mathbb{R} \times H_{\hat{\nu},s})} ds$$

for all $f \in \mathcal{S}(\mathbb{R} \times \mathbb{R}^n)$.

- The decay in $|\nu|$ is key to make the correction terms negligible.

Estimates with gain in $|\nu|$

For $\hat{\nu} = \nu/|\nu|$ and $s \in \mathbb{R}$,

$$H_{\hat{\nu},s} = \{x \in \mathbb{R}^n : \hat{\nu} \cdot x = s\}.$$

Theorem

Consider $n \in \mathbb{N}$. There exists an absolute constant $C > 0$ such that

$$\sup_{s \in \mathbb{R}} \|S_\nu f\|_{L^2(\mathbb{R} \times H_{\hat{\nu},s})} \leq \frac{C}{|\nu|} \int_{\mathbb{R}} \|f\|_{L^2(\mathbb{R} \times H_{\hat{\nu},s})} ds$$

for all $f \in \mathcal{S}(\mathbb{R} \times \mathbb{R}^n)$.

- ▶ The decay in $|\nu|$ is key to make the correction terms negligible.
- ▶ This inequality can be understood as a local smoothing if $|\nu|$ is interpreted as a derivative.

Estimates with no gain in $|\nu|$: Strichartz inequalities

Theorem

Consider $n \in \mathbb{N}$ and $(q, r) \in [1, 2] \times [1, 2]$ such that

$$2 - \frac{2}{q} = \frac{n}{r} - \frac{n}{2} \iff \frac{2}{q'} = \frac{n}{2} - \frac{n}{r'},$$

with

$$(q, r, n) \neq (2, 1, 2) \iff (q', r', n) \neq (2, \infty, 2).$$

There exists a constant $C > 0$ that only depends on n , q and r such that

$$\|S_\nu f\|_{L^{q'}(\mathbb{R}; L^{r'}(\mathbb{R}^n))} \leq C \|f\|_{L^q(\mathbb{R}; L^r(\mathbb{R}^n))}$$

for all $f \in \mathcal{S}(\mathbb{R} \times \mathbb{R}^n)$.

Take-home message

- ▶ The initial-to-final-state inverse problem is motivated as theoretical framework to explain the “*we can ignore physics and predict only with data*”.

Take-home message

- ▶ The initial-to-final-state inverse problem is motivated as theoretical framework to explain the “*we can ignore physics and predict only with data*”.
- ▶ The product of physical solutions in the free space is dense.

Take-home message

- ▶ The initial-to-final-state inverse problem is motivated as theoretical framework to explain the “*we can ignore physics and predict only with data*”.
- ▶ The product of physical solutions in the free space is dense.
- ▶ We need to introduce *exponentially growing solutions* to make the correction terms negligible.

Take-home message

- ▶ The initial-to-final-state inverse problem is motivated as theoretical framework to explain the “*we can ignore physics and predict only with data*”.
- ▶ The product of physical solutions in the free space is dense.
- ▶ We need to introduce **exponentially growing solutions** to make the correction terms negligible.
- ▶ The orthogonality relation has to be extended for CGO solutions. This requires the potentials to have a **super-exponentially decay**.

Take-home message

- ▶ The initial-to-final-state inverse problem is motivated as theoretical framework to explain the “*we can ignore physics and predict only with data*”.
- ▶ The product of physical solutions in the free space is dense.
- ▶ We need to introduce **exponentially growing solutions** to make the correction terms negligible.
- ▶ The orthogonality relation has to be extended for CGO solutions. This requires the potentials to have a **super-exponentially decay**.
- ▶ To ensure that the correction terms become negligible we exploit the **trace properties of the Fourier transform on hyperplanes**.

Take-home message

- ▶ The initial-to-final-state inverse problem is motivated as theoretical framework to explain the “*we can ignore physics and predict only with data*”.
- ▶ The product of physical solutions in the free space is dense.
- ▶ We need to introduce **exponentially growing solutions** to make the correction terms negligible.
- ▶ The orthogonality relation has to be extended for CGO solutions. This requires the potentials to have a **super-exponentially decay**.
- ▶ To ensure that the correction terms become negligible we exploit the **trace properties of the Fourier transform on hyperplanes**.
- ▶ In order for the potentials to present **local critical singularities**, we need to prove suitable Strichartz inequalities.