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» Wave functions describe the dynamics of quantum particles:

{u(t,.): t€[0, T]}.
» Under the influence of V and with initial state f, u solves

iOyu=—Au+ Vu in (0,T7)xR",
u(0,.) =" in R".

> For suitable V, there is a unique u € C([0, T]; L?(R")) solution.

» Phenomenology-driven prediction requires the knowledge of
—A + V to compute

f e [2(R") — u e C([0, T]; L2(R™)).

» Such type of solutions are called physical solutions.
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The playground for suitable V/(t,x)

» In the free-space V = 0 and with initial state f, the solution u
u(t,x) = o e Eem P F(6) de¢
)= @
1 x—y|?
= [ e ) ay
Rn

(4mit)n/2

» Strichartz estimates are derived from

lu(t, Ylzgny = [1Fllizny and [[u(t, )l @n S 6172 F ]l eo)-

> Restriction-extension to the paraboloid 7 = —|¢|?

_ 1 i(tTer»g)A
oex) = Gz [ ST dr )

2

> General phenomena: e/(kx—«t)

on the wave vector k.

angular frequency w = w(k) depends
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» For N € N, we define the initial-to-final-state set with N
elements

Dy ={(f,u1(T,),...,(fn, ur (T, )}

> Data-driven approximate prediction problem: Given t € (0, T]
and initial state f € L2(R"), when is it possible to compute

Dy — uN(t, -)

so that
un(t,.) ~ u(t,.) as N — oo?

with v solution with initial state f.

» The Hamiltonian is assumed to have a particular structure
-A+V

but the full description of V is ignored.

”

» This means to me: “Let’s forget physics and predict only with data.
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The data-driven prediction problem

» For t € [0, T], consider the bounded map
U, f e 2(R") — u(t,.) € L3(R"),
with u solving
{iatu = —Au+Vu in (0,T)xR",
u(0,) =1 in R".
» The data-driven prediction problem consists in computing
Ur— U

without the knowledge of V.
» Same spirit: “Let’s forget physics and predict only with data.”
» Dy consists of N points in the graph of Ur.
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Data determine the evolution map when

Theorem (C & Ruiz)

Assume V;(t,x) and V5(t,x) to have local critical singularities and
super-exponential decay with n > 2. Then,

Ur =us = U =U>.

Consider V = V/(t,x) so that for some compact K C R":
» it has local critical singularities:

a ;LP(R" 2_n a oo, n
1(x)V € L0, THLRY)  2-— = (a,b) # (00, n/2)
c([o, T]; L"2(R")) n>3

> it has super-exponential decay

Lpn k(x)e”XV € L°((0, T) x R")  Vp > 0.
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Some comments

» The need of C([0, T]; L"/?(R")) for n > 3 instead of
L>((0, T); L"/?(R")) appears in the phenomenological resolution of
the IVP.

» What does it mean that U+ determines & with H = —A + V?

d . .
iU = HU i (0.7).) € {1,2}

Ur = Uuz.

= U =u? vt(0, T).
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The initial-to-final-state inverse problem

» Recall the initial-to-final-state map:

Ur : f e L’(R") — u(T,.) € L2(R").

» The initial-to-final-state inverse problem:

1. Uniqueness:
Ur=Usy = Vi = \W?

2. Stability:
IV = Vol < w(llUr —UT|.)?

3. Reconstruction:
Ur — V?

» The resolution of inverse problem solves the data-driven prediction
problem.



Uniqueness: unbounded potentials

Theorem (C & Ruiz)

Assume Vi(t,x) and V,(t,x) to have local critical singularities and
super-exponential decay with n > 2. Then,

Ut =U2 = V) = V.
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Uniqueness: stationary potentials

Theorem (Cafizares, C, Parissis & Zacharopoulos)

Assume Vj(x) and Va(x) to be bounded and have super-linear decay
with n > 2. Then,
Z/I%:U% = Vi=VW,.

» Assume V € L}(R") N L>°(R") to have a super-linear decay

> Y|V (p)) < 0,
JE€No

where

Do={x€R":|x| <1}, Dj={xcR": 271 < |x| <2} VjeN.
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Related results

» In a joint collaboration with Canizares, Parissis and Zacharopoulos
we have improved this result showing that, for uniqueness, it is
enough to have

Vi, Vo € LY(R") N LP(R")
with p > n/2 for n >3 and p > 1 for n = 2.

» Other inverse problems for the dynamical Schrodinger equation have
been studied by Aicha, Bellasoued, Choulli, Dos Santos Ferreira,
Mejri...

» Time-dependent Hamiltonian by Aicha, Choulli, Eskin, Kian,
Soccorsi, Tetlow...
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The orthogonality relation

Proposition
We have
=t — [ Vw0
>

for all uy and v, physical solutions of

(I.at+A* V1)U1 = (I-at+A772)V2 =0in X= (0, T) x R,

» Density of the product u;v; would allow to conclude

Vi = Vs
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Simplification of the problem
Assume to F € LY(R; LY(R™)) N L1(R; L>°(R™)) satisfy that

/ Fuv =0
RxR"

for all physical solutions (i0, + A)u =0 and (i9, + A)v = 0.
» Can we ensure that F = 07
> Think of

— 2_. — 2_
u = e—ilIPt=n) gng = g=ilinft—sxn).

» The problem becomes

/ F(t,x) e (s t=r:) e=illnFt=n>) d(t,x) =0 Vk,n € R".
RxR"

> Hence F(|x|2 — [n]2,n — k) = 0 for all k,n € R".
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Simplification of the problem

> If F(|s]2 = [n]2,n — k) =0 for all k,n € R",
> Given (7,£) € R x R" so that £ # 0, we choose

S 1( |g\2)5’ ”:%(l’ﬁ)g;

> since n — xk = £ and |s[* — |n|? = 7, we obtain ﬁ(T,ﬁ) =0.

» Consequently, F vanishes in

{(r,€) ER xR : £ # 0}

> Since the F is continuous in R x R" we can conclude that
F(r,&) =0 for all (1,£) € R x R".

» By the injectivity of the Fourier transform, we have that F(t,x) =0
for a.e. (t,x) € R x R".
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Back to the full problem

» Recall that
/(Vl - Vo)uiva =0,
bY
for all uy and v, physical solutions of (id; + A — Vi)u; = 0 and
(Iat + A — V2)V2 =0.
» Then, we could take
iy = e~ inPi=en) 4

—7 2_ .
vy = e i(Inlft=xm) v2b.

> The correction u} and v should be negligible with respect to a free
space solutions.

» How can we do that?
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Complex geometrical optics
> Solutions with exponential growth
(t,x) € R x R s gl

with v € R™\ {0}.
» The exponential scale introduced by e”* is good enough to ensure

that the corrections terms are negligible with respect to the leading
terms. More about it in a few slides.

» For (7,&) € R x R" so that £ # 0, we choose

’i:_l< |§|2)f7 02%(1—#)5, v-£=0, v#0;

and

u(t,x) = eil”‘2t+”'x(e‘i(""lzt_"'x) + Ui (t, x)),
va(t, x) = e"l”‘zt*”‘x(ef"(‘"‘ztfn'x) + vi(t, x)).

These solutions are called complex geometrical optics (CGO).



The stationary vs dynamical potentials

» Complex geometrical optics
up(t, x) = ei|”‘2t+”'x(e*i("‘“lzt*”'x) + u?(t,x)),
‘/2(1__7 X) _ ei|u‘2t—u‘x(e—i(‘m2t—n~x) + V2b(t, X))
> Stationary states at fix energy
Ul(t, X) _ efi|li‘2t(em-x + Ug(X)),
vo(t, x) = e”'|7’|2t(e"”'x +v3(x)).
with

where £ € R" is arbitrary, v - £ =0, |v| =1 and A > [¢]/2.
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Challenges of the proof

> Construction of the correction terms v and v of

. 2
= TS 4 )

. 2 _ .
vy = eIt ”X(VZu + vzb)

» New inequalities for the Fourier multiplier yielding the correction
terms and for potentials that present local critical singularities and
moderate decay. More about it in a few slides.

» For the construction, we use a trick! inspired in the
Birman—Schwinger principle.

» CGO solutions are not physical. Hence, the orthogonality relation
has to be extended. This is why we need the potentials to decay
super-exponentially.

» This has been previously addressed in the literature Novikov,
Khenkin, Uhlmann, Vasy... However, some difficulties have arisen in
our situation because of the lack of ellipticity.

ILavine and Nachman.
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Correction term of the CGO solution
Recall that CGO is a solution of
(i0,+A—V)u=0in R xR",

in the form
U= ei|u|2t+y.x(un + ub).

Since (i0, + A)(e/"Pt+7xyt) = 0 in R x R” we have that

(i +A+2v-V = V)’ =W in RxR".

» Using Fourier transform we can find an inverse S, for
i0y + A +2v-V. In the next slide.

» Multiplication by V can be thought of as a perturbation.
» s the operator S, o V quantitatively or qualitatively smaller than Id?

(Id - S, o V)’ = S, (Vuf).
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How to capture this smallness

» To capture the smallness of S, o V' one has to understand the
interactions between S, and V.

» Since we want

a : n 2*ﬁ a 00, N
Ly [FOTEEE) 2= =8 @) £ (on/2),

C([o, TI; L"*(R")) n>3,

we need to study the boundedness of S, in mixed-norm Lebesgue
spaces.

The operator S, is the Fourier multiplier

1 : 1 N
— i(tT+x-£)
Suf(tvx) (27T)n42rl /]Rx]R”e —r_ |€|2+,2y§f(7_7£)d(7_a€)7

which solves (i0y + A +2v-V)u=1f in R x R". The set
M={(r.&) ERxR": =7 — |¢]* + i2v- £ = 0}

is a paraboloid of codimension 2.
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How to bound S,

There are two types of situations: near and far from I',,.

» Far from I, the symbol

]-far(ru)
R

is bounded and decay with parabolic properties.

» When the symbol is supported near I',,, the multiplier can be
understood as a restriction-and-then-extension set-up in two
different sense:

1 : 1 ~
- i(tT+x-&) near(l,) 7 d
(2m)% / P+ iav-g 7Y

» Restriction-and-then-extension either in the paraboloid
{(r,€) eRxR": 7 = —¢?},
or the hyperplane
{(r,§) eRxR":v-£=0}.
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Estimates with gain in |v]|

For o =v/|v| and s € R,

Hys={xeR":0.-x=s}.

Theorem
Consider n € N. There exists an absolute constant C > 0 such that

C
sup [|Sufll2®xHy.p) < */ 11l i2(rx H, ,)ds
sER |V\ R

for all f € S(R x R").

» The decay in |v| is key to make the correction terms negligible.

» This inequality can be understood as a local smoothing if |v]| is
interpreted as a derivative.



Estimates with no gain in |v|: Strichartz inequalities

Theorem
Consider n € N and (q, r) € [1,2] x [1,2] such that

by 2_1"
p

n
VR
q

LN n
2 qg 2 r
with
(g,r,n) #(2,1,2) <= (q',r',n) #(2,00,2).

There exists a constant C > 0 that only depends on n, q and r such that

IS0 Fll o o (myy < ClFllaqsermm)
for all f € S(R x R").
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Take-home message

» The initial-to-final-state inverse problem is motivated as theoretical
framework to explain the “we can ignore physics and predict only
with data".

» The product of physical solutions in the free space is dense.

» We need to introduce exponentially growing solutions to make the
correction terms negligible.

» The orthogonality relation has to be extended for CGO solutions.
This requires the potentials to have a super-exponentially decay.

» To ensure that the correction terms become negligible we exploit the
trace properties of the Fourier transform on hyperplanes.

» In order for the potentials to present local critical singularities, we
need to prove suitable Strichartz inequalities.
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