Hadronic Interactions Studies at LHC

Tanguy Pierog

Karlsruhe Institute of Technology, Institute for Astroparticle Physics, Karlsruhe, Germany

6th UHECR, L'Aquila, Italy October the 5th 2022

Outline

Introduction

Cross-section and Multiplicity

- ALFA

Fluctuations in p-Pb by CMS

- Impact on X_{max}
- ALICE, Core-corona and EAS
 - Qualitative tests

Recent LHC data provide new constraints on models changing X_{max} and Quark Gluon Plasma (QGP)-like hadronization could be more common than thought until now which will impact muon production.

Sensitivity to Hadronic Interactions

- Air shower development dominated by few parameters
 - mass and energy of primary CR
 - cross-sections (p-Air and (π-K)-Air)
 - ➡ (in)elasticity
 - multiplicity
 - charge ratio and baryon production
- Change of primary = change of hadronic interaction parameters
 - cross-section, elasticity, mult. ...

With unknown mass composition hadronic interactions can only be tested using various observables which should give consistent mass results

Hadronic Models for Air Showers

- EAS simulations necessary to study high energy cosmic rays
 - <u>complex problem</u>: identification of the primary particle from the secondaries
- Hadronic models are the key ingredient !
 follow the standard model (QCD)

- but mostly non-perturbative regime (phenomenology needed)
- main source of uncertainties
- Which model for CR ? (alphabetical order)
 - DPMJETIII.17-1/19-1 by S. Roesler, <u>A. Fedynitch</u>, R. Engel and J. Ranft
 - **EPOS (1.99/LHC/3/4/LHCR)** by <u>T. Pierog</u> and K.Werner. et al.
 - QGSJET (01/II-03/II-04/III) by <u>S. Ostapchenko</u> (starting with N. Kalmykov)
 - Sibyll (2.1/(2.3c/)2.3d) by E-J Ahn, R. Engel, R.S. Fletcher, T.K. Gaisser, P. Lipari, <u>F. Riehn</u>, T. Stanev
 - → All tuned on early LHC data from 10 years ago !

Energy Spectrum

X_{max}

Models Uncertainties

Significant improvement require new data (light ion and higher energy)

Model Improvement

- But a number of new data since model release could be use to improve the models :
 - Update of the p-p cross sections (ALFA)
 - Data at 13 TeV (CMS, ATLAS)
 - More detailed p-Pb measurements (fluctuations) CMS
 - Particle yields as a function of multiplicity (ALICE, LHCb)
 - Very important to understand the mechanism behind particle production
- Update of EPOS LHC → EPOS LHCR
 - New EPOS 4 available soon for heavy ion physics but not usable for air showers (yet)
 - Modify EPOS LHC to take into account new data and new knowledge accumulated with EPOS 4
 - Very preliminary results !

Inelastic Cross-Section

- Probability for the particle to interact : directly related to X_{max}
- After TOTEM (CMS), new measurements by ALFA (ATLAS) with higher precision

Cross-Section Reduced

- Probability for the particle to interact : directly related to X_{max}
- After TOTEM (CMS), new measurements by ALFA (ATLAS) with higher precision

Pseudorapidity 13 TeV

- Angular distribution of newly produced particles
- New data at 13 TeV in p-p
 - Test extrapolation
 - Different triggers
 - Sibyll has a clear difference with other models (and data)

Multiplicity 13 TeV

- Probability of a given multiplicity
- New data at 13 TeV in p-p
 - Not well reproduced by models except EPOS (energy sharing)
 - More attention should be payed to low multiplicities (high elasticity)

Problem was already here at 7 TeV but increasing

Multiplicity 5 TeV p-Pb

- Probability of a given multiplicity
- New data at 5 TeV in Pb-p
 - Not well reproduced by any model (not possible have lead for Sibyll)
 - A new QCD process has to be introduced in EPOS to reproduce data
 - Color transparency = fluctuation of the number of Fock states
 - Produce more elastic events (low multiplicity)

EPOS LHCR interaction with Air

- +/- 20g/cm² was realistic uncertainty band :
- minimum given by QGSJETII-04 (high multiplicity, low elasticity) ?
- maximum given by Sibyll 2.3c/d (low multiplicity, high elasticity) ?
- Taking into account new data, EPOS shifted by +15g/cm² (=Sibyll)

Hadronization Models

2 models well established for 2 extreme cases

String Fragmentation

vs Collective hadronization (statistical models)

→ What to do in between ? For proton-proton, hadron-Air, ...

Hadronization in Simulations

- Historically (theoretical/practical reasons) string fragmentation used in high energy models (Pythia, Sibyll, QGSJET, ...) for proton-proton.
 - Light system are not "dense"
 - Works relatively well at SPS (low energy)
 - ➡ But problems already at RHIC, clearly at Fermilab, and serious at LHC :
 - Modification of string fragmentation needed to account for data
 - Various phenomenological approaches :
 - Color reconnection
 - String junction
 - ✤ String percolation, …
 - Number of parameters increased with the quality of data ...
- Statistical model only used for heavy ion (HI) in combination with hydrodynamical evolution of the dense system : QGP hadronization
 - Account for flow effects, strangeness enhancement, particle correlations...

Core-Corona Approach

- Mixing of core and corona hadronization needed to achieve detailed description of p-p data (EPOS)
 - Evolution of particle ratios from pp to PbPb
 - Particle correlations (ridge, Bose Einstein correlations)
 - Pt evolution, …
- Both hadronizations are universal but the fraction of each change with particle density

2K2

 $\Lambda + \overline{\Lambda} (\times 2)$

 $\Xi^{+} + \overline{\Xi}^{+} (x6)$

Φnn

Particle Densities in Air Showers

Is particle density in air shower high enough to expect core formation ?

- Core formation start quite early according to ALICE data
- Cosmic ray primary interaction likely to have 50% core at mid-rapidity !

Core-Corona appoach and CR

To test if a QGP like hadronization can account for the missing muon production in EAS simulations a core-corona approach can be artificially apply to any model

- Particle ratios from statistical model are known (tuned to PbPb) and fixed : core
- Initial particle ratios given by individual hadronic interaction models : corona
- → Using CONEX, EAS can be simulated mixing corona hadronization with an arbitrary fraction ω_{core} of core hadronization: $N_i = \omega_{\text{core}} N_i^{\text{core}} + (1 \omega_{\text{core}}) N_i^{\text{corona}}$

UHECR – Oct 2022

UHECR – Oct 2022

T. Pierog, KIT - 20/25

ALICE data

Update of EPOS to reproduce ALICE data

- Lower condition (particle density) to form core
- More core

Interactions in Air Showers

- Lower condition (particle density) to form core
- More core and more forward
- Possible impact on muon production in air showers (lower π° fraction)

Summary

- Not all relevant CERN data taken into account in model yet.
 - ✤ 10 more years of LHC data
 - New results from SPS (NA61 2209.10561 [nucl-ex])
- Updated results of cross-sections and multiplicity fluctuations
 - Significant impact on X_{max}
 - ➡ Larger <InA>
- Evolution of strangeness with multiplicity
 - Different type of hadronization
 - extended range for QGP-like hadronization could be sufficient with current global uncertainties to solve the muon puzzle ? (energy, X_{max}, ...)

New physics still needed ?

Updated EPOS LHCR to be released before next ICRC

Recent LHC data provide new constraints on models changing X_{max} and QGP-like hadronization could be more common than thought until now which will impact muon production.

Thank you !

Results for z-scale

Constraints from Correlated Change

- One needs to change energy dependence of muon production by ~+4%
- To reduce muon discrepancy
 β has to be change
 - X_{max} alone (composition) will not change the energy evolution
 - β changes the muon energy evolution but not X_{max}

•
$$\beta = \frac{\ln (N_{mult} - N_{\pi^0})}{\ln (N_{mult})} = 1 + \frac{\ln (1 - \alpha)}{\ln (N_{mult})}$$

• +4% for β -> -30% for $\alpha = \frac{N_{\pi^0}}{N_{mult}}$

$$N_{\mu} = A^{1-\beta} \left(\frac{E}{E_0}\right)^{\beta}$$

 $X_{max} \sim \lambda_e \ln \left(E_0 / (2.N_{mult} \cdot A) \right) + \lambda_{ine}$

Evolution of hadronization from core to corona

The relative fraction of π^{0} depends on the hadronization scheme

 $\bullet \text{ Change of } \omega_{\text{core}} \text{ with energy change } \alpha = \frac{N_{\pi^0}}{N_{\text{mult}}} \text{ or } R(\eta) = \frac{\langle \mathrm{d}E_{\mathrm{em}}/\mathrm{d}\eta \rangle}{\langle \mathrm{d}E_{\mathrm{had}}/\mathrm{d}\eta \rangle}$

which define the muon production in air showers.

Evolution of hadronization from core to corona

The relative fraction of π^{0} depends on the hadronization scheme

 $\textbf{ blange of } \omega_{\text{core}} \text{ with energy change } \alpha = \frac{N_{\pi^0}}{N_{\text{mult}}} \text{ or } R(\eta) = \frac{\langle \mathrm{d}E_{\mathrm{em}}/\mathrm{d}\eta \rangle}{\langle \mathrm{d}E_{\mathrm{had}}/\mathrm{d}\eta \rangle}$

which define the muon production in air showers.

UHECR – Oct 2022

Evolution of hadronization from core to corona

The relative fraction of π^{0} depends on the hadronization scheme

 $\bullet \text{ Change of } \omega_{\text{core}} \text{ with energy change } \alpha = \frac{N_{\pi^0}}{N_{\text{mult}}} \text{ or } R(\eta) = \frac{\langle \mathrm{d}E_{\mathrm{em}}/\mathrm{d}\eta \rangle}{\langle \mathrm{d}E_{\mathrm{had}}/\mathrm{d}\eta \rangle}$

which define the muon production in air showers.

Possible Particle Physics Explanations

A 30% change in particle charge ratio ($\alpha = \frac{N_{\pi^0}}{N_{mult}}$) is huge ! Possibility to increase N_{mult} limited by X_{max}

- New Physics ?
 - Chiral symmetry restoration (Farrar et al.) ?
 - Strange fireball (Anchordoqui et al., Julien Manshanden) ?
 - String Fusion (Alvarez-Muniz et al.) ?

Problem : no strong effect observed at LHC (~10¹⁷ eV)

- Unexpected production of Quark Gluon Plasma (QGP) in light systems observed at the LHC (at least modified hadronization)
 - Reduced α is a sign of QGP formation (enhanced strangeness and baryon production reduces relative π° fraction. Baur et al., arXiv:1902.09265) !
 - \blacksquare a depends on the hadronization scheme
 - How is it done in hadronic interaction models ?

Cross-section and Multiplicity

LHC acceptance and Phase Space

- p-p data mainly from "central" detectors
 - → pseudorapidity η =-ln(tan(θ /2))
 - \bullet $\theta=0$ is midrapidity
 - \bullet θ >>1 is forward
 - •• $\theta < <1$ is backward
- Different phase space for LHC and air showers
 - most of the particles produced at midrapidity
 - important for models
 - most of the energy carried by forward (backward) particles
 - important for air showers

A 3rd way : the core-corona approach

Consider the local density to hadronize with strings OR with QGP:

First use string fragmentation but modify the usual procedure, since the density of strings will be so high that they cannot possibly decay independently : core

