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Manuel Cañizares, Ioannis Parissis, Alberto Ruiz,
Thanasis Zacharopoulos

Mathematical Challenges in Quantum Mechanics
7th January 2026



Outline

Forgetting the physics and predicting only with data

Data determine the evolution

The initial-to-final-state inverse problem

A scheme to solve this inverse problem

Restriction-extension of the Fourier transform and Strichartz inequalities



Outline

Forgetting the physics and predicting only with data

Data determine the evolution

The initial-to-final-state inverse problem

A scheme to solve this inverse problem

Restriction-extension of the Fourier transform and Strichartz inequalities



Physical solutions

▶ Wave functions describe the dynamics of quantum particles:

{u(t, �) : t ∈ [0,T ]}.

▶ Under the influence of V and with initial state f , u solves{
i∂tu = −∆u + Vu in (0,T )× Rn,

u(0, �) = f in Rn.

▶ For suitable V , there is a unique u ∈ C ([0,T ]; L2(Rn)) solution.

▶ Phenomenology-driven prediction requires the knowledge of
−∆+ V to compute

f ∈ L2(Rn) 7−→ u ∈ C ([0,T ]; L2(Rn)).

▶ Such type of solutions are called physical solutions.
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The playground for suitable V (t, x)
▶ In the free-space V = 0 and with initial state f , the solution u

u(t, x) =
1

(2π)n/2

∫
Rn

e ix·ξe−it|ξ|2 f̂ (ξ)dξ

=
1

(4πit)n/2

∫
Rn

e i
|x−y|2

4t f (y)dy

▶ Strichartz estimates are derived from

∥u(t, �)∥L2(Rn) = ∥f ∥L2(Rn) and ∥u(t, �)∥L∞(Rn) ≲ |t|−n/2∥f ∥L1(Rn).

▶ Restriction-extension to the paraboloid τ = −|ξ|2

ϕ(t, x) =
1

(2π) n+1
2

∫
R×Rn

e i(tτ+x·ξ)ϕ̂(τ, ξ)d(τ, ξ)

▶ General phenomena: e i(k·x−ωt) angular frequency ω = ω(k) depends
on the wave vector k.
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The data-driven approximate prediction problem
▶ For N ∈ N, we define the initial-to-final-state set with N

elements

DN = {(f1, u1(T , �)), . . . , (fN , u1(T , �))}.

▶ Data-driven approximate prediction problem: Given t ∈ (0,T ]
and initial state f ∈ L2(Rn), when is it possible to compute

DN 7−→ uN(t, �)

so that
uN(t, �) ≈ u(t, �) as N → ∞?

with u solution with initial state f .

▶ The Hamiltonian is assumed to have a particular structure

−∆+ V

but the full description of V is ignored.

▶ This means to me: “Let’s forget physics and predict only with data.”
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The data-driven prediction problem

▶ For t ∈ [0,T ], consider the bounded map

Ut : f ∈ L2(Rn) 7−→ u(t, �) ∈ L2(Rn),

with u solving {
i∂tu = −∆u + Vu in (0,T )× Rn,

u(0, �) = f in Rn.

▶ The data-driven prediction problem consists in computing

UT 7−→ U

without the knowledge of V .

▶ Same spirit: “Let’s forget physics and predict only with data.”

▶ DN consists of N points in the graph of UT .



The data-driven prediction problem

▶ For t ∈ [0,T ], consider the bounded map

Ut : f ∈ L2(Rn) 7−→ u(t, �) ∈ L2(Rn),

with u solving {
i∂tu = −∆u + Vu in (0,T )× Rn,

u(0, �) = f in Rn.

▶ The data-driven prediction problem consists in computing

UT 7−→ U

without the knowledge of V .

▶ Same spirit: “Let’s forget physics and predict only with data.”

▶ DN consists of N points in the graph of UT .



The data-driven prediction problem

▶ For t ∈ [0,T ], consider the bounded map

Ut : f ∈ L2(Rn) 7−→ u(t, �) ∈ L2(Rn),

with u solving {
i∂tu = −∆u + Vu in (0,T )× Rn,

u(0, �) = f in Rn.

▶ The data-driven prediction problem consists in computing

UT 7−→ U

without the knowledge of V .

▶ Same spirit: “Let’s forget physics and predict only with data.”

▶ DN consists of N points in the graph of UT .



The data-driven prediction problem

▶ For t ∈ [0,T ], consider the bounded map

Ut : f ∈ L2(Rn) 7−→ u(t, �) ∈ L2(Rn),

with u solving {
i∂tu = −∆u + Vu in (0,T )× Rn,

u(0, �) = f in Rn.

▶ The data-driven prediction problem consists in computing

UT 7−→ U

without the knowledge of V .

▶ Same spirit: “Let’s forget physics and predict only with data.”

▶ DN consists of N points in the graph of UT .



Outline

Forgetting the physics and predicting only with data

Data determine the evolution

The initial-to-final-state inverse problem

A scheme to solve this inverse problem

Restriction-extension of the Fourier transform and Strichartz inequalities



Data determine the evolution map when

Theorem (C & Ruiz)
Assume V1(t, x) and V2(t, x) to have local critical singularities and
super-exponential decay with n ≥ 2. Then,

U1
T = U2

T ⇒ U1 = U2.

Consider V = V (t, x) so that for some compact K ⊂ Rn:

▶ it has local critical singularities:

1K (x)V ∈

La((0,T ); Lb(Rn)) 2− 2

a
=

n

b
(a, b) ̸=

(
∞, n/2

)
C ([0,T ]; Ln/2(Rn)) n ≥ 3

▶ it has super-exponential decay

1Rn\K (x)e
ρ|x|V ∈ L∞((0,T )× Rn) ∀ρ > 0.
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Some comments

▶ The need of C ([0,T ]; Ln/2(Rn)) for n ≥ 3 instead of
L∞((0,T ); Ln/2(Rn)) appears in the phenomenological resolution of
the IVP.

▶ What does it mean that UT determines U with H = −∆+ V ?

i
d

dt
U j
t = HjU j

t in (0,T ), j ∈ {1, 2}

U1
T = U2

T .

 ⇒ U1
t = U2

t ∀t(0,T ).
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The initial-to-final-state inverse problem

▶ Recall the initial-to-final-state map:

UT : f ∈ L2(Rn) 7−→ u(T , �) ∈ L2(Rn).

▶ The initial-to-final-state inverse problem:

1. Uniqueness:
U1
T = U2

T ⇒ V1 = V2?

2. Stability:
∥V1 − V2∥ ≤ ω(∥U1

T − U2
T∥∗)?

3. Reconstruction:
UT 7−→ V ?

▶ The resolution of inverse problem solves the data-driven prediction
problem.
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Uniqueness: unbounded potentials

Theorem (C & Ruiz)
Assume V1(t, x) and V2(t, x) to have local critical singularities and
super-exponential decay with n ≥ 2. Then,

U1
T = U2

T ⇒ V1 = V2.



Uniqueness: stationary potentials

Theorem (Cañizares, C, Parissis & Zacharopoulos)
Assume V1(x) and V2(x) to be bounded and have super-linear decay
with n ≥ 2. Then,

U1
T = U2

T ⇒ V1 = V2.

▶ Assume V ∈ L1(Rn) ∩ L∞(Rn) to have a super-linear decay∑
j∈N0

2j∥V ∥L∞(Dj ) < ∞,

where

D0 = {x ∈ Rn : |x | ≤ 1}, Dj = {x ∈ Rn : 2j−1 < |x | ≤ 2j}, ∀j ∈ N.
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Related results

▶ In a joint collaboration with Cañizares, Parissis and Zacharopoulos
we have improved this result showing that, for uniqueness, it is
enough to have

V1,V2 ∈ L1(Rn) ∩ Lp(Rn)

with p ≥ n/2 for n ≥ 3 and p > 1 for n = 2.

▶ Other inverse problems for the dynamical Schrödinger equation have
been studied by Äıcha, Bellasoued, Choulli, Dos Santos Ferreira,
Mejri...

▶ Time-dependent Hamiltonian by Äıcha, Choulli, Eskin, Kian,
Soccorsi, Tetlow...



Related results

▶ In a joint collaboration with Cañizares, Parissis and Zacharopoulos
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The orthogonality relation

Proposition
We have

U1
T = U2

T =⇒
∫
Σ

(V1 − V2)u1v2 = 0,

for all u1 and v2 physical solutions of

(i∂t +∆− V1)u1 = (i∂t +∆− V2)v2 = 0 in Σ = (0,T )× Rn.

▶ Density of the product u1v2 would allow to conclude

V1 = V2.
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Simplification of the problem

Assume to F ∈ L1(R; L1(Rn)) ∩ L1(R; L∞(Rn)) satisfy that∫
R×Rn

Fuv = 0

for all physical solutions (i∂t +∆)u = 0 and (i∂t +∆)v = 0.

▶ Can we ensure that F = 0?

▶ Think of
u = e−i(|κ|2t−x·κ) and v = e−i(|η|2t−x·η).

▶ The problem becomes∫
R×Rn

F (t, x) e−i(|κ|2t−κ·x) e−i(|η|2t−η·x) d(t, x) = 0 ∀κ, η ∈ Rn.

▶ Hence F̂ (|κ|2 − |η|2, η − κ) = 0 for all κ, η ∈ Rn.
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▶ Hence F̂ (|κ|2 − |η|2, η − κ) = 0 for all κ, η ∈ Rn.



Simplification of the problem

▶ If F̂ (|κ|2 − |η|2, η − κ) = 0 for all κ, η ∈ Rn,
▶ Given (τ, ξ) ∈ R× Rn so that ξ ̸= 0, we choose

κ = −1

2

(
1 +

τ

|ξ|2
)
ξ, η =

1

2

(
1− τ

|ξ|2
)
ξ;

▶ since η − κ = ξ and |κ|2 − |η|2 = τ , we obtain F̂ (τ, ξ) = 0.

▶ Consequently, F̂ vanishes in

{(τ, ξ) ∈ R× Rn : ξ ̸= 0}.

▶ Since the F̂ is continuous in R× Rn we can conclude that
F̂ (τ, ξ) = 0 for all (τ, ξ) ∈ R× Rn.

▶ By the injectivity of the Fourier transform, we have that F (t, x) = 0
for a.e. (t, x) ∈ R× Rn.
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Back to the full problem

▶ Recall that ∫
Σ

(V1 − V2)u1v2 = 0,

for all u1 and v2 physical solutions of (i∂t +∆− V1)u1 = 0 and
(i∂t +∆− V2)v2 = 0.

▶ Then, we could take

u1 = e−i(|κ|2t−x·κ) + u♭1,

v2 = e−i(|η|2t−x·η) + v ♭
2 .

▶ The correction u♭1 and v ♭
2 should be negligible with respect to a free

space solutions.

▶ How can we do that?
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Complex geometrical optics

▶ Solutions with exponential growth

(t, x) ∈ R× Rn 7→ e i|ν|
2t+ν·x

with ν ∈ Rn \ {0}.

▶ The exponential scale introduced by eν·x is good enough to ensure
that the corrections terms are negligible with respect to the leading
terms. More about it in a few slides.

▶ For (τ, ξ) ∈ R× Rn so that ξ ̸= 0, we choose

κ = −1

2

(
1 +

τ

|ξ|2
)
ξ, η =

1

2

(
1− τ

|ξ|2
)
ξ, ν · ξ = 0, ν ̸= 0;

and

u1(t, x) = e i|ν|
2t+ν·x(e−i(|κ|2t−κ·x) + u♭1(t, x)

)
,

v2(t, x) = e i|ν|
2t−ν·x(e−i(|η|2t−η·x) + v ♭

2(t, x)
)
.

These solutions are called complex geometrical optics (CGO).
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The stationary vs dynamical potentials

▶ Complex geometrical optics

u1(t, x) = e i|ν|
2t+ν·x(e−i(|κ|2t−κ·x) + u♭1(t, x)

)
,

v2(t, x) = e i|ν|
2t−ν·x(e−i(|η|2t−η·x) + v ♭

2(t, x)
)
.

▶ Stationary states at fix energy

u1(t, x) = e−i|κ|2t(e iκ·x + u♭1(x)
)
,

v2(t, x) = e−i|η|2t(e iη·x + v ♭
2(x)

)
.

with

κ = −ξ

2
+
(
λ2 − |ξ|2

4

)1/2

ν, η =
ξ

2
+
(
λ2 − |ξ|2

4

)1/2

ν,

where ξ ∈ Rn is arbitrary, ν · ξ = 0, |ν| = 1 and λ > |ξ|/2.



Challenges of the proof

▶ Construction of the correction terms u♭1 and v ♭
2 of

u1 = e i|ν|
2t+ν·x(u♯1 + u♭1

)
,

v2 = e i|ν|
2t−ν·x(v ♯

2 + v ♭
2

)
.

▶ New inequalities for the Fourier multiplier yielding the correction
terms and for potentials that present local critical singularities and
moderate decay. More about it in a few slides.

▶ For the construction, we use a trick1 inspired in the
Birman–Schwinger principle.

▶ CGO solutions are not physical. Hence, the orthogonality relation
has to be extended. This is why we need the potentials to decay
super-exponentially.

▶ This has been previously addressed in the literature Novikov,
Khenkin, Uhlmann, Vasy... However, some difficulties have arisen in
our situation because of the lack of ellipticity.

1Lavine and Nachman.
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Outline

Forgetting the physics and predicting only with data

Data determine the evolution

The initial-to-final-state inverse problem

A scheme to solve this inverse problem

Restriction-extension of the Fourier transform and Strichartz inequalities



Correction term of the CGO solution

Recall that CGO is a solution of

(i∂t +∆− V )u = 0 in R× Rn,

in the form
u = e i|ν|

2t+ν·x(u♯ + u♭).

Since (i∂t +∆)(e i|ν|
2t+ν·xu♯) = 0 in R× Rn we have that

(i∂t +∆+ 2ν · ∇ − V )u♭ = Vu♯ in R× Rn.

▶ Using Fourier transform we can find an inverse Sν for
i∂t +∆+ 2ν · ∇. In the next slide.

▶ Multiplication by V can be thought of as a perturbation.

▶ Is the operator Sν ◦V quantitatively or qualitatively smaller than Id?

(Id− Sν ◦ V )u♭ = Sν(Vu
♯).
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How to capture this smallness

▶ To capture the smallness of Sν ◦ V one has to understand the
interactions between Sν and V .

▶ Since we want

1K (x)V ∈

La((0,T ); Lb(Rn)) 2− 2

a
=

n

b
(a, b) ̸=

(
∞, n/2

)
,

C ([0,T ]; Ln/2(Rn)) n ≥ 3,

we need to study the boundedness of Sν in mixed-norm Lebesgue
spaces.

The operator Sν is the Fourier multiplier

Sν f (t, x) =
1

(2π)
n+1
2

∫
R×Rn

e i(tτ+x·ξ) 1

−τ − |ξ|2 + i2ν · ξ
f̂ (τ, ξ)d(τ, ξ),

which solves (i∂t +∆+ 2ν · ∇)u = f in R× Rn. The set

Γν = {(τ, ξ) ∈ R× Rn : −τ − |ξ|2 + i2ν · ξ = 0}

is a paraboloid of codimension 2.
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How to bound Sν
There are two types of situations: near and far from Γν .

▶ Far from Γν the symbol

1far(Γν)

−τ − |ξ|2 + i2ν · ξ

is bounded and decay with parabolic properties.

▶ When the symbol is supported near Γν , the multiplier can be
understood as a restriction-and-then-extension set-up in two
different sense:

1

(2π)
n+1
2

∫
R×Rn

e i(tτ+x·ξ) 1near(Γν)

−τ − |ξ|2 + i2ν · ξ
f̂ (τ, ξ)d(τ, ξ)

▶ Restriction-and-then-extension either in the paraboloid

{(τ, ξ) ∈ R× Rn : τ = −|ξ|2},

or the hyperplane

{(τ, ξ) ∈ R× Rn : ν · ξ = 0}.
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Estimates with gain in |ν|

For ν̂ = ν/|ν| and s ∈ R,

Hν̂,s = {x ∈ Rn : ν̂ · x = s}.

Theorem
Consider n ∈ N. There exists an absolute constant C > 0 such that

sup
s∈R

∥Sν f ∥L2(R×Hν̂,s ) ≤
C

|ν|

∫
R
∥f ∥L2(R×Hν̂,s )ds

for all f ∈ S(R× Rn).

▶ The decay in |ν| is key to make the correction terms negligible.

▶ This inequality can be understood as a local smoothing if |ν| is
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Estimates with no gain in |ν|: Strichartz inequalities

Theorem
Consider n ∈ N and (q, r) ∈ [1, 2]× [1, 2] such that

2− 2

q
=

n

r
− n

2
⇐⇒ 2

q′
=

n

2
− n

r ′
,

with
(q, r , n) ̸= (2, 1, 2) ⇐⇒ (q′, r ′, n) ̸= (2,∞, 2).

There exists a constant C > 0 that only depends on n, q and r such that

∥Sν f ∥Lq′ (R;Lr′ (Rn)) ≤ C∥f ∥Lq(R;Lr (Rn))

for all f ∈ S(R× Rn).



Take-home message

▶ The initial-to-final-state inverse problem is motivated as theoretical
framework to explain the “we can ignore physics and predict only
with data”.

▶ The product of physical solutions in the free space is dense.

▶ We need to introduce exponentially growing solutions to make the
correction terms negligible.

▶ The orthogonality relation has to be extended for CGO solutions.
This requires the potentials to have a super-exponentially decay.

▶ To ensure that the correction terms become negligible we exploit the
trace properties of the Fourier transform on hyperplanes.

▶ In order for the potentials to present local critical singularities, we
need to prove suitable Strichartz inequalities.
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