

LHAASO on Cosmic Ray Knees

Zhen Cao, IHEP On behalf of LHAASO Collaboration

UHECR-2022, GSSI, L'Aquila, Italy, Oct. 2022

Outline

LHAASO experiment

- Calibration
- CR spectrum measurements
- **D** Summary

LHAASO Collaboration

275 members from31 institutions in

5 countries

Zhen Cao,^{1,2,3} F. Aharonian,^{4,5} Q. An,^{6,7} Axikegu,⁸ L.X. Bai,⁹ Y.X. Bai,^{1,3} Y.W. Bao,¹⁰ D. Bastieri,¹¹ X.J. Bi^{*},^{1,2,3} Y.J. Bi,^{1,3} H. Cai,¹² J.T. Cai,¹¹ Zhe Cao,^{6,7} J. Chang,¹³ J.F. Chang,^{1,3,6} B.M. Chen,¹⁴ E.S. Chen^{*},^{1,2,3} J. Chen,⁹ Liang Chen,^{1,2,3} Liang Chen,¹⁵ Long Chen,⁸ M.J. Chen,^{1,3} M.L. Chen,^{1,3,6} Q.H. Chen,⁸ S.H. Chen,^{1,2,3} S.Z. Chen,^{1,3} T.L. Chen,¹⁶ X.L. Chen,^{1,2,3} Y. Chen,¹⁰ N. Cheng,^{1,3} Y.D. Cheng,^{1,3} S.W. Cui,¹⁴ X.H. Cui,¹⁷ Y.D. Cui,¹⁸ B. D'Ettorre Piazzoli,¹⁹ B.Z. Dai,²⁰ H.L. Dai,^{1,3,6} Z.G. Dai,⁷ Danzengluobu,¹⁶ D. della Volpe,²¹ X.J. Dong,^{1,3} K.K. Duan,¹³ J.H. Fan,¹¹ Y.Z. Fan,¹³ Z.X. Fan,^{1,3} J. Fang,²⁰ K. Fang,^{1,3} C.F. Feng,²² L. Feng,¹³ S.H. Feng,¹³ H. Feng,¹³ B. Gao,^{1,3} C.D. Gao,²² L.Q. Gao,^{1,1,2,3} Q. Gao,¹⁶ W. Gao,²² M.M.

Ge,²⁰ L.S. Geng,^{1,3} G.H. Gong,²³ Q.B. Gou,^{1,3} M.H. Gu,^{1,3,6} F.L. Guo,¹⁵ J.G. Guo,^{1,2,3} X.L. Guo,⁸ Y.Q. Guo,^{1,3} Y.Y. Guo,^{1,2,3,13} Y.A. Han,²⁴ H.H. He,^{1,2,3} H.N. He,¹³ J.C. He,^{1,2,3} S.L. He,¹¹ X.B. He,¹⁸ Y. He,⁸ M. Heller,²¹ Y.K. Hor,¹⁸ C. Hou,^{1,3} X. Hou,²⁵ H.B. Hu,^{1,2,3} S. Hu,⁹ S.C. Hu,^{1,2,3} X.J. Hu,²³ D.H. Huang,⁸ Q.L. Huang,^{1,3} W.H. Huang,²² X.T. Huang,²² X.Y. Huang,¹³ Z.C. Huang,⁸ F. Ji,^{1,3} X.L. Ji,^{1,3,6} H.Y. Jia,⁸ K. Jiang,^{6,7} Z.J. Jiang,²⁰ C. Jin,^{1,2,3} T. Ke,^{1,3} D. Kuleshov,²⁶ K. Levochkin,²⁶ B.B. Li,¹⁴ Cheng Li,^{6,7} Cong Li,^{1,3} F. Li,^{1,3,6} H.B. Li,^{1,3} H.C. Li,^{1,3} H.Y. Li,^{7,13} Jian Li,⁷ Jie Li,^{1,3,6} K. Li,^{1,3} W.L. Li,²² X.R. Li,^{1,3} Xin Li,^{6,7} Xin Li,⁸ Y. Li,⁹ Y.Z. Li,^{1,2,3} Zhe Li,^{1,3} Zhuo Li,²⁷ E.W. Liang,²⁸ Y.F. Liang,²⁸ S.J. Lin,¹⁸ B.
Liu,⁷ C. Liu,^{1,3} D. Liu,²² H. Liu,⁸ H.D. Liu,²⁴ J. Liu,^{1,3} J.L. Liu,²⁹ J.S. Liu,¹⁸ J.Y. Liu,^{1,3} M.Y. Liu,¹⁶ R.Y. Liu,¹⁰ S.M. Liu,⁸ W. Liu,^{1,3} Y. Liu,¹¹ Y.N. Liu,²³ Z.X. Liu,⁹ W.J. Long,⁸ R. Lu,²⁰ H.K. Lv,^{1,3} B.Q. Ma,²⁷ L.L. Ma,^{1,3} X.H. Ma,^{1,3} J.R. Mao,²⁵ A. Masood,⁸ Z. Min,^{1,3} W. Mitthumsiri,⁹⁰ T. Montaruli,²¹ Y.C. Nan,²² B.Y. Pang,⁸ P. Pattarakijwanich,³⁰ Z.Y. Pei,¹¹ M.Y. Qi,^{1,3} Y.Q. Qi,¹⁴ B.Q. Qiao,^{1,3} J.J. Qin,⁷ D. Ruffolo,³⁰ V. Rulev,²⁶ A. Sáiz,³⁰ L. Shao,¹⁴ O. Shchegolev,^{26,31} X.D. Sheng,^{1,3} J.R. Shi,^{1,3} H.C. Song,²⁷ Yu.V. Stenkin,^{26,31} V. Stepanov,²⁶ Y. Su,¹³ Q.N. Sun,⁸ X.N. Sun,²⁸ Z.B. Sun,³² P.H.T. Tam,¹⁸ Z.B. Tang,^{6,7} W.W. Tian,^{2,17} B.D. Wang,^{1,3} C. Wang,³² H. Wang,⁸ H.G. Wang,¹¹ J.C. Wang,²⁵ J.S. Wang,²⁹ L.P. Wang,²² L.Y. Wang,^{1,3} R.N.

Wang, ⁸ W. Wang, ¹⁸ W. Wang, ¹² X.G. Wang, ²⁸ X.J. Wang, ^{1,3} X.Y. Wang, ¹⁰ Y. Wang, ⁸ Y.D. Wang, ^{1,3} Y.J. Wang, ^{1,3} Y.P.
Wang, ^{1,2,3} Z.H. Wang, ⁹ Z.X. Wang, ²⁰ Zhen Wang, ²⁹ Zheng Wang, ^{1,3,6} D.M. Wei, ¹³ J.J. Wei, ¹³ Y.J. Wei, ^{1,2,3} T. Wen, ²⁰ C.Y.
Wu, ^{1,3} H.R. Wu, ^{1,3} S. Wu, ^{1,3} W.X. Wu, ⁸ X.F. Wu, ¹³ S.Q. Xi, ^{1,3} J. Xia, ^{7,13} J.J. Xia, ⁸ G.M. Xiang, ^{2,15} D.X. Xiao, ¹⁶ G. Xiao, ^{1,4} H.B. Xiao, ¹¹ G.G. Xin, ¹² Y.L. Xin, ⁸ Y. Xing, ¹⁵ D.L. Xu, ²⁹ R.X. Xu, ²⁷ L. Xue, ²² D.H. Yan, ²⁵ J.Z. Yan, ¹³ C.W. Yang, ⁹ F.F.
Yang, ^{1,3,6} J.Y. Yang, ¹⁸ L.L. Yang, ¹⁸ M.J. Yang, ^{1,3} R.Z. Yang, ⁷ S.B. Yang, ²⁰ Y.H. Yao, ⁹ Z.G. Yao, ^{1,3} Y.M. Ye, ²³ L.Q. Yin, ^{1,3} N. Yin, ²² X.H. You, ^{1,3} Z.Y. You, ^{1,2,3} Y.H. Yu, ²² Q. Yuan^{*}, ¹³ H.D. Zeng, ¹³ T.X. Zeng, ^{1,3,6} W. Zeng, ²⁰ Z.K. Zeng, ^{1,2,3} M. Zha, ^{1,3} X.X. Zhai, ^{1,3} B.B. Zhang, ¹⁰ H.M. Zhang, ¹⁰ H.Y. Zhang, ²² J.L. Zhang, ¹⁷ J.W. Zhang, ⁹ L.X. Zhang, ¹¹ Li Zhang, ²⁰ Lu Zhang, ¹⁴ P.F. Zhang, ²⁰ P.P. Zhang, ¹⁴ R. Zhang, ^{7,13} S.R. Zhang, ¹⁴ S.S. Zhang, ^{1,3} X. Zhang, ¹⁰ X.P. Zhang, ^{1,3} Y.F. Zhang, ⁸ J. Zhao, ^{1,3} L. Zhao, ^{6,7} L.Z. Zhao, ¹⁴ S.P. Zhao^{*}, ^{1,3,22} F. Zheng, ³² Y. Zheng, ⁸ B. Zhou, ^{1,1,3} L. Zhao, ⁹ X.X. Zhou, ¹⁴ S.P. Zhao, ⁴⁴ S.P. Zhao^{*}, ^{13,22} F. Zheng, ³² Y. Zheng, ⁸ B. Zhou, ^{1,1,3} Y. Zhao, ⁹ X.X. Zhou, ⁸ H. Zhu, ¹⁷ K.J. Zhu, ^{1,2,3,6} and X. Zuo^{1,3}

(LHAASO Collaboration)

LHAASO bird view on August 2021

- > Location: Haizi Moutain, Daochen, Sichuan, China
 - Altitude: 4410 m a.s.l.
 - 2021-07: The full array was complete and in operation

KM2A: 1.36 (km)²

- ¹/₄ array operation: 2019/09
- ¹/₂ array operation: 2020/01
- ³/₄ array operation: 2020/12
- Full array operation: 2021/7

KM2A: 1.36 (km)²

≻5195 EDs

- A: 1 m²
- S: 15 m
- ≻1188 MDs
 - A: 36 m²
 - S: 30 m

MD Bladder

Inner View of Scintillator Detector

Inside of WCDA

20210511/131236/0.554789897: nTrig=-1, 0=37.81±0.02°, φ=103.39±0.02°

50000

25000 12000 6000

3000

1500

800

400

200 [PE 100

25 12

5.5

2.5 1.5

0.8 0.4

0.2

σ 50

Wide Field of View Cherenkov Telescope (WFCTA)

Telescopes:

- ~5 m² spherical mirror
- Camera: 32×32 SiPMs array
- FOV: $16^{\circ} \times 16^{\circ}$
- Pixel size: 0.5°
- >30% duty cycle in winter

Mirror

SiPM and Winston cone

Operation of LHAASO

- KM2A is operated with >99.4% duty cycle and event rate 2x10⁸ /day
- **WCDA** is operated with 98.4% and event rate 3x10⁹/day
- ✤ Data acquisition time of WFCTA >1400 hrs and number of matched events ~70 million

Telescope observation with the full moon

Observational

Phases

Phase I: 6 telescopes

- 2019/10 2021/4
- Zenith angle: 30°
- Proton, H+He knees
- 100 TeV_N 10 PeV

6 Tele's were moved in 2021/5 to form a

> Phase II: 18 telescopes

- **Operation: 2021/5**
- Zenith angle: 45°
- Iron knee
- 1 PeV 200 PeV

Calibration
 Absolute Energy Scale
 Pointing Direction
 Photometric calib.

CR spectrum measurements

Absolute energy scale obtained by LHAASO

Δa (°)

- In direct cosmic ray measurements: Detectors can be calibrated by the 350 GeV proton beam at CERN before launch.
- Ground-based detector array
 - It is impossible to generate an artificial test beam for the calibration
 - The test team from the CRs Moon shadow was first explored by ARGO-YBJ, which can be used to calibrate the ground-based experiment.

ARGO-YBJ Collaboration, PHYSICAL REVIEW D 84, 022003 (2011)

Moon Shadow measured by WCDA-1

Data:

- From 01/05/2019 to 31/01/2020, 8 months, WCDA-1;
- Zenith angle < 45°; •
- The data set are divided into 6 groups according to the energy estimator.

LHAASO Collaboration, PHYS. REV. D 104, 062007 (2021)

Range of N _{pe}	Shift of the	Significance
	Moon shadow (°)	(σ)
6,000-10,000	-0.32 ± 0.04	18.2
10,000-15,000	-0.25 ± 0.04	14.0
15,000-20,000	-0.15 ± 0.04	11.6
20,000-30,000	-0.11 ± 0.03	11.9
30,000-60,000	-0.06 ± 0.03	10.8
>60,000	-0.01 ± 0.03	10.9

The absolute energy scale obtained by WCDA-1

- In the energy range from 1 TeV to 50 TeV, the cosmic rays are dominated by protons and helium nuclei.
- The ratio of protons and helium nuclei can be obtained from CREAM and DAMPE.
- The trigger efficiency of WCDA-1 for protons and helium is obtained from simulation.

$$\Delta = z \times 1.59^{\circ}/E(TeV) \rightarrow \Delta = 2.1^{\circ}/E(TeV)$$

System uncertainties:

- Uncertainty caused by 10% changing of the ratio of protons and helium nuclei is about 3%.
- Uncertainty from different hadronic models (EPOS-LHC vs. QGSJET-II04) is less than 2%.
- An uncertainty of 4% is caused by the energy and angular resolution.

 $E(GeV) = aN_{pe}^{b}$ $a = 1.33_{-1.06}^{+5.26}$ $b = 0.95 \pm 0.17$

Absolute energy scale propagates from WCDA to C-telescopes

- The absolute energy scale is propagated to WFCTA by using the common trigger events together with WCDA
- Data Set of WCDA+WFCTA:
 - telescope FoV: 22 $^{\circ}$ <Zenith angles <38 $^{\circ}$
 - Nhit>200
 - 20k<Npe<60k
 - shower cores fall inside WCDA: |corex|<55m, |corey|<55

x (m)

Propagation

- The energy reconstructed by WFCTA is 21.9 \pm 0.1 TeV
- $23.4 \pm 0.1 \pm 1.3$ TeV by the formula of the absolute energy scale
- > The first time that the Cherenkov telescopes have an absolute energy scale

Star trajectories

Trajectories of the stars (known) vs. signals on the camera

The telescope pointing is calibrated by stars in FOV
 The elevation angles are monitored by the inclinometer

telescopes calibration results

Calibration system

LHAASO experiment

□ Absolute energy scale

- **C**R spectrum measurements
 - **2** independent hybrid analyses
 - □ Primary particle identification (multi-parameter analysis)
 - Energy reconstruction (2 independent ways)

Summary

LHAASO data set for proton and

H+He energy spectra

Phase I

- **≻ Period:** 2020.11 ~ 2021.04
- > WFCTA selection conditions:
 - > 10 pixels in each Cherenkov image
 - Full image contained in FoV
- > Good weather (ST<-70°)
- > Two independent measurements:
 - > WFCTA(6 telescopes)+KM2A
 - > WFCTA(6 telescopes)+WCDA-1+KM2A
 - > 750 hours, 0.7 million events (Core in WCDA)

Hybrid measurement of LHAASO

- Shower geo-reconstructed
 - by WCDA/KM2A
 - Core resolution: < 3 m
 - Angular resolution: < 0.2° @ >100 TeV
- Shower energy reconstruction
 - Cherenkov size
- > Mass sensitive parameters
 - X_{max} and Hillas parameters of
 Cherenkov image
 - Energy flux near shower core
 - Number of muons

Mass sensitive parameters

Composition Discrimination

KM2A
$$P_{\mu} = \log_{10} (N_{\mu|_{30-380}}) - 0.0916 \times (\log_{10} \sqrt{N_{e|_{40-100}}} \times N_{\mu|_{40-200}} + 3.44)$$

Multi-parameters analysis

TMVA(Toolkit for Multivariate Data Analysis with ROOT)

log10(E/GeV)

H and H+He spectra expectation by LHAASO

ARGO-YBJ + a Cherenkov prototype The knee of H&He spectrum at (700 ± 230) TeV is measured

by six telescopes of LHAASO (zenith 60°) during period of 2020.11 ~ 2021.04

Iron knee expectation by LHAASO

Phase II

90

Iron knee energy spectra observation:

- 18 telescopes point to zenith 45°, cover azimuth 0-360°
- ~1100 hours good data collected
- WFCTA + KM2A (full array is used)
- Energy range: several PeV 200 PeV

3.8

3.6

2022/04/14

2022/02/22

Progress of all particle spectrum by LHAASO

Energy reconstruction independent of primary CRs components

$$E_0 = E_e + E_h$$
$$N_{em} = N_e + 2.5 \cdot N_\mu$$
$$\log 10(E) = a + b \cdot \log 10(N_{em})$$

Xmax Measurement by WFCTA

100

80

60

40

20

-20

-40

-60

-80

-100

5.6

5.8

RecXmax-Xmax(g/cm²)

Dist vs. Xmax

6.2 log10(E/GeV)

45g/cm² @ 1PeV for proton

log (N

3.4

3.2

2.8

2.6 2.4

2.2

1.8

1.6

34g/cm² @ 1PeV for iron

Dist

The angular distance

and the image center.

between the arrival direction

(°) X (°)

<InA> Measured by Xmax of WFCTA

> Hybrid events with WFCTA and KM2A

- > 50 m< R_p <200 m, N_{pix} >20, (|X|<4° &|Y|<4°)
- \succ 50+ hits and N_µ>5

 $X_{max}^{A} = X_{max}^{p} - \lambda_{r} lnA$ $\lambda_{r} = 37g/cm^{2}$ is radiation length

<InA> reconstructed by muon in KM2A

A is the mass of the cosmic ray, ε_c is the critical energy where charge pions blow it then are all assumed to decay (yielding muons), and $\beta \approx 0.9$ varying with the primary energy.

$$\ln N_{\mu} = p_0 + p_1 \cdot \ln A$$

Progress of large-scale CRs anisotropy observed by LHAASO

Data set:

- 1/2 KM2A array: 2020/01/01-2020/11/30
- Core inside KM2A array
- Number of fired EDs>20
- The preliminary CRs all particle anisotropy was observed by 1/2 KM2A array
- Different component group of anisotropy analysis is in progress.

Wei Gao et al., 37th International Cosmic Ray Conference (ICRC2021), 2021 Berlin, Germany

- LHAASO is built July 2021 and stably operating since then
- The absolute energy scale at 21 TeV was measured by using WCDA and propagated to WFCTA by using the common trigger events
 - the uncertainty will be less than 10% in 4 years with more statistics
- The knee of pure proton spectrum will be measured in the first phase
 - Analysis is in progress
- Since the last run, the second phase were started in last winter. The knee of the iron spectrum is the goal
- CR Composition, all-particle spectrum and anisotropy are under analysis

Thanks for you attention!

宇宙

六占