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Motivation: The Fröhlich Polaron
The Fröhlich polaron (Fröhlich 1934) is an effective model for a charged
particle moving through a dielectric crystal.

≈

Hλ = −1

2
∆ +N + λφ(vx) on L2(R3)⊗F ∼= L2(R3;F)

Fock Space: F =
∞⊕

n=0

F(n)
, F(0)

= C, F(n)
= L

2
sym(R3n

)

Particle Number Operator: N ↾ F(n)
= n

Field Operator: φ(v) =

∫
Rd

(v(k)ak + v(k)a
†
k
)dk

akf(k1, . . . , kn) =
√

n + 1f(k, k1, . . . , kn) for f ∈ F(n+1)

vx(k) = e−ikx|k|−1
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Strong Coupling Limit |λ| → ∞, a brief teaser.
Pekars Conjecture (1946): inf σ(Hλ) = (2π)2|λ|4eP +O(1) ,

where eP = infψ
∫
|∇ψ|2 −

∫ ∫ |ψ(x)|2|ψ(y)2
|x−y| d(x, y).

Proof of leading order lower bound:
Donsker, Varadhan 1987 – probabilistic techniques
Lieb, Thomas 1997 – operator theoretic techniques

Translation Invariance:

Hλ
∼=

∫ ⊕

R3

Hλ(P ), Hλ(P ) =
1

2
(P − Pf)

2 +N + λφ(v0)

E0(P )

Eλ(P ) = inf σ(Hλ(P ))

Pc(λ)

|P |

σ
(H

λ
(P

))

Landau–Pekar Conjecture (1948)
meff(λ) = (∂2PE(P )|P=0)

−1 ∼= |λ|8mLP

Betz, Polzer 2024, Bazaes, Mukherjee, Varadhan, Sellke

2024, Brooks, Seiringer 2022–

Lower bounds on Pc(λ)
Polzer 2023, Mitrouskas, Myśliwy, Seiringer 2023

Hλ(P ) has a ground state ⇐⇒ |P | < Pc

Møller 2006, Polzer 2023
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Goal of this Talk
Understand the connection between the ground state problem of quantum
theory and probabilistic approaches.

1 Motivation: The Fröhlich Polaron

2 What are path measures?

3 The Heat equation and the Feynman–Kac Formula

4 Applications to Quantum Theory: Ground State Regime

5 Feynman–Kac formulas for Polarons

6 Some (More and Less Recent) Applications
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What are path integrals?

The equations of motion in classical mechanics (Newton’s laws of motion)
can be derived from the stationary-action principle: a classical particle will
always take the trajectory in which the action is stationary.

q(0)

q(1)

Action: S[q] =
∫ 1

0
L(q, q̇, t)dt

Example: L(q, p, t) = 1
2p

2

(free particle)

Theorem (Cameron 1962).
There exists no (complex) measure P on {f : [0,∞) → Rn} equipped with
the σ-algebra generated by pointwise evaluations such that

ψ(x, t) =

∫
q(0)=x

ψ0(q(t))dP(q) solves i∂tψ = −∆ψ, ψ(0) = ψ0.
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What are path integrals?
Feynman (1942) formulated quantum mechanics in terms of (formal)
integrals over all possible paths, weighted with the classical action.

ψ(x, 1)“ = ”

∫
q(0)=x

eiS[q]ψ0(q(1))dq“ = ”

∫
q(0)=x

ψ0(q(1))dP(q)
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Path Measures for the Heat Equation
What happens if we take other path measures?
E.g., the Wiener measure (Wiener 1923) describing Brownian motion.

Brownian motion Bt
B0 = x

Bt is almost surely continuous
Bt has independent increments
Bt −Bs ∼ N (0, t− s)

Using the Wiener measure, we obtain solutions to the free heat equation

ψ(x, t) = E[ψ0(Bt)|B0 = x] =⇒ ∂tψ = 1
2∆ψ, ψ(x, 0) = ψ0(x).

Proof. ψ(x, t) =
1

(2πt)d/2

∫
e−|x−y|2/2tψ0(y)dy ■

Instead of solving the free Schrödinger equation, we now solve the free heat
equation. Does this still work if we add an external potential?

Note: The above PDE solution immediately extends to the Hilbert space
setting, i.e.,

(
et

1
2
∆f

)
(x) = E[f(Bt)|B0 = x].
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The Feynman–Kac Formula

Theorem (Kac 1951).

Assume V : Rd → R is continuous with compact support. Then for all
f ∈ L2(Rd) and almost all x ∈ Rd(

e−t(−
1
2
∆+V )f

)
(x) = E

[
e−

∫ t
0 V (Bs)dsf(Bt)

∣∣B0 = x
]

Proof. Apply the Trotter product formula

e
−t(− 1

2
∆+V )

f = lim
n→∞

(
e
t
n

1
2
∆
e
− t

n
V

)n
f = lim

n→∞
E
[
e

−
n∑

j=1
V (B

t· j
n

)

f(Bt)
∣∣∣B0 = x

]
■

How about other potentials or free particles?
Our restrictive assumption on V can immediately be relaxed. The path
measure E[ • e−

∫ t
0 V (Bs)ds] can still be used in many singular settings.

The free particle does not need to be non-relativistic (or on Rd).
Similar approaches work in many settings (discrete/relativistic/. . . ).
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1 Motivation: The Fröhlich Polaron

2 What are path measures?

3 The Heat equation and the Feynman–Kac Formula

4 Applications to Quantum Theory: Ground State Regime

5 Feynman–Kac formulas for Polarons

6 Some (More and Less Recent) Applications

How can we learn properties of quantum systems from solving the
heat equation?
Assume we are given the Hilbert space H and a selfadjoint operator H.
What can we learn about the spectrum of H from e−tH?
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Ground State (Energies)

A connection between semigroup and smallest spectral energies is obtained
from spectral calculus.

Lemma (Bloch’s formula).
Let ψ ∈ H, ∥ψ∥ = 1. Then

E0(ψ) = inf supp ⟨ψ,EH(·)ψ⟩ = − limt→∞
1
t ⟨ψ, e

−tHψ⟩,
where EH is the spectral measure of H.

We can even go further and study eigenfunctions this way.

Theorem (Ground State Overlap).

⟨ψ,EH({E0(ψ)})ψ⟩ = lim
t→∞

⟨ψ, e−tHψ⟩2

⟨ψ, e−2tHψ⟩

How can we ensure that this gives us the ground state energy and overlap?
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Positive Cones in Hilbert Spaces

Definition.
Let P be a self-dual convex cone in H, i.e.,

P = {x ∈ H| ⟨x, y⟩ ≥ 0 for all y ∈ P}.

Let P+ = {x ∈ P| ⟨x, y⟩ > 0 for y ∈ P \ {0}} be strictly pos. elements.
B ∈ B(H) is called positivity preserving if BP ⊂ P.
B ∈ B(H) is called positivity improving if B(P \ {0}) ⊂ P+.

Examples.
H = L2(Rd), P = {f ≥ 0 a.e.}, P+ = {f > 0 a.e.}
H = F , P = {ψ(n) ≥ 0 a.e. for all n ∈ N0}

Theorem (Perron–Frobenius, Faris 1972).

If e−tH is positivity improving for some (and hence all) t > 0 and if ψ ∈ P,
then E0(ψ) = inf σ(H) and dimker(H − E0(ψ)) ≤ 1.

FKF: e−t(−
1
2
∆+V )f(x) = E[e−

∫ t
0 V (Bs)dsf(Bt)|B0 = x] > 0 a.e. x ∈ Rd
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1 Motivation: The Fröhlich Polaron

2 What are path measures?

3 The Heat equation and the Feynman–Kac Formula

4 Applications to Quantum Theory: Ground State Regime

5 Feynman–Kac formulas for Polarons

6 Some (More and Less Recent) Applications

How can we make this toolbox available, when the potential V takes values
in Fock space, e.g., for polaron models?
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Polaron Models

H = −1

2
∆ + dΓ(ω) + φ(vx) on L2(Rd;F)

H(P ) =
1

2
(P − dΓ(p̂))2 + dΓ(ω) + φ(v0) on F

Fock Space: F =

∞⊕
n=0

F (n), F (0) = C, F (n) = L2
sym(Rdn)

Second Quantization Operator: dΓ(m) =

∫
m(k)a†kakdk

dΓ(m) ↾ F (n)(k1, . . . , kn) = m(k1) + · · ·+m(kn)

Field Operator: φ(v) =
∫
Rd

(v(k)ak + v(k)a†k)dk

akf(k1, . . . , kn) =
√
n+ 1f(k, k1, . . . , kn), f ∈ F (n+1)

a†kf(k1, . . . , kn) =
1√
n

n∑
ℓ=1

δ(k − kℓ)f(k1, . . . ,��@@kℓ, . . . , kn), f ∈ F (n−1)

Assumptions for H, H(P ) to define selfadjoint operators.

ω : Rd → [0,∞) measurable, positive almost everywhere

v0, ω
−1/2v0 ∈ L2(Rd), vx(k) = e−ikxv0(k)

Examples. (with ultraviolet cutoff coupling function χ)

Fröhlich polaron: ω = 1, v0(k) = χ(k)|k|−1

Fröhlich 1934: effective model for impurity in dielectric crystal

Nelson model: ω(k) = |k|, v0(k) = χ(k)|k|−1/2

Nelson 1954: UV-renormalizable toy model of quantum field theory

Bose polaron: ω(k) =
√
c|k|2 + ξ|k|4, v0(k) = χ(k)

√
|k|2/ω(k)

Grusdt, Demler 2016: equiv. Fröhlich model for impurity in BEC
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Two Versions of Feynman–Kac Formulas for Polaron Models

H = −1

2
∆ + dΓ(ω) + φ(vx) on L2(Rd;F)

H(P ) =
1

2
(P − dΓ(p̂))2 + dΓ(ω) + φ(v0) on F

Version 1: Euclidean Quantum Field Theory – A Recipe
Map F to an L2-space
Model the free field dΓ(ω) as an infinite-dimensional Gaussian process

⟨Φ, e−tHΨ⟩ = EB,ξ

[
Φ(B0, ξ0)e

−
∫ t
0 ξs(vXs )dsΨ(Xt, ξt)

]
This formula is called a Feynman–Kac–Nelson formula and is attributed to
Nelson 1964.

Formulas of this type have been studied by many people, amongst many
others including Betz, Hiroshima, Minlos, Lőrinczi, Spohn, . . .
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Two Versions of Feynman–Kac Formulas for Polaron Models

H = −1

2
∆ + dΓ(ω) + φ(vx) on L2(Rd;F)

H(P ) =
1

2
(P − dΓ(p̂))2 + dΓ(ω) + φ(v0) on F

Version 2: Operator-Valued Potentials. Güneysu–Matte–Møller 2017

e−tHψ(x) = E
[
eutea

†(U+
t )e−tdΓ(ω)ea(U

−
t )ψ(Bt)

∣∣∣B0 = x
]

e−tH(P ) = E
[
eutea

†(U+
t )e−tdΓ(ω)ea(U

−
t )ei(P−dΓ(p̂))·Bt

]
with U+

t =
∫ t
0 e

−sωvBsds, U
−
t =

∫ t
0 e

−(t−s)ωvBsds, ut =
∫ t
0 ⟨U

−
s |vBs⟩ ds.

Reminder: e−t(−
1
2
∆+V )f(x) = E[e−

∫ t
0 V (Bs)dsf(Bt)|B0 = x]

a(f) =
∫
f(k)akdk, a†(f) =

∫
f(k)a†kdk,

φ(f) = a(f) + a†(f), f ∈ L2(Rd)

Remarks.
ea

†(U+
t )e−tdΓ(ω)ea(U

−
t ) defines a B(F)-valued stochastic process. This

can be seen by expanding the exponentials with a and a†.
GMM also applied this approach to more general models of
non-relativistic quantum field theory, e.g., the Pauli–Fierz model.
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The Ultraviolet Problem
H = −1

2
∆ + dΓ(ω) + φ(vx) on L2(Rd;F)

The assumption v0, ω−1/2v0 ∈ L2(Rd) is not satisfied for any of our
examples if χ ≡ λ.

Examples. (with ultraviolet cutoff coupling function χ)
Fröhlich polaron: ω = 1, v0(k) = χ(k)|k|−1

Fröhlich 1934: effective model for impurity in dielectric crystal
Nelson model: ω(k) = |k|, v0(k) = χ(k)|k|−1/2

Nelson 1954: UV-renormalizable toy model of quantum field theory
Bose polaron: ω(k) =

√
c|k|2 + ξ|k|4, v0(k) = χ(k)

√
|k|2/ω(k)

Grusdt, Demler 2016: equiv. Fröhlich model for impurity in BEC

Problem
Pick a sequence χn(k) = λ1|k|<n, define

Hn = −1
2∆+ dΓ(ω) + φ(vx,n) on L2(Rd;F)

and study the limit n→ ∞.
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Removal of the UV Cutoff
e−tHnψ(x) = E

[
eun,tea

†(U+
n,t)e−tdΓ(ω)ea(U

−
n,t)ψ(Bt)

∣∣∣B0 = x
]

Construct U±
∞,t and prove U±

n,t → U±
∞,t (in appropriate sense).

Construct u∞,t, eventually after substracting a self-energy
contribution and prove un,t → u∞,t.

Fröhlich polaron: e−tHn converges in norm Lieb, Yamazaki 1958,
Griesemer, Wünsch 2016, Lampart, Schmidt 2019
Convergence to ut =

∫ t
0

∫ s
0 e−(s−r)|Br −Bs|−1drds Feynman 1955.

H., Matte 2024
Nelson model: e−t(Hn−inf σ(Hn)) converges in norm Nelson 1964,
Griesemer, Wünsch 2018, Lampart, Schmidt 2019
Gubinelli, Hiroshima, Lőrinczi 2014, Matte, Møller 2018
Bose polaron: e−t(Hn−inf σ(Hn)) converges in norm Lampart 2020
2D Relativistic Nelson: Sloan 1973, Schmidt 2019, H., Matte 2023
Spin Boson Model: Lonigro 2022, H., Lampart, Valentín Martín in
preparation, Fröhlich, H. in prep.
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Ground State Energy and Existence

e−tH(P ) = E
[
eutea

†(U+
t )e−tdΓ(ω)ea(U

−
t )ei(P−dΓ(p̂))·Bt

]
Vacuum Expectation of the Semigroup

⟨Ω, e−tH(P )Ω⟩ = E
[
euteiP ·Bt

]
, ut =

∫ t

0

∫ s

0
⟨vXs , e

−(s−r)ωvXr⟩ drds

For the Fröhlich polaron, this is exactly why Donsker, Varadhan 1987 could
study Feynman’s expression for ut to prove the Pekar conjecture.

Remark. Recall from Sec. 4 that e−tH(P ) should improve positivity, w.r.t. a
suitable cone containing Ω. For P ̸= 0 and after cutoff removal this
becomes non-trivial! Miyao 2019, Lampart 2019, H., Hiroshima 2024

This representation of the vacuum expectation has been used in the study
of ground state existence, in the past and recently. Many of the cited
authors as well as plenty more have contributed.
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Thank you for the invitation
and the attention!
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