Report on the Combined Analysis of Muon Data Recorded by Nine Air Shower Experiments

Dennis Soldin^{1,2} for the UHECR Working Group for Hadronic Interactions and Shower Physics (WHISP)

- ¹ Institute of Experimental Particle Physics, Karlsruhe Institute of Technology
- ² Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware

UNIVERSITY OF DELAWARE **BARTOL RESEARCH INSTITUTE**

osium on Ultra Internationa Aquila, Italy October 3

Introduction

- Systematic comparison of measurements of the muon lateral density in extensive air showers (EAS) from 9 experiments
- UHECR <u>Working Group for Hadronic Interactions and Shower Physics (WHISP)</u>
 - First WHISP report at UHECR2018 [H.P. Dembinski et al., EPJ Web Conf. 210 (2019)]
 - Updates at ICRC2019 and ICRC2021 [L. Cazon et al., PoS ICRC2019 (2020) 214, D. Soldin et al., PoS ICRC2021 (2021) 349]
- <u>This talk:</u> Update of the WHISP meta-analysis presented at UHECR2018
 - Updated data from the Pierre Auger Observatory
 - Updated data from the IceCube Neutrino Observatory
 - (New) re-analyzed data from AGASA
 - Updated systematic statistical analysis of the combined muon measurements
 - Additional systematic checks...

WHISP Meta-Analysis

- Muon content is expressed in terms of *z*-scale:

$$z = \frac{\ln(N_{\mu}^{\text{det}}) - \ln(N_{\mu,p}^{\text{det}})}{\ln(N_{\mu,Fe}^{\text{det}}) - \ln(N_{\mu,p}^{\text{det}})} \quad , \quad z = 0: \text{ proton}, z$$

- N_{μ}^{det} : muon content measured in the detector
- $N_{\mu,p}^{det}$, $N_{\mu,Fe}^{det}$: muon content in simulated EAS (proton/iron) at the detector

9 experiments: Data taken over large parameter space under very different experimental conditions!

z = 1: iron

WHISP Meta-Analysis

- 9 experiments: D data
- Muon content is expressed in terms of z-scale:

$$z = \frac{\ln(N_{\mu}^{\text{det}}) - \ln(N_{\mu,p}^{\text{det}})}{\ln(N_{\mu,Fe}^{\text{det}}) - \ln(N_{\mu,p}^{\text{det}})} , \quad z = 0: \text{ proton}, z$$

- N_{μ}^{det} : muon content measured in the detector
- $N_{\mu,p}^{det}$, $N_{\mu,Fe}^{det}$: muon content in simulated EAS (proton/iron) at the detector

h over large parameter space under very different experimental conditions!

z = 1: iron

WHISP Meta-Analysis

• N_{μ}^{det} : muon content measured in the detector

• $N_{\mu,p}^{det}$, $N_{\mu,Fe}^{det}$: muon content in simulated EAS (proton/iron) at the detector

h over large parameter space under very different experimental conditions!

Combined Muon Measurements

Muon lateral density in EAS as reported by 9 (10) experiments

Energy-Rescaling

Energy-Rescaled Muon Measurements

Muon lateral density in EAS after cross-calibration of the energy-scales

Energy-Rescaled Muon Measurements

Muon lateral density in EAS after cross-calibration of the energy-scales

Mass Dependence

Number of muons is described by the Heitler-Matthews model:

$$N_{\mu} = A^{1-\beta} \cdot \left(\frac{E}{\xi_C}\right)^{\beta} , \quad \beta \simeq 0.9$$

- E: primary cosmic ray energy
- A: primary mass number
- ξ_C : energy constant
- When studying the energy-dependent trend in the muon measurements, the (energy-dependent) cosmic ray mass need to be taken into account!
- Mass dependence can be removed by subtracting z_{mass} based on the GSF model, i.e. in the plot on the previous slide "subtract the GSF line from the data points"

Energy-Rescaled Muon Measurements

Muon lateral density in EAS after cross-calibration of the energy-scales

Mass-Corrected z-Scale

- Fit $\Delta z_{\text{fit}} = a + b \cdot \log_{10}(E/10^{16} \text{eV})$ depends on assumption of systematic correlation, α
- Slope of the fit: b = 0.23 0.29 (EPOS-LHC), b = 0.22 0.25 (QGSJet-II.04)
- Significance of the slope: ~ $7\sigma 9\sigma$ (EPOS-LHC), ~ $10\sigma 11\sigma$ (QGSJet-II.04)

N-1 Tests

How do the fits change when we remove one experiment at a time?

[D. Soldin et al., PoS ICRC2021 (2021) 349]

10

N-1 Tests

How do the fits change when we remove one experiment at a time?

[D. Soldin et al., PoS ICRC2021 (2021) 349]

11

N-1 Tests

Significance of the slope when removing one experiment

- Decrease of significance without IceCube (also NEVOD-DECOR / SUGAR)
- Yakutsk data becomes more important but is in tension with other measurements

12

Further Systematic Checks

- Muon energy dependence? [L. Cazon et al., PoS ICRC2019 (2020) 214]
 - Different energy thresholds for each experiment
 - Minimum energy required at production: $E_{\mu,p}$
 - Fit accounting for this effect: $\Delta z_{\text{fit}} = a + b \cdot \log b$
 - Inconclusive due to limited experimental data
- Zenith / atmospheric depth dependence?
 - Evidence for zenith angle discrepancies from KASCADE-Grande [KASCADE-Grande Collaboration, Astropart. Phys. 95 (2017)]
 - Inconclusive due to limited experimental data
- Absolute energy reference scale?
 - Constant up or down shift of experimental data in z
 - No change of slope parameter and significance in $\Delta z_{\rm fit}$
- More high-precision EAS data and further studies required!

$$g_{10} = E_{\mu,\min}(\theta) + E_{\mu,\text{atm}}(\theta)$$
$$g_{10}(E/10^{16}\text{eV}) + c \cdot E_{\mu,\text{prod}}$$

Summary & Conclusions

- Linear fit, Δz_{fit} , finds significant (> 7 σ) non-zero slope of muon excess in data
- N-1 tests:
 - Fits stable when removing most experiments
 - Strong effects when removing IceCube (NEVOD-DECOR / SUGAR)
- Better understanding of systematic uncertainties of individual experiments needed
- Next steps:
 - Comparison to optical composition measurements (i.e. X_{max}) under investigation
 - Include updated KASCADE-Grande data
 - Paper in preparation
- - Reduced systematic uncertainties
 - More high-precision muon data, additional observables

<u>Ongoing/future detector upgrades:</u> (e.g. AugerPrime, IceCube-Gen2, GCOS, see talk by F. Schröder)

Summary & Conclusions

- Linear fit, Δz_{fit} , finds significant (> 7 σ) non-zero slope of muon excess in data
- <u>N-1 tests:</u>
 - Fits stable when removing most experiments
 - Strong effects when removing IceCube (NEVOD-DECOR / SUGAR)
- Better understanding of systematic uncertainties of individual experiments needed

<u>Highly inclusive working group: Any (new or old) muon data is very welcome!</u> (e.g. latest addition AGASA data)

ngoing/future detector upgrades: (e.g. AugerPrime, IceCube-Gen2, GCOS, see talk by F. Schröder)

- Reduced systematic uncertainties
- More high-precision muon data, additional observables

Thank you!

