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Quantum Spin Systems



Quantum Mechanics

Atoms, molecules, etc. are described (in a non-relativistic setting) by

quantum mechanics.

1. States are normalized vectors ψ in some complex Hilbert space H.

2. Physical quantities of interest (position, momentum, magnetization,

spin, energy, etc.) are described by self-adjoint operators on H (not

necessarily bounded).

3. Expectation values: ⟨A⟩ψ := ⟨ψ|Aψ⟩.

Examples

• A free particle: H = L2(R). Energy is given by 1
2m P̂2, where P̂ is the

momentum operator P̂ = −i d
dx . Position X̂ is multiplication by x .

• A spin-1/2 particle (e.g. electron): H = C2 (on top of positional

degrees of freedom).
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Quantum Spins

What is a “spin”?
Any quantum system described by a finite dimensional Hilbert space.

Why? (Why is such restriction justified?)

1. Restrictions on the degrees of freedom (e.g. condensed matter

models)

2. Truncations of lattice QFT

3. Quantum information and quantum computation: qubits, circuits,

etc.

4. Toy models
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Quantum Spins

What is a “spin”?
Any quantum system described by a finite dimensional Hilbert space.

Why? (Why is it a useful point of view?)
Rich and complex features of quantum many-body systems can be

studied and treated in a way that is mathematically accessible.

• Superfluidity, Bose-Einsten condensation

• Superconductivity

• Quantum Hall effect (integer and fractional)

• Topological order, anyons

• quantum phases of matter
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Notation and definitions

Let H a finite dimensional Hilbert space.

• States: ψ ∈ H, ∥ψ∥ = 1.

• Observables: (Hermitian) operators in B(H).

• Expectation value: A ∈ B(H) 7→ ⟨A⟩ψ = ⟨ψ|Aψ⟩.
• If {ai , vi}i are eigevalues/normalized eigenvectors of A, then

⟨A⟩ψ =
∑
i

piai , pi = |⟨vi |ψ⟩|2 ≥ 0,
∑
i

pi = 1
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Hamiltonians and time evolution

Hamiltonian: energy operator H ∈ B(H).

Ground states
Eigenvectors of H with minimal energy.

Time evolution

• States: i d
dtψ(t) = Hψ(t) (Schrödinger equation)

• Observables: d
dtA(t) = i [H,A] (Heisenberg equation)

• ⟨A⟩ψ(t) = ⟨A(t)⟩ψ.
• Solution to Heisenberg equation

A(t) = U∗
t AUt , Ut = exp(−itH)
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Composite systems

Question:
How to describe the joint system given by two different quantum spins,

described by H1 and H2?

Answer:
Use the (Hilbert) tensor product H1 ⊗H2!

H1 ⊗H2 has a natural Hilbert space structure:

⟨ψ1 ⊗ ψ2|ϕ1 ⊗ ϕ2⟩ = ⟨ψ1|ϕ1⟩ · ⟨ψ2|ϕ2⟩

(and extend by linearity).
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How to study a collection of an infinite

number of quantum spins?
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Problem

Interesting physical phenomena requires an infinite collection of quantum

spins to be described.

Can we define a Hilbert space structure on⊗
i∈I

Hi

when I is infinite?

Yes, but it is not nice (usually not separable, etc.). Instead, we will take

a C∗-algebraic approach.
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Quantum spin system on a

lattice



Lattice models

• Γ infinite graph (for example Γ = ZD)

• a finite-dimensional Hilbert space Hu for each

u ∈ Γ (e.g. Hu = C2)

• for each Λ ⊂ Γ finite, HΛ =
⊗

u∈Λ Hu

• AΛ = B(HΛ)

• if Λ′ ⊂ Λ then AΛ′ ↪→ AΛ via OΛ′ 7→ OΛ′ ⊗ 1Λ\Λ′

• the minimal Λ such that O ∈ AΛ is denoted the

support of O and we write suppO.

• Let Aloc
Γ =

⋃
Λ↗Γ AΛ. AΓ = Aloc

Γ

∥·∥
is the

C∗-algebra of quasi-local observables

(the thermodynamic limit).
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How to define a Hamiltonian? Time

evolution? Ground states?

Can we recover a Hilbert space?
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Local interactions



Local interactions

Interactions in physics are usually local: they decay with distance.

Interaction
A mapping Φ(X ) for each X ⊂ Γ finite, such that suppΦ(X ) = X , and

Φ(X ) is Hermitian.

Decay rate:

• finite-range: Φ(X ) = 0 if diamX > R for some R > 0.

• exponential: ∥Φ(X )∥ ≤ exp(−α diamX ) for some α > 0.

• polynomial: ∥Φ(X )∥ ≤ α− diamX for some α > 1.

As finite-range and exponential behave similarly, we will only consider

these cases.
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Local Hamiltonian

With a given interaction Φ, we can define a Hamiltonian HΛ for each

finite volume

HΛ =
∑
X⊂Λ

Φ(X )

with a corresponding automorphism of AΛ

τΛt (A) = e itHΛAe−itHΛ , A ∈ AΛ
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Examples

Γ = Z, Hu = C2, and

1D Ising model

H[−n,n] = −
n−1∑
i=−n

Ji,i+1 σ
Z
i ⊗ σZ

i+1 −
n∑

i=−n

µi σ
X
i

XXZ model

H[−n,n] = −
n−1∑
i=−n

σX
i ⊗ σX

i+1 + σY
i ⊗ σY

i+1 +∆σZ
i ⊗ σZ

i+1

σX =

(
0 1

1 0

)
, σY =

(
0 −i

i 0

)
, σZ =

(
1 0

0 −1

)
,
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Evolution generatared by local interactions

preserves locality

(in a sense)
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Locality estimates



Finite group velocity

A A(t)

For any t > 0, the support of τΛt (A) can be the whole Λ.

But “most of the norm” of τΛt (A) is concentrated in a region of size

linear in t!
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Finite group velocity

A
ϵ

Ã(t)
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Lieb-Robinson bounds

Theorem (Lieb, Robinson 1972)
Let A ∈ AX and B ∈ AY , X ,Y ⊂ Λ, X ∩ Y ̸= ∅. Then∥∥[τΛt (A),B]∥∥ ≤ C∥A∥∥B∥min(|X |, |Y |)eµ(vt−d(X ,Y ))

for positive constants C , µ, v .

v is called Lieb-Robinson velocity or finite group velocity.

Idea: since this is true for any operator B ∈ AY , when t ≪ 1
v d(X ,Y ),

τΛt (A) is supported outside of B (up to small errors).

The proof is in a sense “combinatorial” (counting possible “chains of

interactions” between X and Y ).
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Infinite volume dynamics

A corollary of Lieb-Robinson bounds is that we can localize the evolution.

Lemma
For A ∈ AX , with X ⊂ X (r) ⊂ Λ, r > 0, where X (r) = {x : d(x ,X ) ≤ r}∥∥∥τΛt (A)− τ

X (r)
t (A)

∥∥∥ ≤ C∥A∥|X |eµ(vt−r)

Theorem
If we take an increasing and absorbing sequence of volumes Λn ↗ Γ, then

for each fixed finite X ⊂ Γ, τΛn
t (A) is a Cauchy sequence for every

A ∈ AX : ∥∥τΛn
t (A)− τΛm

t (A)
∥∥→ 0, as n,m → ∞

so we can define

τΓt (A) := lim
n
τΛn
t (A), ∀A ∈ Aloc

Γ

τΓt is a strongly continous group of ∗-automorphisms of AΓ.
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Ground states and GNS representation

Let us now consider a sequence of ground states {ψn}n of HΛn , such that

ω(A) := lim
n

⟨A⟩ψn
= lim

n
⟨ψn|Aψn⟩ , A ∈ Aloc

Γ

is well defined.

Theorem
With the assumption above, there exits a Hilbert space Hω, a vector

Ωω ∈ Hω, a ∗-representation πω of AΓ on Hω, and a densely defined

self-adjoint operator Hω on Hω, such that

1. ω(A) = ⟨Ωω|πω(A)Ωω⟩ = ⟨πω(A)⟩Ωω

2. Hω ≥ 0 and Ωω ∈ kerHω

3. πω(τ
Γ
t (A)) = U∗

t πω(A)Ut for Ut = exp(−itHω)

In other words, we recover the “usual” quantum mechanic framework,

but only up to a representation of AΓ (which depends on ω).

This is a consequence of the GNS representation for (AΓ, ω).
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Spectral gap

The GNS Hamiltonian Hω can be studied by obtaining uniform estimates

on the finite-volume Hamiltonians HΛ.

Spectral gap
The spectral gap µΛ > 0 of HΛ if the difference between its two smallest

(distinct) eigenvalues.

The spectral gap µω of Hω is defined as

µω = sup{δ > 0: (0, δ) ∩ specHω = ∅}

Lemma

µω ≥ lim inf
n

µΛn
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Phase classification



Quantum phases of matter

Phases of matter are equivalence classes of systems with “similar”

physical properties: we can smoothly deform one into the other.

Figure 1: Example of a phase transition. Picture author: Richard Fitzpatrick 2006
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Interactions with parameters

Consider a family Φ(s) of interactions, depending smoothly on a

parameter s ∈ [0, 1].

Let us assume for simplicity that each H
(s)
Λ has a unique ground state,

whose limit is ωs .

Question:
Under which assumptions ωs “depends smoothly” on s ∈ [0, 1]?

18



Automorphic flow

Theorem (Bachmann, Michalakis, Natchergaele, Sims. 2012)
Suppose that the Hamiltonians are uniformly gapped in s:

inf
s∈[0,1]

µωs ≥ γ > 0.

Then there exists a continous family of ∗-automorphisms αs (the spectral

flow) such that

ωs = ω0 ◦ αs

Moreover, αs satisfies a Lieb-Robinsons bound.

Idea: αs is the evolution generated by a time-dipendent interaction

KΛ(s) =

∫ ∞

−∞
dt Wγ(t)e

itH
(s)
Λ

(
d

ds
H

(s)
Λ

)
e−itH

(s)
Λ
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Summary

• Taking limits of finite volumes allows us to define a infinite volume

limit of spin systems on lattices.

• By using Lieb-Robinson bounds, we can connect properties of finite

volumes which hold uniformly with properties of the thermodynamic

limit.

• Example: the spectral gap

• We can define equivalence classes of spin models (gapped quantum

phases), which can be smoothly deformed one into the other, as

long as the spectral gap statys open.

The hard problem:
Prove that a given spin model has a spectral gap
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Spectral gap problem

Given a certain interaction Φ, proving lower bounds for the gap of HΛ is

generally hard.

1. For Γ = Z (1D models), usually can be done if

• the model is frustration free (ω minimizes every interaction term

Φ(X ))

• we have good descriptions of the ground states

2. For higher dimensional models, even with these assumptions the

problem is quite hard!

Thank you for your attention! Questions are welcome!
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