Energy spectrum measured by the Telescope Array Surface Detectors

Presenter: Shoichi Ogio ${ }^{1}$
Jihyun Kim ${ }^{2}$, Dmitri Ivanov ${ }^{2}$, Charles Jui ${ }^{2}$, and Gordon Thomson ${ }^{2}$ on behalf of the Telescope Array Collaboration
${ }^{1}$ University of Tokyo, ${ }^{2}$ University of Utah

Outline

- Telescope Array Experiment
- Surface Detectors
- Event Reconstruction
- TA SD Energy Spectrum and Spectral Features
- Summary

Telescope Array Collaboration

USA

Japan

Korea

Russia

Belgium

Czech Republic

Slovenia

Telescope Array (TA) Experiment

- The largest cosmic ray observatory in the northern hemisphere

Surface Detector: Plastic Scintillator

Fluorescence Detector: PMT camera

Scintillator Surface Detectors (SDs)

Event Reconstruction (1/2)

- Use counter location and timing to determine shower core and direction
- Fit counter signal size to find lateral distribution
- Signal size at $800 \mathrm{~m}, \mathrm{~S} 800$, is the energy indicator

$\rho=A\left(\frac{s}{91.6 \mathrm{~m}}\right)^{-1.2}\left(1+\frac{s}{91.6 \mathrm{~m}}\right)^{-(\eta(\theta)-1.2)}\left(1+\left[\frac{s}{1000 \mathrm{~m}}\right]^{2}\right)^{-0.6}$
$\eta(\theta)=3.97-1.79[\sec (\theta)-1]$

Event Reconstruction (2/2)

- Use S800 and zenith angle to look up energy (from CORSIKAproduced table)

- Scaled to the calorimetric energy/FD

$$
E_{\text {Final }}=E_{\text {TBL }} / 1.27
$$

Resolution and Sensitivity by Monte Carlo Simulation

- Monte Carlo based on CORSIKA program used for resolution and exposure calculations.
- TA SD Resolution:
- 20% energy, 1.4° angular, $\mathrm{E} \geq 10^{19.0} \mathrm{eV}$
- 29% energy, 2.1° angular, $10^{18.5} \mathrm{eV} \leq \mathrm{E}<10^{19.0} \mathrm{eV}$
- 34% energy. 2.4° angular, $10^{18.0} \mathrm{eV} \leq \mathrm{E}<10^{18.5} \mathrm{eV}$

Linearity in Energy Reconstruction D. Ivanov, ICRC2019

Standard TA SD and
FD using hybrid events

MC Thrown energy and reconstructed energy

Constant intensity cut and
standard TA SD reconstruction

These show the linearity of the standard TA SD energy reconstruction.

Previous Results using 11 -year Data (2008-05-11 to 2019-05-11)

- Differences in the cutoff energies
- $\log (\mathrm{E} / \mathrm{eV})=19.84 \pm 0.02$ for $\left(24.8^{\circ}-90^{\circ}\right)$
$-\log (E / e V)=19.64 \pm 0.04$ for $\left(-16^{\circ}-24.8^{\circ}\right)$
- The global significance of the difference is estimated to be 4.3σ.

Energy Spectrum using 14-year Data (2008-05-11 to 2022-05-11)

Declination Dependence

- Differences in the cutoff energies
- $\log (\mathrm{E} / \mathrm{eV})=19.84 \pm 0.02$ for $\left(24.8^{\circ}-90^{\circ}\right)$ $-\log (E / e V)=19.65 \pm 0.002$ for $\left(-16^{\circ}-24.8^{\circ}\right)$

Spectral Feature in $10^{19}-10^{19.5} \mathrm{eV}$ D. Ivanov, ICRC2021

Fit parameter	HiRes-TA	Pierre Auger
p_{1}	-3.23 ± 0.01 (stat)	-3.29 ± 0.02 (stat)
p_{2}	-2.63 ± 0.02 (stat)	-2.51 ± 0.03 (stat)
p_{3}	-2.92 ± 0.06 (stat)	-3.05 ± 0.05 (stat)
p_{4}	-5.0 ± 0.4 (stat)	-5.1 ± 0.3 (stat)
$\log _{10}\left[E_{\text {ANKLE }} / \mathrm{eV}\right]$	18.73 ± 0.01 (stat)	18.70 ± 0.01 (stat)
$\log _{10}\left[E_{\text {SHOULDER }} / \mathrm{eV}\right]$	19.25 ± 0.03 (stat)	19.11 ± 0.03 (stat)
$\log _{10}\left[E_{\text {GZK }} / \mathrm{eV}\right]$	19.85 ± 0.03 (stat)	19.66 ± 0.03 (stat)

- Pierre Auger found a new spectral feature in $10^{19}-10^{19.5} \mathrm{eV}$ (instep feature).
- We observed the same softening feature in the northern hemisphere but at $10^{19.25 \pm 0.03} \mathrm{eV}$ with a 5.3σ significance.

Spectral Feature in $10^{19}-10^{19.5} \mathrm{eV}$ using 14 -year Data

- $\mathrm{N}_{\text {exp }}$ (no softening) : 1898.9
$\mathrm{N}_{\text {obs }} \quad: 1725$
Chance probability : $2.7 \times 10^{-5}, \sim 4.0 \sigma$
- TA SD observed the same softening
feature in the northern hemisphere but at $10^{19.22 \pm 0.08} \mathrm{eV}$ with a 4.0σ
significance.

Highest energy event @ May 27, 2021

Figure 5.8: Left: SD display of the highest energy event seen by TA, at $10^{20.4} \mathrm{eV}$. The circle size represents the SD integrated signal, while the color represents the relative time. The shower core and direction are shown by the cross. Right: The longitudinal profile of the event. The two counters closest to the core of the shower were saturated and are not included. The value of $S(800)$ is $530 \mathrm{VEM} / \mathrm{m}^{2}$.

Snowmass 2021 white paper, https://arxiv.org/abs/2205.05845)

Summary

- Have validated Monte Carlo carefully by comparing it with the distribution of the data.
- TA SD energy reconstruction is robust. It has been checked using 1) FD/SD comparison, 2) Monte Carlo, and 3) Constant intensity cut methods.
- TA SD spectrum has shown the spectral features (ankle, instep, and GZK cutoff) with 14 years of data.
- Declination dependence of spectrum seen in the up-to-date dataset.

Please visit Nagoya!

ICRC2023
The Astroparticle Physics Conference
Nagoya, Japan, Jul 26-Aug 3, 2023

Abstract submission will open in December or January.
We are looking forward to seeing you in Nagoya!

