Indirect constraints on the origins of UHECRs & VHE neutrinos

& possible indications of multiple sources

Glennys Farrar and Marco Muzio* New York University *now Penn State Univ.

springing from work with Michael Unger (and earlier, Chen Ding and Noemie Globus)

ICRR-NYC, Feb. 12, 2022

What we know:

- No single (apparent) dominant source (or source class ???)
- Complex composition
- Highest energy Galactic CRs overlap the lowest energy extragalactic UHECRs
- Spectrum shaped by acceleration, propagation and interactions near source
 - Multi-messenger approach is essential

What we NEED TO know:

- Are sources weak and abundant or strong and rare?
- What are the principal source types?
 - Sources may not all be visible today (e.g., transients)
- What are the sources' spectra and composition?
 - Are UHECR sources (approximately) standardized?
- Better knowledge of magnetic fields
- Task seems hard...

In today's talk:

- Constrain UHECR source environments' T, B, L
 - using spectrum, composition & neutrinos
 - Data disfavors some candidate sources

Also, anisotropy constraints (not today!):

- Dipole anisotropy -> natural baseline model Ding, Globus, GRF ApJL'21 (see also Allard+ '21)
 - sources are abundant and weak
 - individually-distinct sources are few and nearby (e.g., TA hotspot!)
 - SOURCE DISTRIBUTION KNOWN (LSS) → refine GMF
- But maybe local radio galaxies are responsible! Eichmann, Kachelreiss, Oikonomou 2022

Cosmic Rays are Accelerated, then fragmented

Unger, GF & Anchordoqui 2015

- Excellent fit to spectrum & composition
- Explains light population between between GCR & UHECR

Cosmic Rays are Accelerated, then fragmented

Unger, GF & Anchordoqui 2015

- Excellent fit to spectrum & composition
- Explains light population between between GCR & UHECR
- Smoking gun for UFA mechanism:
- $E_p \sim E_{max} / A_{max} not E_{max} / Z_{max}$

3.5

V(In A)

Cosmic Rays are Accelerated, then fragmented Note la

Unger, GF & Anchordoqui 2015

Note large fraction of fragmented primaries

(b) Injected (dashed line) and escaping (solid lines) fluxes.

3.5

V(In A)

- Excellent fit to spectrum & composition
- Explains light population between between GCR & UHECR
- Smoking gun for UFA mechanism:
- $E_p \sim E_{max} / A_{max} not E_{max} / Z_{max}$

Refining & Extending the UFA mechanism

Muzio, Unger, GF 2019

Refining & Extending the UFA mechanism

Muzio, Unger, GF 2019, Muzio, GF, Unger 2022

- Galactic-sourced ν 's cutting off $\approx 0.1 \text{ PeV}$
- UHECR-sourced ν 's predicted from UHECRs; peak \approx 10 PeV
- Abundant $\overline{\nu}_e$ expected from $n \rightarrow p e^- \overline{\nu}_e$ Glashow event predicted
- UHECR-originated TeV-PeV gammas below other sources

Today: exploiting the UFA mechanism

Muzio & GF arXiv:2209.08068

MODEL FIT PARAMETERS \Leftrightarrow ratio of escape & interaction times; break in diffusion coefficient \Leftrightarrow magnetic field strength and coherence length; source size; photon spectrum and gas density...

The surroundings of UHECR Accelerators are constrained by MFU fit

Parameter	Sibyll2.3c	EPOS-LHC
$\gamma_{ m inj}$	$-1.45^{+1.26}_{-1.21}$	$-1.31^{+1.23}_{-1.17}$
$\log_{10}(R_{ m max}/{ m V})$	$18.63\substack{+0.81 \\ -0.38}$	$18.65\substack{+0.78 \\ -0.37}$
$\log_{10} r_{ m esc}$	$2.32\substack{+1.16 \\ -0.92}$	$2.01\substack{+1.49 \\ -0.78}$
f_g frac. (ref) hadronic ints	$0.17\substack{+0.6 \\ -0.17}$	$0.29\substack{+0.56 \\ -0.29}$
$\log_{10}(R_{ m diff}/{ m V})$	$17.65\substack{+0.85 \\ -1.7}$	$17.7^{+1.01}_{-1.65}$
$ anh(\log_{10}r_{ m size})$	$0.81\substack{+0.18 \\ -1.07}$	$0.74\substack{+0.25 \\ -1.02}$
$f_{ m gal}$	$0.71\substack{+0.16 \\ -0.47}$	$0.76\substack{+0.08\\-0.49}$
$\gamma_{ m gal}$	$-3.4\substack{+0.74\\-0.21}$	$-3.46\substack{+0.74\\-0.23}$
$\log_{10}(E_{ m max}^{ m galFe}/{ m eV})$	$18.86\substack{+1.35\\-0.63}$	$18.66\substack{+1.45 \\ -0.47}$
$\log_{10}(T/\mathrm{K})$	$2.41\substack{+0.85 \\ -0.6}$	$2.21\substack{+1.05 \\ -0.39}$
$A_{ m inj}$	$28.83^{+18.78}_{-18.83}$	$28.62\substack{+18.93 \\ -18.71}$
$A_{ m gal}$	$28.78^{+18.77}_{-18.8}$	$28.7^{+18.8}_{-18.72}$
$\log_{10}(B\lambda_c/\mu{ m G\cdot kpc})$	$0.49\substack{+0.85 \\ -1.7}$	$0.54^{+1.01}_{-1.65}$
$\log_{10}(Ln_\gamma/(10~{ m kpc}\cdot{ m cm}^{-3}))$	$3.96\substack{+3.09\\-1.51}$	$4.15\substack{+2.65 \\ -1.48}$
$\log_{10}(n_\gamma/n_g)$	$3.17^{+1.7}_{-1.18}$	$3.05\substack{+2.06\\-1.22}$
$\log_{10}(L/10~{ m kpc})_{ m BB}$	$-4.7^{+2.75}_{-2.4}$	$-4.12\substack{+1.87\\-2.56}$
$\log_{10}(\lambda_c/{ m kpc})_{ m BB}$	$-4.71\substack{+3.91 \\ -4.0}$	$-4.23\substack{+3.11\\-3.2}$
$\log_{10}(n_g/{ m cm}^{-3})_{ m BB}$	$5.52^{+2.25}_{-2.17}$	$5.08\substack{+3.2\\-2.24}$
$\log_{10}(B/\mu{ m G})_{ m BB}$	$5.19\substack{+4.33 \\ -4.97}$	$4.64^{+3.77}_{-4.02}$

Surroundings of UHECR Accelerators

btw: $\gamma_{inj} = -1.45^{+1.25}_{-1.15} \rightarrow \text{Diffusive Shock Accel. OK (accelerator <math>\neq$ source)} $T_{surround} = 60 - 2000 \text{ K}$ $\{B_{rms}, L\} - of source, not accelerator - is constrained$ $[B_{lack-body case n_0 = 1; the conversion for other n_0 val-]$

G. Farrar, UHECR22, Oct 4, 2022

ues is $L = L_{\rm BB}/n_0$, $B = n_0 B_{\rm BB}$, $\lambda_{\rm c} = \lambda_{\rm c,BB}/n_0$, and $n_{\rm g} = n_0 n_{g,\rm BB}$.

Muzio&GF arXiv:2209.08068

Magnetic Field, Size, baryon density & photon field of source are constrained \rightarrow (dis)allowed candidates

 $T_{surround} = 60 - 2000 K$

T_{surround} = 60 - 2000 K excludes many candidate acceleration regions

Massive Galaxy Clusters (2 x disfavored: $T = 10^{7-8}$ K; $n_0 = 1$) AGN:

- radio lobes (T \approx few keV)
- ?internal shocks in jet? likely problematic; must also account for boost
- inner AGN disk: maybe ok (T=60-1000 K)
 - but nearby dangerous regions & must account boost

Typical Starburst Galaxies are viable: both T and B & L

Muzio&GF arXiv:2209.08068. See also Condorelli+arXiv:2209.08593

What if you don't believe UFA picture? (disintegration \Rightarrow sub-ankle EGCRs)

- Need to invent explanation for magnitude of spectrum below ankle.
- Need to explain regularity of $E_p \sim 1/4 E_{He}$ (common accel: 1/2 E_{He}).
- SOURCE ENVIRONMENT WILL (in general) STILL disintegrate UHECRs;
 - high T environment is especially dangerous
 - problem must be studied

- Composition & Spectrum of UHECRs + VHE ν (upper limits) constrain source environment: B_{rms} , size, T, ... MF22
 - disfavors massive Galaxy Clusters and radio lobes of AGN
 - inner AGN disk maybe ok (n.b., boost); internal shocks in jets problematic(?)
 - typical starburst galaxies ok
 - to do: TDE's, GRBs, magnetars, ... (please make suggestions, lend ideas & wisdom!)
- Accelerator spectral index is compatible with Diffusive Shock Accel. MFU22, MF22
- Multi-messenger: MFU22
 - ✓ Predicted HE v's from UHECRs (> few PeV) fit data
 - ✓ GeV-TeV γ 's from UHECRs << observed
 - VHE ν spectrum important for constraining sources

BACKUP SLIDES

"Imprint of Large scale structure on THE UHECR SKY"

Chen Ding, Noemie Globus, Glennys Farrar New York University ApJ Letters 2021; arXiv 2101.04564 [astro-ph.HE]

DGF21 CONCLUSIONS

• Assumption that UHECR injection follows the large scale matter distribution explains Auger anisotropy measurements above 8 EeV.

Rather than few prominent sources, there appear to be many weak ones.

- Individual sources:
 - Auger hotspot may be from LSS (conclusion very sensitive to composition)
 - TA hotspot ⇔ nearby (e.g., transient) source like a TDE (in M82?)
- Pure proton composition can be ruled out on anisotropy grounds alone.
- EGMF has insignificant effect
- Composition inhomogeneities from LSS small ⇒ composition will help isolate individual sources

Source distribution \Leftrightarrow local matter distribution

DGF 21 uses Hoffmann+18 Cosmicflows-2

DGF: "Continuum" model

• Source distribution ⇔ matter distribution

- Extragalactic propagation: energy losses, possible magnetic diffusion (EGMF turns out to have negligible impact)
- Galactic propagation: JF12 field model with adjustable coherence length (1.8B GF-Sutherland trajectories)

ILLUMINATION MAP

(EGMF diffusion is insignificant. Fit result: $B_{EG} = 0.3-0.5 \text{ nG}$)

