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Abstract. Motivated by the ANITA report of pulses compatible with upward-going extensive air showers, we
present a recent search for such showers using the Pierre Auger Observatory. The dataset, registered using the
fluorescence detector of the Observatory, is scanned to identify showers ascending from the ground. Consistent
with the exit angles reported from the first and third ANITA flights, we focus on shower geometries that are
incompatible with Standard Model interactions of neutrinos in the Earth. We present the effective area of the
Observatory to generic upward-going showers as a function of shower energy and altitude. This can be used
to constrain predictions based on physics beyond Standard Model and the upgoing-shower interpretation of the
ANITA results. To demonstrate the method, we calculate limits to the production rate of tau leptons near the
ground emerging under a range of exit angles.

1 Introduction

The Pierre Auger Observatory [1], located near Malargüe,
Argentina was built to investigate ultra-high energy cos-
mic rays (UHECRs). Nevertheless, it is also capable
of measuring upward-going (UG) extensive air showers
(EASs) that could be created by other particles than UHE-
CRs. In this contribution, we search for EASs that would
emerge from the ground with zenith angle (θ) above 110◦.
To this end, we utilize the fluorescence detector (FD) of the
Observatory that is composed of 24 telescopes at four sites
covering elevations up to 30◦, and three High-Elevation
Auger Telescopes (HEAT) looking between 30◦ and 60◦

in elevation.
Our search is motivated by ANITA report of radio

pulses compatible with upward-going extensive air show-
ers [2] and our choice of investigated zenith angles com-
ply with these findings. It is worth noting that presence of
UG EASs with that large θ implies phenomena beyond the
Standard Model of particle physics, because such showers
would be inconsistent with interactions of neutrinos in the
Earth and current limits on neutrino flux provided by the
Auger Observatory [3].

2 Analysis

Showers ascending from the ground can be distinguished
in the FD from downward-going (DG) EASs using the
trigger time information from individual FD pixels to-
gether with their pointing. On top of that, we utilize an
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approximately universal longitudinal shape of EASs that
must be compatible with calculated profile of the energy
deposited in the atmosphere [4]. The later is especially
important to assess the geometry of showers detected only
in one FD station for which the time and pointing infor-
mation is not sufficient for short tracks.

After the cleaning of the dataset from lasers used to
monitor the atmosphere, Section 2.1, we estimate the num-
ber of background events, Section 2.2, calculate the FD
exposure to UG events, Section 2.3, and, finally, unblind
the data and assess the number of candidate events, Sec-
tion 2.4.

2.1 Laser cleaning

To efficiently filter events coming form monitoring lasers
of the Observatory, occurring occasionally in undefined
times due to technical malfunctions, a burnt dataset (10 %
of the full sample) was unblinded in advance and not used
in the final analysis. The distribution of impact points of
events in the burnt sample before and after the laser clean-
ing is shown in Fig. 1. The apparent lines occur due to
misreconstruction of laser events that are shot from the two
laser facilities in the centre of the array and from LIDARs
located at four FD sites. Thus, the residual laser events are
rejected based on the azimuth of the direction of normal to
the shower-detector plane and on specific frequencies of
laser shots.

2.2 Background

In the case that a shower is detected only in one FD sta-
tion, i.e. we use a monocular reconstruction to calculate
the shower axis, the shower can be wrongly reconstructed.
As a consequence, ordinary downward-going EASs can
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Figure 1. Distribution of shower cores in the burnt dataset
before and after the laser cleaning process in the top and bottom
panel, respectively. Apparent lines in the upper panel correspond
to the misreconstructed laser events, and colours in the bottom
panel represent FD sites that detected individual showers.

mimic UG signal. A shower falling behind the FD tele-
scope produces an image on the FD camera that is moving
from low to high elevations, which is also consistent with
the UG shower emerging in front of the telescope. This is
visualised in Fig. 2.

To identify as many of events falling behind the tele-
scope as possible, we apply a specific data cleaning that
uses maximum likelihood values Lup and Ldown coming
from competing DG and UG geometry reconstructions,
respectively. The decisive quantity that selects UG can-
didates is

l =
arctan

(
−2 log

(
Ldown/max

(
Lup, Ldown

))
/50
)

π/2
, (1)

which is cut, after optimization using simulations [5],
above 0.55 to select signal.

After the cleaning procedure, a background of 0.45 ±
0.18 events is expected in the full data sample. The distri-
butions of the l quantity, Eq. (1), are shown in Fig. 3 for
the burnt dataset, background simulations, and signal sim-
ulations. The correspondence between the burnt sample
and the background distributions is a non-trivial result that
comes from the precise knowledge of the detector and en-
ergy spectrum of UHECRs provided by the Pierre Auger
Observatory.
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Figure 2. Geometry of a downward-going EAS with an impact
point behind the field of view of an FD telescope (top panel). An
image of such a shower moves in the field of view from bottom
(magenta - former) to up (red - later) as marked by colours of
triggered pixels (bottom panel). Gray pixels correspond to ran-
dom triggers. The red line represents a projection of the shower
axis.
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Figure 3. Distributions of the l quantity in the burnt dataset
(black), background simulations (red), and signal simulations
(green). Background simulations are weighted to the UHECR
flux measured by the Auger Observatory and normalized to 10 %
of the data. The normalization of the signal simulations is arbi-
trary.

2.3 Exposure

Extensive Monte Carlo (MC) simulations were produced
to estimate the FD exposure to UG EASs. Protons, chosen
as primaries, were thrown in geometries that correspond to
an isotropic emergence from the ground with the height of
the first interaction (Hfi) sampled equally between 0 and
9 km. This range is limited by the field of view (FoV)
of the FD telescopes. Quantities used to define the injec-
tion of particles into the MC simulations are visualized in
Fig. 4.



Figure 4. Parameters used in the simulation of UG EASs.
Height of the first interaction Hfi, and the distance between the
particle exit point from the ground and the first interaction D are
shown.

After the application of the selection criteria, briefly
described in Section 2.2, to the MC simulated showers,
we evaluate selection efficiency and exposure in individ-
ual energy–Hfi bins. In Fig. 5, we present the double-
differential exposure of the FD to UG EASs w.r.t. Hfi and
calorimetric energy of showers (Ecal). It allows one to test
any type of exotic model of production of EASs, provided
that the distribution of emergence of showers with alti-
tude is predicted. Effective areas restricted to zenith an-
gle bins of θ ∈ [110◦, 124.2◦], θ ∈ [124.2◦, 141.3◦], and
θ ∈ [141.3◦, 180◦] were also calculated [5].

16.6 16.8 17 17.2 17.4 17.6 17.8 18 18.2 18.4
/eV)

cal
(E

10
log

0

1

2

3

4

5

6

7

8

9

[k
m

]
fiH

hexposurePCGFupCut2D_copy

Entries 360

Mean x 18.32
Mean y 2.116
Std Dev x0.1592

Std Dev y 1.872

1

10

210

310

[k
m

 s
r y

r]
fi

/d
H

εd

hexposurePCGFupCut2D_copy

Entries 360

Mean x 18.32
Mean y 2.116
Std Dev x0.1592

Std Dev y 1.872

36
+31
-14

37
+34
-15

63
+53
-20

298
+106
-52

505
+132
-70

949
+187
-101

1386
+232
-127

2771
+300
-191

4098
+356
-246

5655
+403
-295

14
+23
-8

16
+21
-10

78
+48
-26

143
+96
-37

600
+159
-79

963
+189
-105

1669
+245
-145

3296
+325
-214

5257
+392
-285

10
+23
-8

27
+36
-13

8
+18
-6

76
+51
-24

308
+123
-54

640
+175
-84

1297
+221
-125

2326
+277
-177

4128
+354
-245

48
+56
-20

90
+73
-28

193
+117
-43

235
+114
-47

867
+181
-100

1860
+249
-156

3585
+326
-225

25
+43
-15

22
+36
-13

136
+93
-36

212
+115
-47

656
+177
-84

1426
+224
-133

2613
+277
-187

14
+31
-11

42
+49
-18

252
+126
-49

463
+142
-70

1185
+203
-119

2782
+282
-190

55
+65
-23

98
+80
-30

390
+123
-63

939
+174
-105

2796
+271
-190

14
+32
-12

10
+24
-9

101
+84
-30

217
+105
-46

832
+180
-96

1714
+226
-145

57
+63
-25

46
+54
-19

276
+106
-51

933
+175
-102

1834
+234
-154

24
+38
-14

8
+19
-7

296
+118
-53

765
+166
-91

1689
+275
-156

48
+54
-21

25
+42
-15

257
+101
-52

702
+160
-88

1139
+182
-119

11
+24
-9

11
+26
-9

32
+44
-16

152
+76
-37

507
+141
-77

770
+232
-111

64
+57
-26

182
+129
-51

325
+132
-62

552
+214
-128

46
+54
-24

27
+36
-13

169
+103
-47

225
+149
-58

348
+186
-77

14
+32
-12

72
+86
-42

76
+66
-30

250
+118
-63

223
+106
-50

8
+18
-6

31
+29
-14

125
+70
-35

150
+212
-77

15
+20
-10

8
+18
-6

322
+654
-235

18
+30
-11

59
+63
-27

78
+179
-64

Figure 5. The double-differential exposure of the FD to UG
EASs. An isotropic emergence of events for θ ∈ [110◦, 180◦] is
assumed.

2.4 Candidates

After unblinding, 1 event has been observed to pass all
the selection criteria in the full data sample. This is in
line with the background expectation. Thus, we place
upper limits on the integral flux of UG showers at 95 %
confidence level, assuming two different spectral indices
γ = 1, 2

F95 %
γ=1 = 3.6 · 10−20 cm−2sr−1s−1, (2)

F95 %
γ=2 = 8.5 · 10−20 cm−2sr−1s−1. (3)

These limits are valid for any UG EASs with Ecal above
1017.5 eV.

The double-differential exposure table shown in Sec-
tion 2.3 can be used also to place differential limits in in-
dividual energy bins, and even place limits using specific
scenario of the production of UG showers. This is illus-
trated in Section 3.

3 Upper limits on the flux of τ leptons

Having the previous results in hand, upper limits on a par-
ticular scenario of the EAS production from τ leptons can
be set [6]. We assume a flux of τs in the energy range of
E0,τ ∈ [1016.5 eV, 1020 eV].

Figure 6. Possible outcomes of the τ simulations in NuTauSim.
The height Hfi in Fig. 4 corresponds to the distance D1, where
the decay products of the τ interact.

Using the MC simulations in NuTauSim [7], we
investigated the τ propagation in the Earth assuming
their isotropic production in the distance range of D ∈
[−50 km, 26.3 km] around the ground plane. According
to the sketch in Fig. 6, only in cases 3 and 5, for which
the τ decay appears in the FD-observable part of the atmo-
sphere, we simulated the decay of τ in TAUOLA [8]. We
obtained the distribution of τ-decay induced EASs within
the FoV of the FD shown in the top panel of Fig. 7.

The distribution of τ induced EASs is then folded with
the double-differential exposure of the FD from Fig. 5 to
get the number of events per height bin that would trigger
the FD, given in the bottom panel of Fig. 7. It is further
integrated in height for each energy bin.

After the calorimetric energy of τ EASs (Esh) is
tracked back to E0,τ, we place differential upper limits
on the emergence of τ leptons near the ground shown in
Fig. 8. Because each E0,τ contributes to several Esh, due to
the energy distribution of τ-daughter particles, we assume
two spectral indices of the τ flux, γ = 1, 2, to calculate the
limits.

These limits hold irrespectively of the underlying sce-
nario of the τ production.
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Figure 7. Distribution of MC-generated τ-decay induced EASs
within the FoV of the FD (top panel) and corresponding number
of FD-triggered events per height bin (bottom panel). The height
H1 corresponds to the distance D1 in Fig. 6 and coincides with
Hfi.
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Figure 8. Differential upper limits on the isotropic emergence
of τ leptons near the ground at 95 % confidence level. The left
axis corresponds to the flux of τ-leptons created within 50 km of
path length below the Earth’s surface, and the right scale shows
the limits on the rate of τs generated per unit volume, energy,
and solid angle. Two indicated spectral indices of the τ flux are
assumed.

4 Conclusions

The data of 14 years of operation of the fluorescence de-
tector of the Pierre Auger Observatory have been searched
for upward-going extensive air showers with zenith angles
between 110◦ and 180◦. One candidate event has been
found, which is consistent with the background expecta-
tion of ∼0.5 events, coming from wrongly reconstructed
downward-going cosmic-ray showers. Integral upper lim-
its on the flux of upward-going showers were determined
for two spectral indices, γ = 1, 2, used in the calculation of
an average exposure. The double-differential exposure of
the fluorescence detector was presented, and was applied
to derive upper limits on the τ lepton emergence near the
ground.
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