

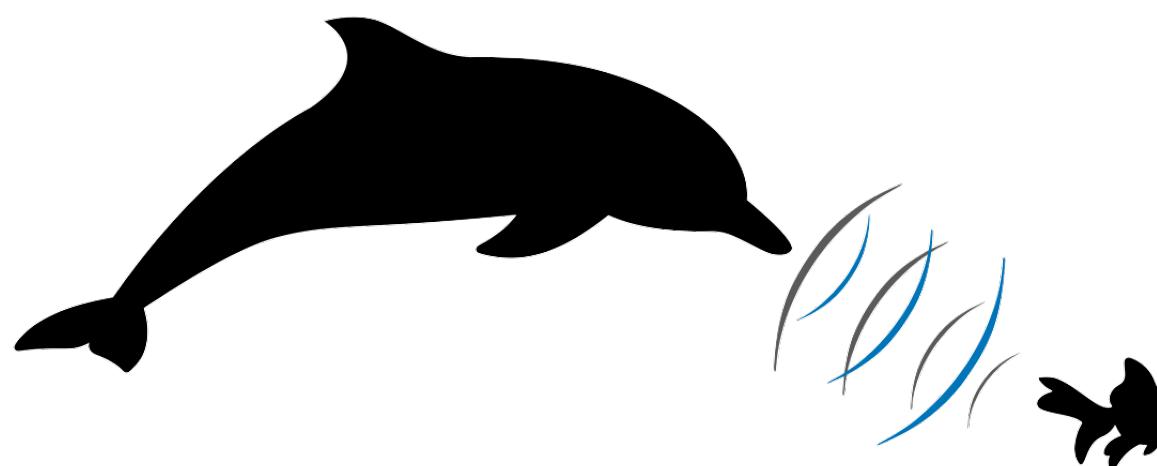
Inverse problems and quantum mechanics

María Ángeles García-Ferrero

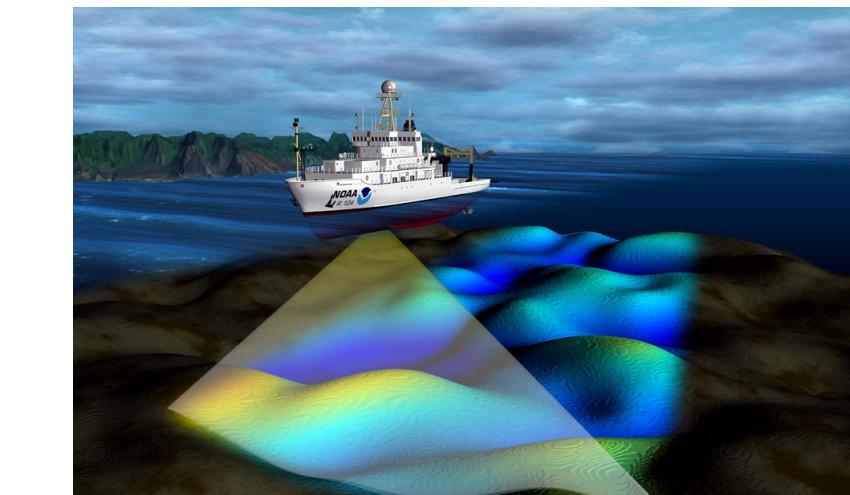
Mathematical Challenges in Quantum Mechanics

PhD Lecture | 07.01.2026

What is an inverse problem?

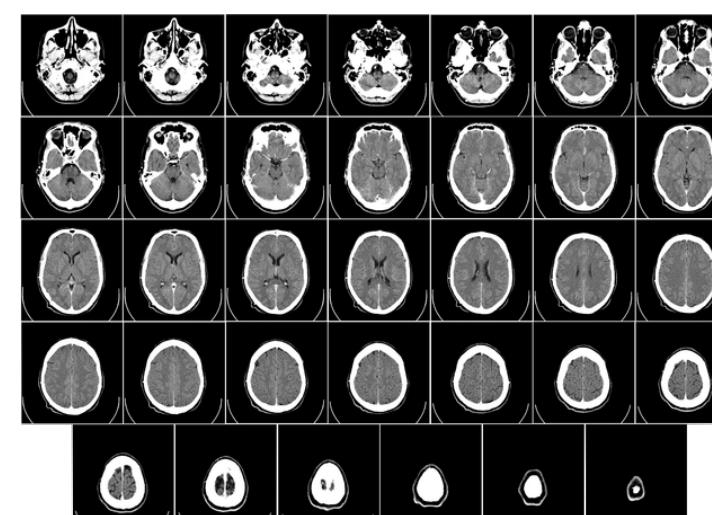


Dolphin echolocation



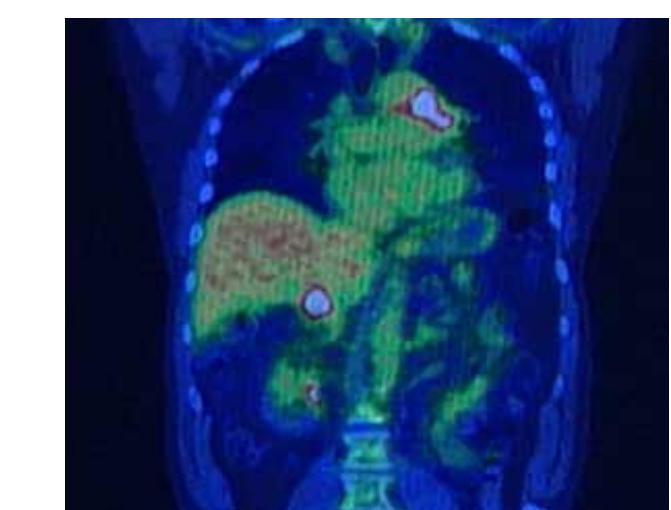
Sonar

Ultrasonography



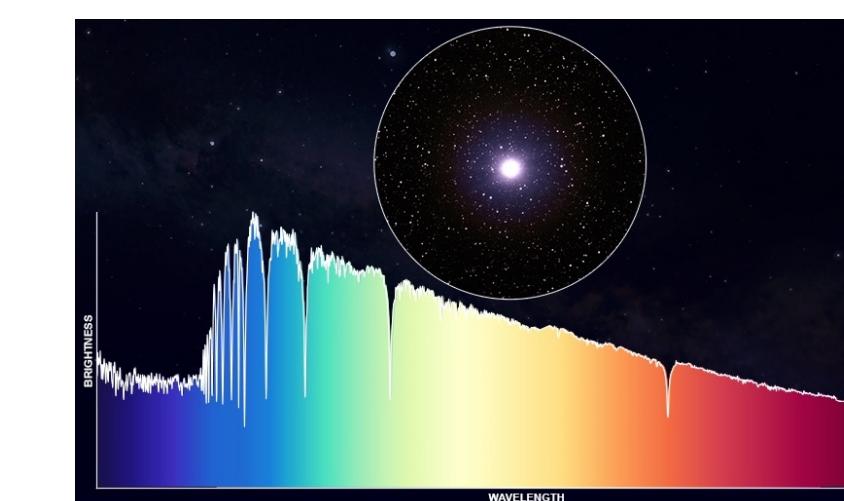
X-ray tomography
(CAT scan)

Magnetic resonance
imaging (MRI)

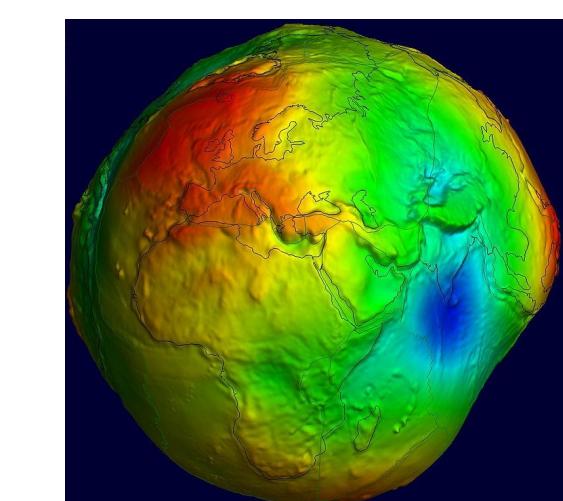


Positron emission
tomography (PET)

Image deblurring



Astronomical spectroscopy



Gravimetry

Let X and Y be subsets of Banach spaces.

Forward problem

$$\begin{aligned}\Lambda : X &\rightarrow Y \\ x &\mapsto y = \Lambda(x)\end{aligned}$$

Inverse problem (IP)

Given $y = \Lambda(x)$, find x .

We assume it is [well-posed](#) (in the sense of Hadamard):

- existence: for any $x \in X$, there is $y \in Y$,
- uniqueness: for each x , y is unique,
- continuous: if $\|x_1 - x_2\| \rightarrow 0$, then $\|y_1 - y_2\| \rightarrow 0$.

The inverse problem is [well-posed](#) (in the sense of Hadamard) if $\Lambda^{-1} : Y \rightarrow X$ is well-posed, i.e.

- Λ is surjective ($Y = \Lambda(X)$),
- Λ is injective (uniqueness),
- Λ^{-1} is continuous (stability).

Disclaimer: Often, inverse problems are [ill-posed](#).

In the context of [PDEs](#): x refers to the model (coefficients of the PDE, domains involved,...) and y represents properties of the solutions to the model.

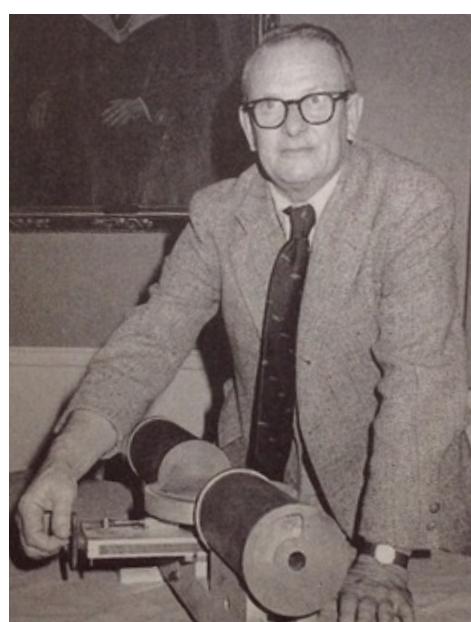
$$\boxed{\Lambda : \mu(x, y) \mapsto \Lambda\mu(t, \theta) = \int_{\ell_{t,\theta}} \mu} \quad \ell_{t,\theta} = \{(x, y) : x \cos \theta + y \sin \theta = t\}$$

Λ = Radon transform

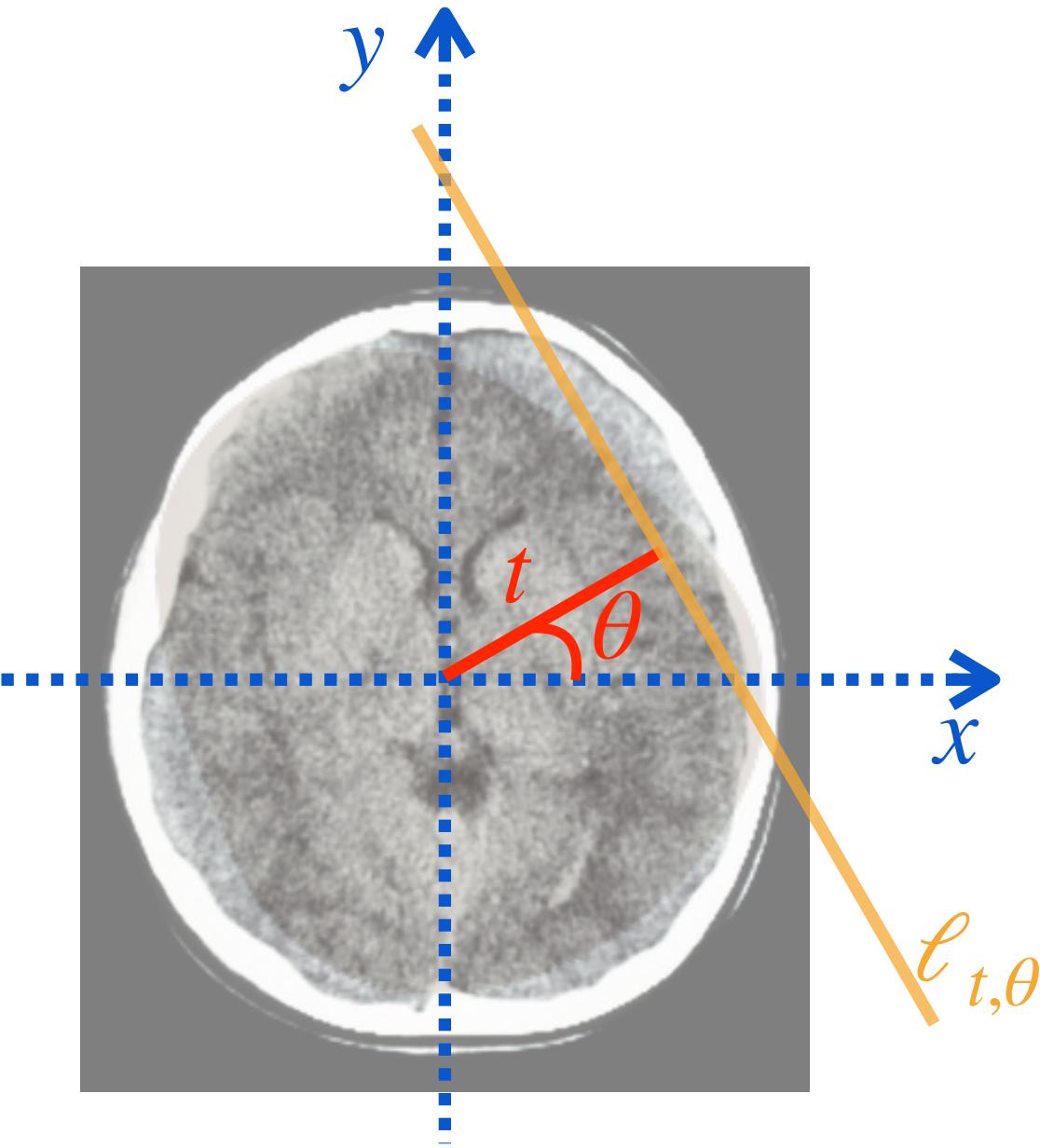
The IP is **ill-posed** due to the lack of continuity of the inverse of the Radon

transform: $\mu(x, y) \simeq \int_0^\pi (\Lambda\mu(\cdot, \theta) * h)(x \cos \theta + y \sin \theta) d\theta, \hat{h}(\xi) = |\xi|.$

Math. theory published in 1917
J. Radon (Austria 1887-1956)



TAC development in the 60's -70's
A. McL. Cormack (Sudáfrica 1924-EEUU 1998)
G. Hounsfield (Reino Unido 1919-2004)
Nobel Prize in Physiology or Medicine in 1979



IP: Can we find \mathbf{x} from measurements $\mathbf{y} = \Lambda(\mathbf{x})$?

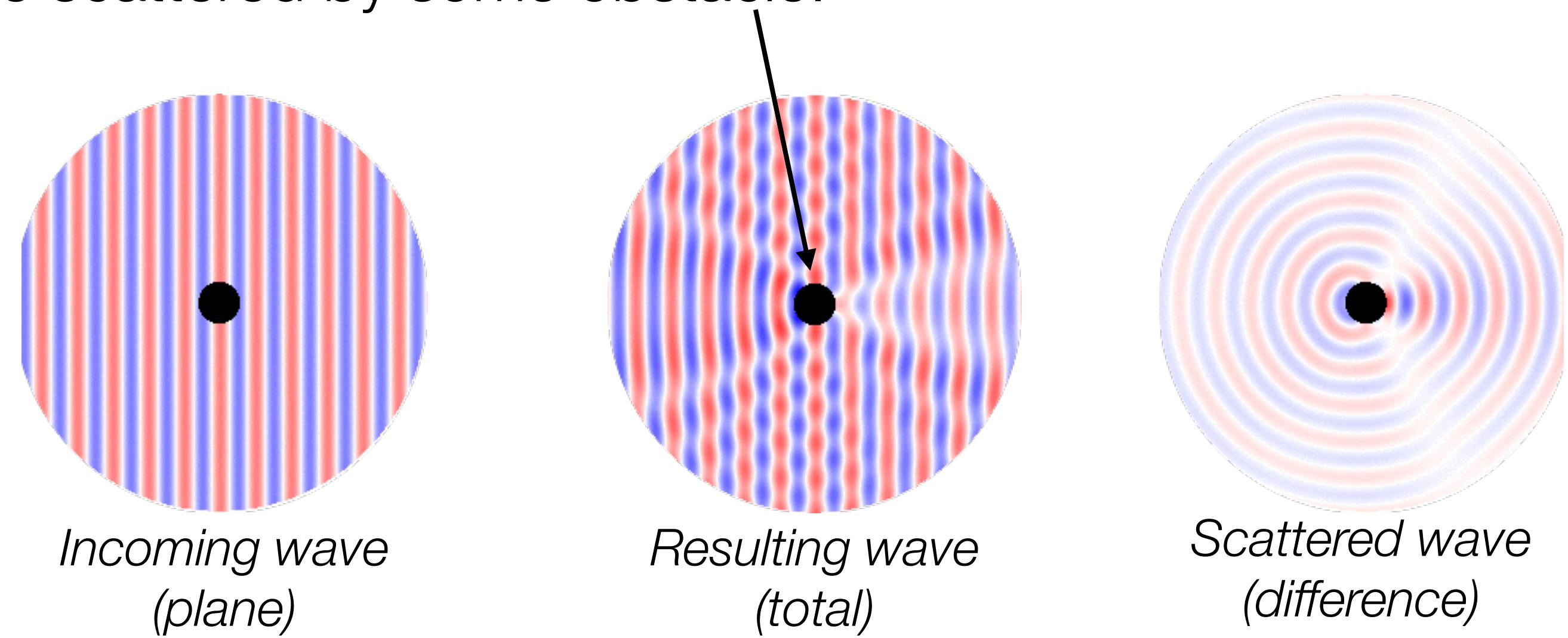
Main questions

- Uniqueness: $\Lambda(\mathbf{x}_1) = \Lambda(\mathbf{x}_2) \Rightarrow \mathbf{x}_1 = \mathbf{x}_2$?
- Stability: $\|\Lambda(\mathbf{x}_1) - \Lambda(\mathbf{x}_2)\|_* \rightarrow 0 \Rightarrow \|\mathbf{x}_1 - \mathbf{x}_2\|_X \rightarrow 0$? (and if so, how fast?)
- Reconstruction: given $\Lambda(\mathbf{x})$, is there a convergent algorithm to obtain \mathbf{x} ?

Other scenarios

- Partial data: we know $\Lambda(\mathbf{x})$ only partially.
E.g.: the Radon transform only for angles θ in some interval.
- Finite data: we know only a finite set of measurements of $\Lambda(\mathbf{x})$.
E.g.: the Radon transform only for some (t_j, θ_j) , $j \in \{1, \dots, J\}$.

Idea: (acoustic) waves are scattered by some obstacle.



- ❖ The pressure, $p(t, x)$, satisfies the wave equation $\partial_t^2 p = c^2 \Delta p$, where c is the sound speed.
- ❖ We assume that $c = c_0$ outside the object ($D \subset \mathbb{R}^n$ compact) and that p has fixed frequency ω , i.e. $p(t, x) = \operatorname{Re}(e^{i\omega t} u(x))$. Therefore $(\Delta + k^2)u(x) = 0$ in $\mathbb{R}^n \setminus D$, where $k = \frac{\omega}{c_0}$, and u satisfies some boundary condition on ∂D , e.g. $u = 0$ on $\partial\Omega$ (soft obstacle).
- ❖ u is the superposition of the incident plane wave, $u^i(x) = e^{ik\theta \cdot x}$, $\theta \in \mathbb{S}^{n-1}$, and the scattered wave, $u^s(x)$, which obeys the Sommerfeld radiation condition (so it is outgoing): $r^{\frac{n-1}{2}}(\partial_r - ik)u^s \rightarrow 0$ as $r \rightarrow \infty$.

Idea: particles/waves are scattered off by a potential.

- ❖ The wave function, $\Psi(t, x)$, satisfies the Schrödinger equation $i\hbar\partial_t\Psi = \left(-\frac{\hbar}{2m}\Delta + V\right)\Psi$.
- ❖ We assume that $V = V(x)$ and that Ψ has fixed energy $E > 0$, i.e. $\Psi(t, x) = e^{-iEt/\hbar}u(x)$. Therefore $(\Delta + k^2 - q(x))u(x) = 0$ in \mathbb{R}^n , where $k = \frac{\sqrt{2mE}}{\hbar}$ and $q = \frac{2m}{\hbar^2}V$.
- ❖ We assume q is bounded and $\text{supp } q \subset B_R$ and consider that u is the superposition of a free wave function $u^i(x) = e^{ik\theta \cdot x}$, $\theta \in \mathbb{S}^{n-1}$, and an outgoing wave function, $u^s(x)$, obeying the Sommerfeld radiation condition: $r^{\frac{n-1}{2}}(\partial_r - ik)u^s \rightarrow 0$ as $r \rightarrow \infty$.
- ❖ Under the previous assumptions u is unique (in suitable space) and

$$u^s(re^{i\alpha}) = \frac{e^{ikr}}{r^{\frac{n-1}{2}}} \left(a_q(k, \theta; \alpha) + O(r^{-1}) \right) \text{ as } r \rightarrow \infty \quad (\alpha \in \mathbb{S}^{n-1}).$$

scattering amplitude / far-field pattern

$\Lambda : q(x) \mapsto a_q(k, \theta; \alpha)$

(for fixed k , fixed θ , $\alpha = -\theta, \dots$)

IP: Can we find q from the scattering amplitude at fixed energy, $a_q(k, \cdot ; \cdot)$?

Uniqueness: [Novikov 1994] / Reduction to an inverse boundary value problem.

Let $n \geq 3, k \neq 0, q_1, q_2 \in L^\infty(\mathbb{R}^n)$ with $\text{supp } q_j \subset B_R$.

1. If $a_{q_1}(k, \cdot ; \cdot) = a_{q_2}(k, \cdot ; \cdot)$, then $\int_{B_R} (q_1 - q_2) u_1 \bar{u}_2 \, dx = 0$ for all $u_j \in H^2(B_R)$ such that $(-\Delta - k^2 + q_j) u_j = 0$.

Ingredients: “integration by parts”, Rellich uniqueness theorem, density of “ $u^i + u^s$ ” solutions in $H^2(B_R)$.

Equivalently, $a_{q_1}(k, \cdot ; \cdot) = a_{q_2}(k, \cdot ; \cdot)$ implies $\Lambda_{q_1 - k^2} = \Lambda_{q_2 - k^2}$, where Λ_q denotes the [Dirichlet-to-Neumann map](#) $\Lambda_q : f \mapsto \partial_\nu u|_{\partial\Omega}$, with

$$\begin{aligned} (-\Delta + q(x))u &= 0 \quad \text{in } \Omega, \\ u &= f \quad \text{on } \partial\Omega. \end{aligned}$$

($\Lambda : q \rightarrow \Lambda_q$ is well-posed provided 0 is not an eigenvalue.)

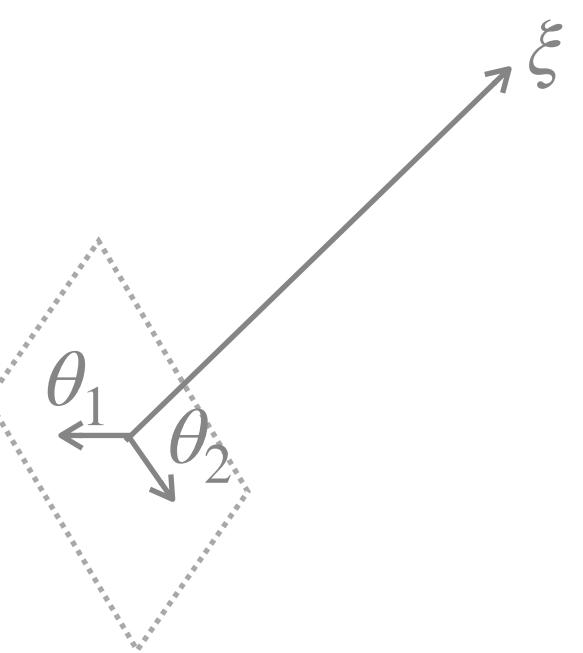
2. CGO solutions: Given q and $\zeta \in \mathbb{C}^n$ such that $\zeta \cdot \zeta = 0$ ($|Re \zeta| = |Im \zeta|$ & $Re \zeta \cdot Im \zeta = 0$) there exists a solution to $(-\Delta + q)u = 0$ such that $u(x) = e^{\zeta \cdot x} (1 + r_{q,\zeta}(x))$, where “ $r_{q,\zeta} \rightarrow 0$ ” as $|\zeta| \rightarrow \infty$.

Key point: to solve $(\Delta + 2\zeta \cdot \nabla - q)r_{q,\zeta} = q \Rightarrow r_{q,\zeta} = \Delta_{\zeta}^{-1}(I - q\Delta_{\zeta}^{-1})^{-1}(q)$ with $\Delta_{\zeta}^{-1} = (\Delta + 2\zeta \cdot \nabla)^{-1}$ between suitable spaces so $\|\Delta_{\zeta}^{-1}\|_* \lesssim |\zeta|^{-1}$.

[Sylvester, Uhlmann 1987] [Nachman, Sylvester, Uhlmann 1988]

For any $\xi \in \mathbb{R}^n$ and $\tau > 0$, let $\zeta_1, \zeta_2 \in \mathbb{C}^n$ such that $\zeta_j \cdot \zeta_j = 0$, $\zeta_1 + \overline{\zeta_2} = -i\xi$ and $|\zeta_j| \geq \tau$

$$\zeta_1 = -i\frac{\xi}{2} + \sqrt{\tau^2 + \frac{|\xi|^2}{4}} \theta_1 + i\tau\theta_2, \quad \zeta_2 = i\frac{\xi}{2} - \sqrt{\tau^2 + \frac{|\xi|^2}{4}} \theta_1 + i\tau\theta_2, \quad \theta_1, \theta_2 \in \mathbb{R}^n: |\theta_j| = 1, \theta_j \cdot \xi = 0, \theta_1 \cdot \theta_2 = 0$$



Taking the CGO solutions* $u_j = e^{\zeta_j \cdot x} (1 + r_{q_j - k^2, \zeta_j})$, we get

$$0 \stackrel{1.}{=} \int_{B_R} (q_1 - q_2) u_1 \overline{u_2} dx = \int_{B_R} (q_1 - q_2) e^{-i\xi \cdot x} (1 + r_{q_1 - k^2, \zeta_1}) (1 + \overline{r_{q_2 - k^2, \zeta_2}}) dx \xrightarrow{\tau \rightarrow \infty} \int_{B_R} (q_1 - q_2) e^{-i\xi \cdot x} dx = \mathcal{F}(\tilde{q}_1 - \tilde{q}_2)(\xi).$$

extension by 0 outside B_R

Since this holds for any $\xi \in \mathbb{R}^n$, we conclude $q_1 = q_2$.

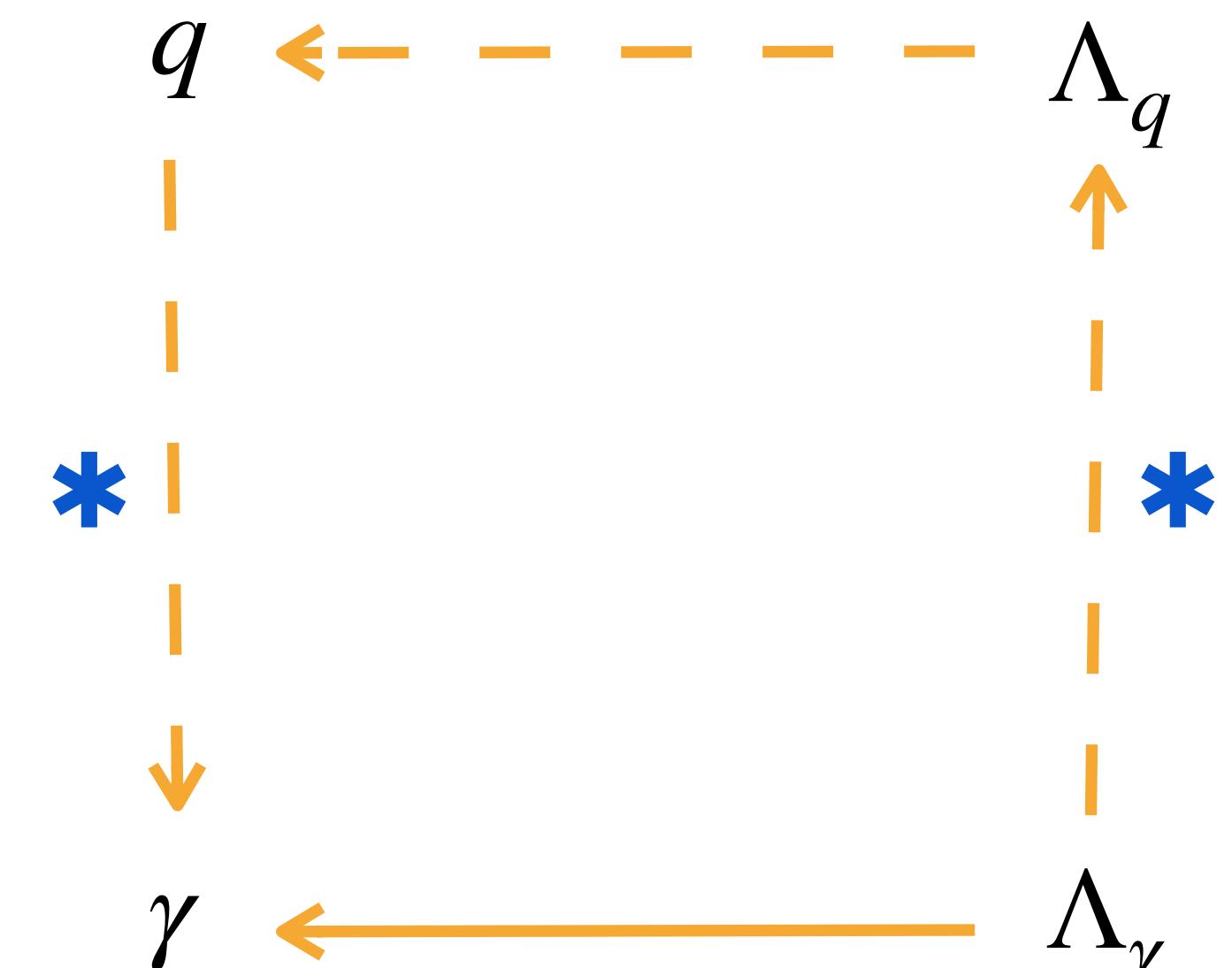
$$\begin{aligned} (-\Delta + q(x))u &= 0 \quad \text{in } \Omega \\ u &= f \quad \text{on } \partial\Omega \end{aligned}$$

$$q = \frac{\Delta\gamma^{1/2}}{\gamma^{1/2}}, \quad \begin{aligned} u &= \gamma^{1/2}v, \\ f &= \gamma^{1/2}g \end{aligned}$$

$$\begin{aligned} \nabla \cdot (\gamma(x) \nabla v) &= 0 \quad \text{in } \Omega \\ v &= g \quad \text{on } \partial\Omega \end{aligned}$$

$$\Lambda_q : f \mapsto \partial_\nu u|_{\partial\Omega}$$

$$\Lambda_\gamma : g \mapsto \gamma \partial_\nu v|_{\partial\Omega}$$



We can solve similarly the uniqueness for the inverse problem with $\Lambda : \gamma \mapsto \Lambda_\gamma$ for $n \geq 3$ and $\gamma \in C^2(\bar{\Omega})$.

* Boundary reconstruction [Kohn, Vogelius 1984].

Electrical conductivity of a medium

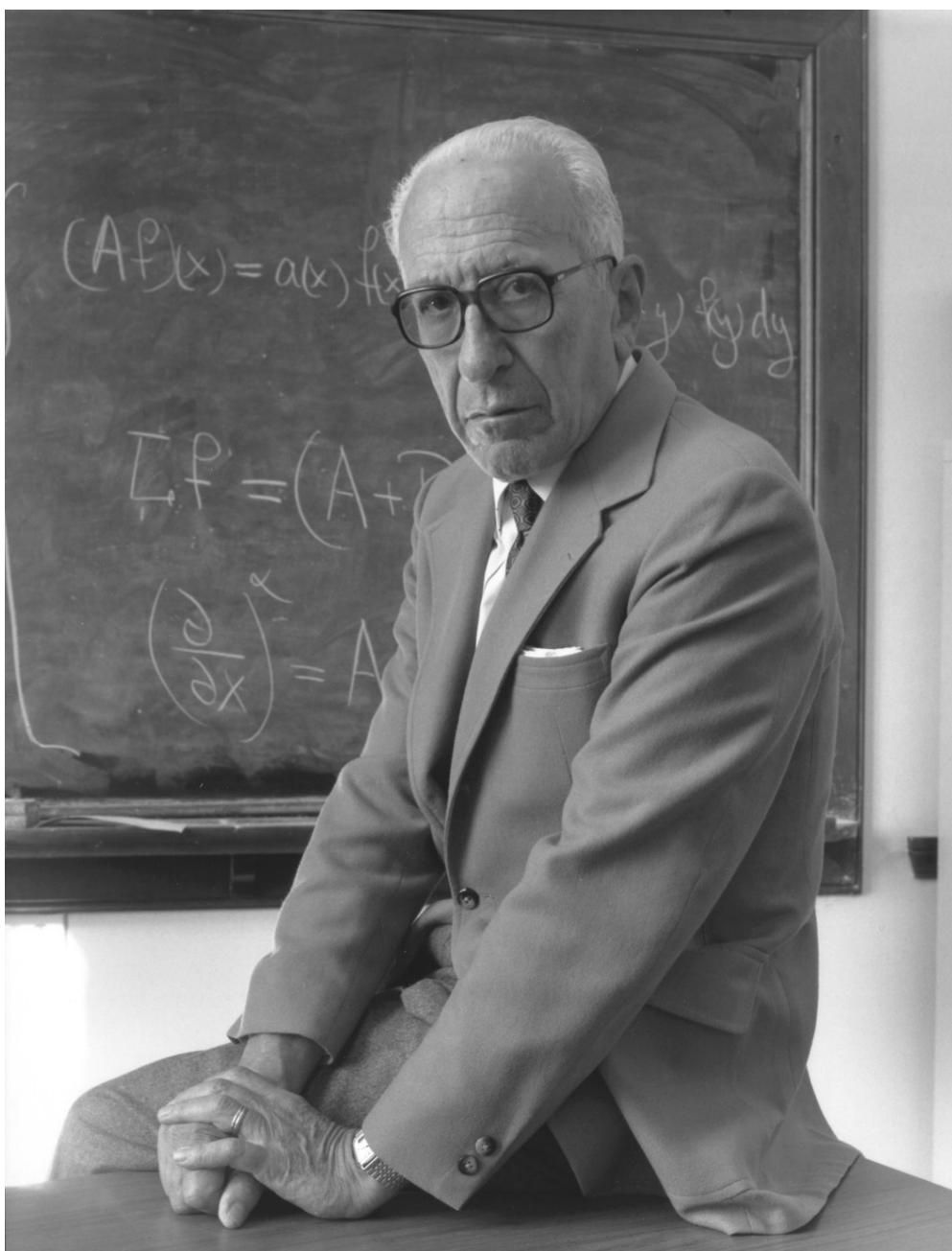
$$\gamma : \Omega \rightarrow [c_1, c_2]$$

Voltage and current on the boundary

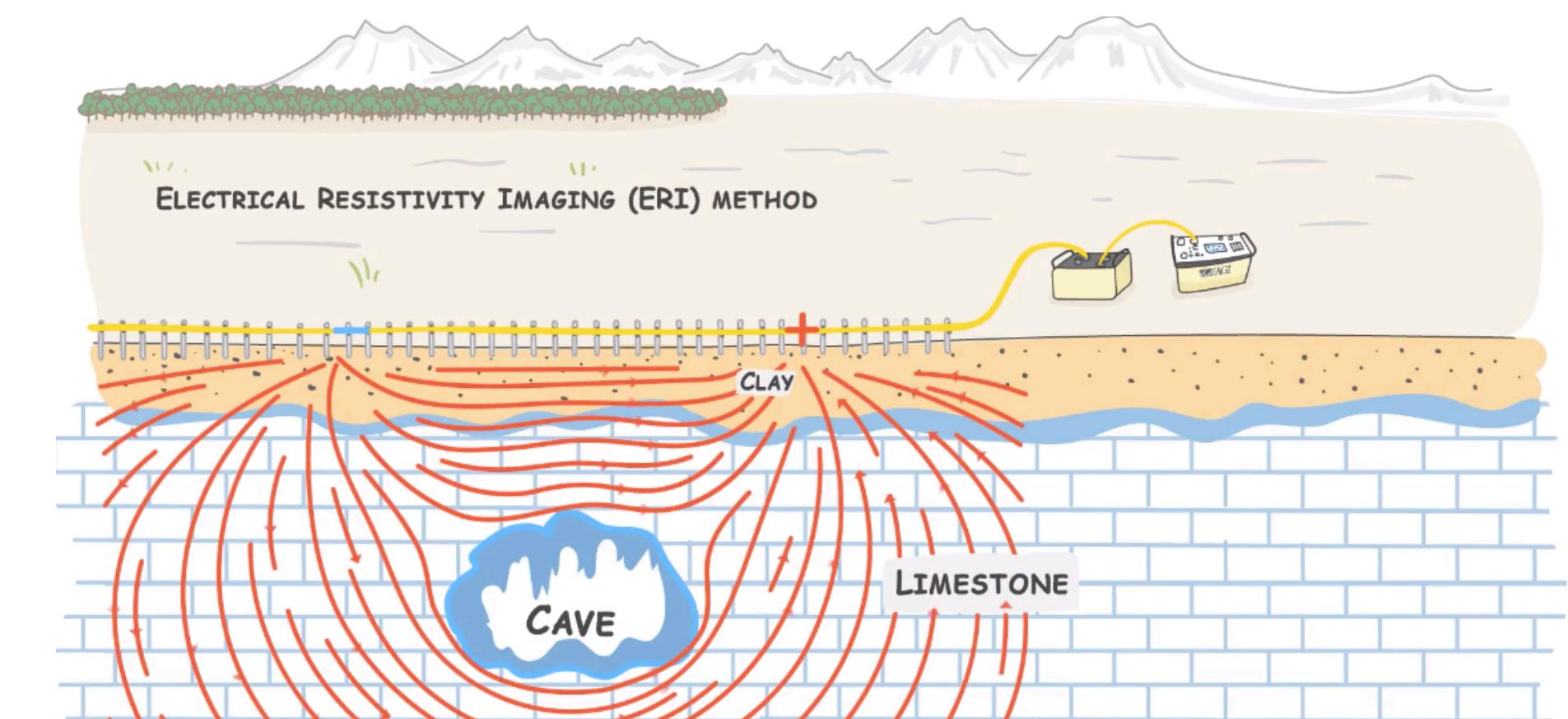
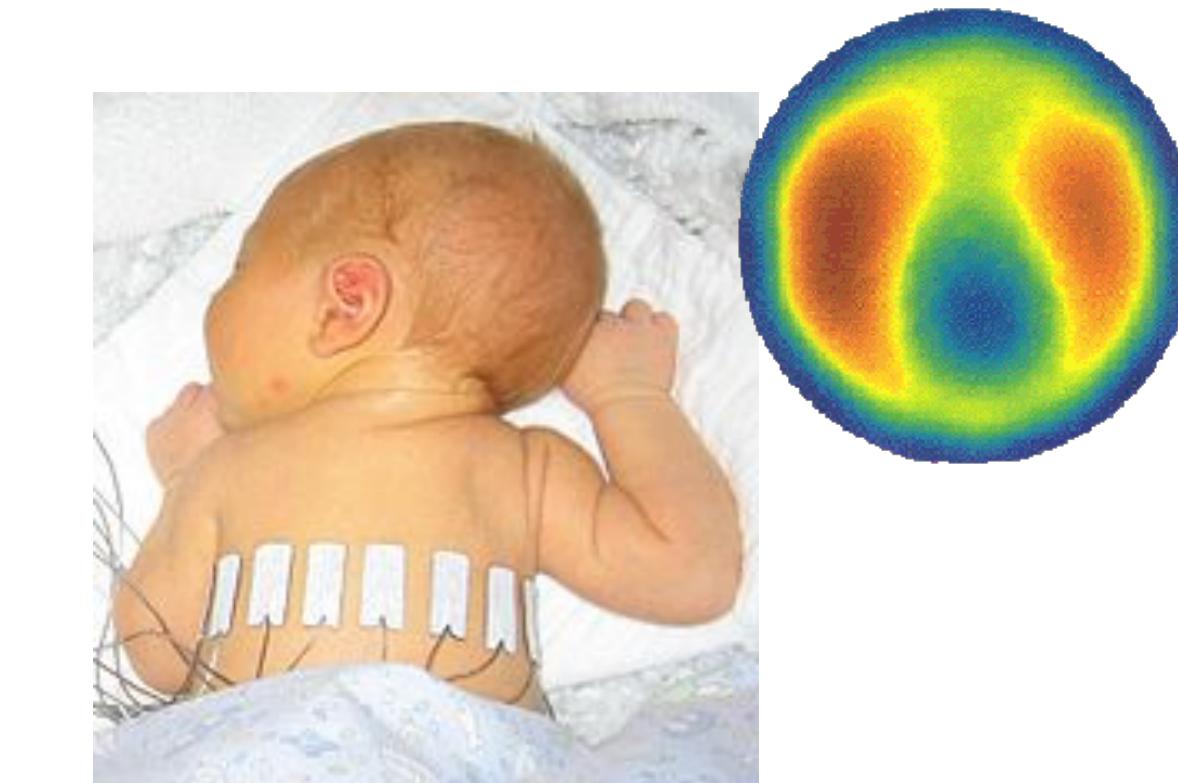
$$\{ v|_{\partial\Omega}, i \cdot \nu|_{\partial\Omega} = -\gamma \partial_\nu v|_{\partial\Omega} \}$$

$$\Lambda_\gamma$$

Calderón problem



Alberto Calderón
Argentina 1920 - USA 1998



Electrical
Resistivity
Tomography

Electrical
Impedance
Tomography

- In one dimension, the Calderón problem has no solution.
- If $n = 2$, uniqueness by [Astala, Päiväranta](#) for $L^\infty(\Omega)$ conductivities (2006).
- If $n \geq 3$, uniqueness, stability and reconstruction by [Uhlmann, Sylvester, Alessandrini, Nachman, Novikov](#), among others, for $C^2(\bar{\Omega})$ conductivities (1980's); and for less regular conductivities by [Brown, Haberman, Tataru, Caro, Rogers, García, Zhang, GF](#) and others, up to Lipschitz conductivities (in the Hölder class) (1990's-2020's).
- ❖ Stability does not hold unless a priori information is assumed. Stability results look like $\|q_1 - q_2\|_{L^2(\Omega)} \lesssim (-\log(\|\Lambda_{q_1} - \Lambda_{q_2}\|_*))^{-\alpha}$ (assuming $\|q_j\|_{L^\infty(\Omega)} \leq M$). This is optimal [\[Mandache 2001\]](#), but under extra assumptions, it might become better.

Let us consider again the wave function $\Psi(t, x)$ describing the quantum state of some moving particles under the influence of a potential $V(t, x)$. Its evolution is described by the Schrödinger equation

$$i\hbar\partial_t\Psi = \left(-\frac{\hbar}{2m}\Delta + V\right)\Psi \longrightarrow i\partial_tu = (-\Delta + V)u$$

If $V \in L^1((0, T), L^\infty(\mathbb{R}^N))$, given any initial state $f \in L^2(\mathbb{R}^n)$, there exists a unique $u \in C([0, T], L^2(\mathbb{R}^n))$ solving

$$\begin{aligned} i\partial_tu &= (-\Delta + V)u \text{ in } [0, T] \times \mathbb{R}^n, \\ u(0, \cdot) &= f \text{ in } \mathbb{R}^n. \end{aligned} \quad (\star)$$

“physical solutions”

Define the [initial-to-final map](#) as $\mathcal{U}_T^V : f \mapsto u(T, \cdot)$, with u solving (\star) .

$$\Lambda : V \rightarrow \mathcal{U}_T^V$$

The forward problem is well posed (as a map from $L^1((0, T), L^\infty(\mathbb{R}^N))$ to $\mathcal{B}(L^2(\mathbb{R}^n), L^2(\mathbb{R}^n))$).

IP: Can we find V (and therefore the evolution of the quantum state) from the knowledge of \mathcal{U}_T^V ?

Uniqueness: [\[Caro, Ruiz 2024\]](#) (under some decaying conditions on V_j)

$$1. \mathcal{U}_T^{V_1} = \mathcal{U}_T^{V_2} \Rightarrow \int_{(0, T) \times \mathbb{R}^n} (V_1 - V_2)u_{V_1}\bar{u}_{V_2} dt dx = 0 \text{ for “physical solutions”}.$$

2. Density of products does not hold with “physical solutions”.

**Thank you very much
for your attention**

 garciaferrero@icmat.es

 <https://www.icmat.es/people/garciaferrero/>