The energy spectrum of ultra-high energy cosmic rays measured at the Pierre Auger Observatory and the Telescope Array

D. R. Bergman¹, O. Deligny², F. Fenu³, T. Fujii⁴, K. Fujita⁵, J. H. Kim¹, I. Lhenry-Yvon², I. Mariş⁶, Q. Luce⁷, M. Roth³, F. Salamida^{8,9}, Y. Tsunesada^{5,10} and <u>V. Verzi¹¹</u>

on behalf of the Pierre Auger and Telescope Array collaborations

¹ University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah, USA

² CNRS/IN2P3, IJCLab, Université Paris-Saclay, Orsay, France

³ Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany

⁴ Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Kyoto, Japan

- ⁵ Graduate School of Science, Osaka City University, Osaka, Osaka, Japan
- ⁶ Université Libre de Bruxelles (ULB), Brussels, Belgium
- ⁷ Karlsruhe Institute of Technology (KIT), Institute for Experimental Particle Physics, Karlsruhe, Germany
- ⁸ Università dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy
- ⁹ INFN Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila), Italy

¹⁰ Nambu Yoichiro Institute of Theoretical and Experimental Physics, Osaka City University, Osaka, Osaka, Japan ¹¹ INFN, Sezione di Roma "Tor Vergata", Roma, Italy

The joint Auger TA working group on energy spectrum

Understand the difference among the measurements at the UHEs:

- information on astrophysical phenomena
- correct combination of the data to achieve the full sky coverage

see F. Urban at this conference

UHECR 2010 Nagoya, Japan **UHECR 2012** Cern, Geneva **UHECR 2014** Springdale (Utah), USA **UHECR 2016** Kyoto, Japan **ICRC 2017** Busan, Korea **UHECR 2018** Paris, France **ICRC 2019** Madison, USA **ICRC 2021** Berlin, Germany

UHECR Hybrid Observatories

PIERRE AUGER OBSERVATORY

TELESCOPE ARRAY

Malargüe Mendoza (Argentina) 35⁰ S latitude

 3000 km^2

1660 WCDs 1500 m spacing triangular grid COHRUECO

4 FD sites

Millard County Utah (USA) 39⁰ N latitude

 700 km^2

507 scintillators 1200 m spacing square grid

3 FD sites

The hybrid detection technique

100% duty cycle

UHECR spectrum

- high efficiency of SD
- calorimetric energy scale from FD

 $\gamma^2/ndf = 235.0/329 (0.7)$

Time [4µS]

The experimental techniques

The energy scale

AUGER Proc. 34 ICRC 2 [arXiv:1307.50]	2013 (Rio de Janeiro, 59]	Brazil)	Astropart.Phys. 6	1 (2015) 93-101	(2011)	IA
Absolute fluorescence yield	3.4%		Item	Error (%)	Contribu	itions
Fluores. spectrum and quenching param.	1.1%		Detector sensitivity	10	PMT (8%	i), mirror (4%),
Sub total (Fluorescence Yield)	3.6%		A. 1 . 11		aging (3	%), filter (1%)
Aerosol optical depth	3% ÷ 6%		Atmospheric collection	11	aerosol (Ravleigh	10%),
Aerosol phase function	1%	\backslash	Fluorescence yield	11	model (1	10%),
Wavelength dependence of aerosol scattering	0.5%			/	humidity	y (4%),
Atmospheric density profile	1%	$\langle \rangle$	Reconstruction	/ 10	atmosph	lere (3%)
Sub total (Atmosphere)	3.4% ÷ 6.2%	\sim	Reconstruction		missing	energy (5%)
Absolute FD calibration	9%		Sum in quadrature	/ 21	U	
Nightly relative calibration	2%			/		
Optical efficiency	3.5%	\backslash	/	/		A
Sub total (FD calibration)	9.9%			ili		Auger uses Airily Astron. Phys. 42, 90 (2013)
Folding with point spread function	5%					Astrop. Phys. 28, 41 (2007)
Multiple scattering model	1%		Dandl -	i i	•	
Simulation bias	2%		AirLight -			figure from M
Constraints in the Gaisser-Hillas fit	3.5% ÷ 1%		FLASH -	Theo	oretical	Fukushima, GCOS
Sub total (FD profile rec.)	6.5% ÷ 5.6%		MACFLY -			workshop 2022
Invisible energy	3% ÷ 1.5%		Lefeuvre			
Statistical error of the SD calib. fit	0.7% ÷ 1.8%		Nagano -			TA uses Kakimoto et al. NIM-A 372, 527 (1996)
Stability of the energy scale	5%		Kakimoto -			+FLASH spectrum
TOTAL	14%		er ELS@TA	·····		

TA 21% Auger 14% both almost energy independent

TA

Proc. 32nd ICRC 2011 (Beijing, China), 12, 67 (2011)

Y₃₃₇ (ph/MeV)

TA SD (2019) outside of BR / LR Obs. Period

	Parameter	Auger	ТА	
	γ_1	3.29 ± 0.02	3.23 ± 0.01	
	γ_2	2.51 ± 0.03	2.63 ± 0.02	
	γ_3	3.05 ± 0.05	2.92 ± 0.06	
	γ_4	5.1 ± 0.3	5.0 ± 0.4	
	$E_{\text{ankle}}/\text{EeV}$	5.0 ± 0.1	5.4 ± 0.1	
	$E_{\rm instep}/{\rm EeV}$	13 ± 1	18 ± 1	
,	$E_{\rm cut}/{\rm EeV}$	46 ± 3	71 ± 3	

- same characterization of the spectral features
- agreement at the ankle and some tension at highest energies
- common declination band to disentangle astrophysical from experimental effects: -15° < δ < 24.8°

Measurements in the full sky

Measurements in the full sky

Measurements in the common declination band

note: TA full trigger efficiency E>10^{18.8} eV

Measurements in the common declination band

note: TA full trigger efficiency E>10^{18.8} eV

Measurements in the common declination band

note: TA full trigger efficiency E>10^{18.8} eV

- the overall 9% energy shift in agreement with the uncertainties in the energy scale
- (from UHECR 2014 report) 9% would be further reduced to < 5% if the FD events would be reconstructed using the same "external" parameters

 $\approx 9\% - 14\% + 7\%$

TA energies reduced by -14% using the Auger fluorescence yield

Fluorescence yield

Invisible energy

13

Biases in the shower size reconstruction that can't be corrected by the energy calibration ?

Recent studies by Auger confirm that $r_{opt} = 1000$ m

For TA the fluctuations are minimized at core distances larger than 800 m

note: for the spectrum, bias effects are much more important than the resolution ones

a complex problem ... (spacing, square vs triangular, LDF, detector, ...)

important also for AugerPrime and TA×4 ...

0[±]

TA: potential biases from not using S(r_{opt}) ?

full trigger energy calibration CIC efficiency **Cross check applying the** S₃₅ [VEM] 10¹⁹ eV s1300 [VEM] Auger data-driven analysis $S(1300) \rightarrow S_{35}$ 60 to TA data 50 10¹⁹ two energy estimators 10¹⁸ S(1300) and S(800) S₃₅ vs E_{FD} $\mathbf{E} = \mathbf{A} (\mathbf{S}_{35})^{\mathbf{B}}$ 10 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 secf $B \approx 1.05^{10^{18}}$ 10¹⁹ 10¹⁸ 10²⁰ E_{FD} [eV] s₃₅ [VEM] [eV AGASA LDF [W300 [W32] 08 250 $S(800) \rightarrow S_{35}$ PRELIMINARY 10²⁰ 10² 10² VEM / m² 10 150 10¹⁹ 100 10¹⁸ S_{35} vs E_{FD} 10⁻¹ 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 10³ Lateral distance [m] 1/18 10¹⁹ 10²⁰ E_{FD} [eV]

TA: potential biases from not using S(r_{opt}) ?

<u>very good agreement between</u> <u>energies from S(1300) and S(800)</u>

consistency with standard (MC look-up table) energy calculation

Entries

Mean

Std Dev

1.5

In(E_{FD}/E_{SD, CIC}

1

168

0.05434

0.2893

3000

2500

2000

1500

1000

500

hybrids

 $E_{\underline{FD}}$

 $E(S_{1300})$

20

15

10

5

10²⁰ SD, CIC [eV] -1.5

-1 -0.5

0 0.5

Auger: systematics from the estimation of the shower size ?

- hybrids events: SD energies well aligned to the FD ones
- systematics on flux arising from the uncertainty in S(1000) estimated to be < ±3%

Auger: systematics from the estimation of the shower size ?

Same kind of disagreement using the inclined events ($\theta > 60^{\circ}$)

- exposure $\approx 30\%$ of the one for $\theta < 60^{\circ}$
- require completely different reconstruction technique
- calibration of N₁₉ using a power law

Outlook

Further studies of the systematic uncertainties associated to SD reconstruction but the disagreement between the Auger and TA spectrum at the highest energies is not yet understood (<u>a difficult experimental problem</u>)

More information in the 2nd phase of the observatories:

- AugerPrime scintillators
- enhanced statistics with TAx4

Recommandation from the spectrum WG

given that we are entering in a 2^{nd} phase, would not be the right time to converge on the use of the same fluorescence yield, and invisible energy?

(note: energy scales <10¹⁹ eV would be in agreement at the few % level)

data set

	TA	Auger
data period	11/05/2008 - 11/05/2019	01/01/2004 - 31/08/2018
energy threshold	10 ^{18.2} eV	10 ^{18.4} eV
zenith angle	$\theta < 45^{\circ}$	$\theta < 60^{\circ}$
exposure	≈ 10000 km ² sr yr > 10 ^{18.8} eV (full trigger eff.) + res	60400 km² sr yr
$N_{ev} > 10^{19} \text{ eV} (10^{20} \text{ eV})$	3292 (14)	16737 (15)
SD energy resolution 10 ¹⁹ eV - 10 ²⁰ eV	21% - 15%	11% - 8%
FD energy resolution	19%	7.4%
Uncert. energy scale	21%	14%

correction for resolution effects to obtain the unfolded spectrum

Measurements in different declination bands

Compare TA Constant Intensity Cut and TA Original Monte Carlo Based Energy UHECR Reconstruction Methods 2018

TA MC-based and Constant Intensity Cut energy reconstruction methods agree at ${\sim}3\%$ level