Update on the indication of a composition anisotropy above $10^{18.7}$ eV in the hybrid data of the Pierre Auger Observatory

Eric Mayotte^{*a,b} and Thomas Fitoussi^c for the Pierre Auger Collaboration^d * Speaker: emayotte@mines.edu

- Colorado School of Mines, Department of Physics, Golden CO, USA а
- Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany Ь
- Karlsruhe Institute of Technology, Institute for Astroparticle Physics, Karlsruhe, Germany
- Observatorio Pierre Auger, Malargüe, Argentina d

- Primary UHECR composition generally appears to be mixed in nature and gets heavier with increasing energy.
 - \rightarrow CR primaries arriving with the same energy have different rigidities.
- The UHECR flux is definitely anisotropic above 8 EeV
 → Magnetic fields will distort injection anisotropies differently for each mass component.
- The strongest magnetic field affecting locally observed flux is the GMF.
 - \rightarrow Distortion effects strongest for trajectories near to the galactic plane, weakest away from it.
- Possible effects admittedly highly complex and dependent on coherent/turbulent B-field strengths, primary composition profile, and external source distribution;
- → however, possibility exists for anisotropy which depends on composition which correlates GMF and therefore the Galactic plane.

UHECR

- Primary UHECR composition generally appears to be mixed in nature and gets heavier with increasing energy.
 - \rightarrow CR primaries arriving with the same energy have different rigidities.
- The UHECR flux is definitely anisotropic above 8 EeV
 → Magnetic fields will distort injection anisotropies differently for each mass component.
- The strongest magnetic field affecting locally observed flux is the GMF.
 - \rightarrow Distortion effects strongest for trajectories near to the galactic plane, weakest away from it.
- Possible effects admittedly highly complex and dependent on coherent/turbulent B-field strengths, primary composition profile, and external source distribution;
- \rightarrow however, possibility exists for anisotropy which depends on composition which correlates GMF and therefore the Galactic plane.

- Primary UHECR composition generally appears to be mixed in nature and gets heavier with increasing energy.
 - \rightarrow CR primaries arriving with the same energy have different rigidities.
- The UHECR flux is definitely anisotropic above 8 EeV
 → Magnetic fields will distort injection anisotropies differently for each mass component.
- The strongest magnetic field affecting locally observed flux is the GMF.
 - ightarrow Distortion effects strongest for trajectories near to the galactic plane, weakest away from it.
- Possible effects admittedly highly complex and dependent on coherent/turbulent B-field strengths, primary composition profile, and external source distribution;
- → however, possibility exists for anisotropy which depends on composition which correlates GMF and therefore the Galactic plane.

UHEC

UHECR

- Primary UHECR composition generally appears to be mixed in nature and gets heavier with increasing energy.
 - \rightarrow CR primaries arriving with the same energy have different rigidities.
- The UHECR flux is definitely anisotropic above 8 EeV
 → Magnetic fields will distort injection anisotropies differently for each mass component.
- The strongest magnetic field affecting locally observed flux is the GMF.
 - \rightarrow Distortion effects strongest for trajectories near to the galactic plane, weakest away from it.
- Possible effects admittedly highly complex and dependent on coherent/turbulent B-field strengths, primary composition profile, and external source distribution;
- → however, possibility exists for anisotropy which depends on composition which correlates GMF and therefore the Galactic plane.

UHECR

- Primary UHECR composition generally appears to be mixed in nature and gets heavier with increasing energy.
 - \rightarrow CR primaries arriving with the same energy have different rigidities.
- The UHECR flux is definitely anisotropic above 8 EeV
 → Magnetic fields will distort injection anisotropies differently for each mass component.
- The strongest magnetic field affecting locally observed flux is the GMF.
 - \rightarrow Distortion effects strongest for trajectories near to the galactic plane, weakest away from it.
- Possible effects admittedly highly complex and dependent on coherent/turbulent B-field strengths, primary composition profile, and external source distribution;
- \rightarrow however, possibility exists for anisotropy which depends on composition which correlates GMF and therefore the Galactic plane.

- 1. Use the composition sensitivity of the atmospheric depth of shower maximum, X_{max} , to test! \rightarrow Measured via the hybrid method outlined in (A. Aab et al. 2014) and (Yushkov 2020)
- 2. Define the on- and off-plane regions using some Galactic latitude splitting angle $b_{\rm split}$

On-plane: $|b_i| \le b_{split}$ Off-plane: $|b_i| > b_{split}$

- 3. Obtain a Test Statistic comparing the on- and off-plane X_{max} distributions using the Anderson-Darling 2-Sample test (Anderson and Darling 1952)
- 4. Perform a scan over roughly 50 % of the data to select E_{min} and b_{split} prescription.
- 5. Apply the scan selected thresholds as a prescription to remaining data
- 6. Calculate statistical significance using Monte-Carlo and random skies
- 7. Evaluate systematic uncertainties and their effects on result significance

1. Measuring X_{max} at the Pierre Auger Observatory

The Observatory (Aab et al. 2015)

- FD: 27 fluorescence telescopes
- SD: 1660 water-Cherenkov detectors
- Hybrid measurement concept:
 - \rightarrow Core timing/location with SD
 - \rightarrow Geometry with FD pixel trace
 - \rightarrow Energy and X_{\max} from FD light profile

Event X_{max} values obtained using:

the reconstruction, selection, and methods

from (Yushkov 2020) on hybrid data

collected between 01.12.2004-31.12.2018

- see backup for details -

UHECR

- 1. Use the composition sensitivity of the atmospheric depth of shower maximum, X_{max} , to test! \rightarrow Measured via the hybrid method outlined in (A. Aab et al. 2014) and (Yushkov 2020)
- 2. Define the on- and off-plane regions using some Galactic latitude splitting angle b_{split} On-plane: $|b_i| \le b_{split}$ Off-plane: $|b_i| > b_{split}$
- 3. Obtain a Test Statistic comparing the on- and off-plane X_{max} distributions using the Anderson-Darling 2-Sample test (Anderson and Darling 1952)
- 4. Perform a scan over roughly 50 % of the data to select E_{min} and b_{split} prescription.
- 5. Apply the scan selected thresholds as a prescription to remaining data
- 6. Calculate statistical significance using Monte-Carlo and random skies
- 7. Evaluate systematic uncertainties and their effects on result significance

- 1. Use the composition sensitivity of the atmospheric depth of shower maximum, X_{max} , to test! \rightarrow Measured via the hybrid method outlined in (A. Aab et al. 2014) and (Yushkov 2020)
- 2. Define the on- and off-plane regions using some Galactic latitude splitting angle $b_{\rm split}$

On-plane: $|b_i| \le b_{split}$ Off-plane: $|b_i| > b_{split}$

- 3. Obtain a Test Statistic comparing the on- and off-plane X_{max} distributions using the Anderson-Darling 2-Sample test (Anderson and Darling 1952)
- 4. Perform a scan over roughly 50 % of the data to select E_{min} and b_{split} prescription.
- 5. Apply the scan selected thresholds as a prescription to remaining data
- 7. Calculate statistical significance using Monte-Carlo and random skies
- 8. Evaluate systematic uncertainties and their effects on result significance

UHECR

- 1. Use the composition sensitivity of the atmospheric depth of shower maximum, X_{max} , to test! \rightarrow Measured via the hybrid method outlined in (A. Aab et al. 2014) and (Yushkov 2020)
- 2. Define the on- and off-plane regions using some Galactic latitude splitting angle $b_{\rm split}$

 $\text{On-plane:} \mid b_i \mid \leq b_{\text{split}} \quad \text{Off-plane:} \mid b_i \mid > b_{\text{split}}$

- 3. Obtain a Test Statistic comparing the on- and off-plane X_{max} distributions using the Anderson-Darling 2-Sample test (Anderson and Darling 1952)
- 4. Perform a scan over roughly 50 % of the data to select E_{min} and b_{split} prescription.
- 5. Apply the scan selected thresholds as a prescription to remaining data
- 6. Calculate statistical significance using Monte-Carlo and random skies
- 7. Evaluate systematic uncertainties and their effects on result significance

Data scan and prescription

Data-driven selection of energy and latitude thresholds

- Scan over roughly the first 50 % of data taken
- 5° steps in b and $0.1 \lg(E/eV)$ steps in energy
- Highest TS of 8.35 for: $ightarrow {\it E_{min}} = 10^{18.7}\,{
 m eV}$ $ightarrow {\it b_{split}} = 30^{\circ}$

Set as prescription for remaining data

Step-by-step testing method

- 1. Use the composition sensitivity of the atmospheric depth of shower maximum, X_{max} , to test! \rightarrow Measured via the hybrid method outlined in (A. Aab et al. 2014) and (Yushkov 2020)
- 2. Remove the X_{max} elongation rate so events over a threshold energy, E_{min} , can be combined
- 3. Define the on- and off-plane regions using some Galactic latitude splitting angle b_{split} On-plane: $|b_i| < b_{split}$ Off-plane: $|b_i| > b_{split}$
- 4. Obtain a Test Statistic comparing the on- and off-plane X_{max} distributions using the Anderson-Darling 2-Sample test (Anderson and Darling 1952)
- 5. Perform a scan over roughly 50% of the data to select E_{min} and b_{split} prescription.
- 6. Apply the scan selected thresholds as a prescription to remaining data
- 7. Calculate statistical significance using Monte-Carlo and random skies
- 8. Evaluate systematic uncertainties and their effects on result significance

Good separation for above $10^{18.7} \, eV$

Indicates a heavier mean mass on-plane for all energies above the ankle

Good separation for above $10^{18.7}\,\mathrm{eV}$

Indicates a heavier mean mass on-plane for all energies above the ankle

 $\begin{array}{l} \mbox{Unscanned data: } TS = 12.6 \\ \Delta \langle X'_{\rm max} \rangle = 10.5 \pm 2.5^{+2.1}_{-2.2} \, {\rm g/cm^2} \\ \Delta \sigma (X'_{\rm max}) = 5.9 \pm 3.1^{+3.5}_{-2.5} \, {\rm g/cm^2} \end{array}$

All data:
$$TS = 21.0$$

 $\Delta \langle X'_{max} \rangle = 9.1 \pm 1.6^{+2.1}_{-2.2} \text{ g/cm}^2$
 $\Delta \sigma (X'_{max}) = 5.9 \pm 2.1^{+3.5}_{-2.5} \text{ g/cm}^2$

Step-by-step testing method

- 1. Use the composition sensitivity of the atmospheric depth of shower maximum, X_{max} , to test! \rightarrow Measured via the hybrid method outlined in (A. Aab et al. 2014) and (Yushkov 2020)
- 2. Remove the X_{max} elongation rate so events over a threshold energy, E_{min} , can be combined
- 3. Define the on- and off-plane regions using some Galactic latitude splitting angle b_{split} On-plane: $|b_i| < b_{split}$ Off-plane: $|b_i| > b_{split}$
- 4. Obtain a Test Statistic comparing the on- and off-plane X_{max} distributions using the Anderson-Darling 2-Sample test (Anderson and Darling 1952)
- 5. Perform a scan over roughly 50% of the data to select E_{min} and b_{split} prescription.
- 6. Apply the scan selected thresholds as a prescription to remaining data
- 7. Calculate statistical significance using Monte-Carlo and random skies
- 8. Evaluate systematic uncertainties and their effects on result significance

Statistical significance is calculated by duplicating the analysis on many random skies

- The data is shuffled in arrival direction to form random skies for each MC trial from which TS are extracted
- Scan duplicated in evaluation of the scanned + unscanned dataset

ightarrow Imposes heavy penalization (only 0.5 σ gained)

Blinded data: Post-penalization 4.4 σ **Stat.** Chance probability 1 in 172,000

Step-by-step testing method

- 1. Use the composition sensitivity of the atmospheric depth of shower maximum, X_{max} , to test! \rightarrow Measured via the hybrid method outlined in (A. Aab et al. 2014) and (Yushkov 2020)
- 2. Remove the X_{max} elongation rate so events over a threshold energy, E_{min} , can be combined
- 3. Define the on- and off-plane regions using some Galactic latitude splitting angle b_{split} On-plane: $|b_i| \le b_{split}$ Off-plane: $|b_i| > b_{split}$
- 4. Obtain a Test Statistic comparing the on- and off-plane X_{max} distributions using the Anderson-Darling 2-Sample test (Anderson and Darling 1952)
- 5. Perform a scan over roughly 50 % of the data to select E_{\min} and b_{split} prescription.
- 6. Apply the scan selected thresholds as a prescription to remaining data
- 7. Calculate statistical significance using Monte-Carlo and random skies
- 8. Evaluate systematic uncertainties and their effects on result significance

Sources of systematic uncertainty

Systematic effects which apply equally to both regions will cancel in a comparison between them

- Local event arrival geometries, camera signatures and atmospheric conditions very similar
- Same detectors, reconstruction method and analysis technique for both regions

Non-canceling systematic uncertainty:
$^{+2.10}_{-2.23}{ m g/cm^2}$ for $\Delta \langle X'_{\sf max} angle$ (Off-On)
$^{+3.49}_{-2.48}\mathrm{g/cm^2}$ for $\Delta\sigma\left(X'_{max} ight)$ (Off-On)

Details in backup

Observed differences much larger than systematics

- Observed $\Delta \langle X'_{max} \rangle$ (Off-On) is 4.1 times larger than its systematic uncertainty
- Observed $\Delta \sigma (X'_{\max})$ (Off-On) is 2.4 times larger than its systematic uncertainty

Check for possibility of systematics increasing probability for a large fluctuation:

• Probability estimated by shifting random skies by the systematic uncertainty to increase occurrence rate of extreme results

At least 3.3 σ with systematic effects taken as the resultant confidence level.

UHECR

Observed differences much larger than systematics

- Observed $\Delta \langle X'_{max} \rangle$ (Off-On) is 4.1 times larger than its systematic uncertainty
- Observed $\Delta \sigma (X'_{max})$ (Off-On) is 2.4 times larger than its systematic uncertainty

Check for possibility of systematics increasing probability for a large fluctuation:

• Probability estimated by shifting random skies by the systematic uncertainty to increase occurrence rate of extreme results

At least 3.3σ with systematic effects taken as the resultant confidence level.

On/Off difference independently seen in all FD sites and 22/28 zenith bins

Because each FD site FoV differs by 90° Systematic causes <u>can not</u> easily explain the on/off difference.

 $\begin{array}{l} On/Off \mbox{ difference independently seen in} \\ \mbox{ all FD sites and } 22/28 \mbox{ zenith bins} \end{array}$

Because each FD site FoV differs by 90° Systematic causes <u>can not</u> easily explain the on/off difference.

Independent cross-check on unused FD data

Independent test result on new data needed

- AugerPrime promises to deliver sensitivity and statistics to solidify or clarify nature of FD signal
- SD-only DNN may meet required sensitivity, and is under review for event-by-event anisotropy studies
- \Rightarrow FD data that was cut from highest-quality X_{\max} analysis immediately available

Solution: use opposite selection of FidFoV cut, out-FidFoV, to form an independent data sample

- Individual events satisfy all quality cuts on measurement and reconstruction quality \rightarrow are well suited to the test
- $\Rightarrow X_{\text{max}} \text{ acceptance in out-FidFoV is not flat over range of observed events } \rightarrow \text{ needs to be considered}$

Rather surprising result at only 3.3σ with systematics

Independent test result on new data needed

- AugerPrime promises to deliver sensitivity and statistics to solidify or clarify nature of FD signal
- SD-only DNN may meet required sensitivity, and is under review for event-by-event anisotropy studies
- \Rightarrow FD data that was cut from highest-quality $X_{\rm max}$ analysis immediately available

Solution: use opposite selection of FidFoV cut, out-FidFoV, to form an independent data sample

- Individual events satisfy all quality cuts on measurement and reconstruction quality \rightarrow are well suited to the test
- $\Rightarrow X_{\max} \text{ acceptance in out-FidFoV is not flat over range of observed events <math>\rightarrow$ needs to be considered

Table 1: Quality Selection

Cut name	N	Eff [%]
Raw events	1.24e+7	—
Data quality	2646577	21.3
Atmospheric Quality	1687395	63.8
Reconstruction/trigger quality	426729	25.3
Energy greater than $10^{18.4}\mathrm{eV}$	25546	6.0
Profile reconstruction quality	14664	57.4
${\sf Fiducial\ field-of-view\ (FidFoV)}$	8017	54.6

In the out-FidFoV data 45.4 % of high quality events are available for test

Independent test result on new data needed

- AugerPrime promises to deliver sensitivity and statistics to solidify or clarify nature of FD signal
- SD-only DNN may meet required sensitivity, and is under review for event-by-event anisotropy studies
- \Rightarrow FD data that was cut from highest-quality X_{\max} analysis immediately available

Solution: use opposite selection of FidFoV cut, out-FidFoV, to form an independent data sample

- Individual events satisfy all quality cuts on measurement and reconstruction quality \rightarrow are well suited to the test
- $\Rightarrow X_{\max} \text{ acceptance in out-FidFoV is not flat over range of observed events} \rightarrow \text{needs to be considered}$

Table 1: Quality Selection

Cut name	N	Eff [%]
Raw events	1.24e+7	-
Data quality	2646577	21.3
Atmospheric Quality	1687395	63.8
Reconstruction/trigger quality	426729	25.3
Energy greater than $10^{18.4}{ m eV}$	25546	6.0
Profile reconstruction quality	14664	57.4
Fiducial field-of-view (FidFoV)	8017	54.6

In the out-FidFoV data 45.4 % of high quality events are available for test

On/Off analysis of out-FidFoV dataset

- Out-FidFoV shows a $\Delta \langle X_{max}
 angle$ of $\sim 5\,g/cm^2$
- Anderson-Darling test rejects uniform composition at $2.2\,\sigma$
- ⇒ Question: is lower result in tension with main result, or due to decreased sensitivity of out-FidFoV data?

Evaluating the effects of out-FidFoV acceptance/resolution

- 1. Generate many mock datasets based on a $\Delta \langle X_{max} \rangle$ of $9.1 \,\text{g/cm}^2$ and $\Delta \sigma (X_{max})$ of $5.9 \,\text{g/cm}^2$
- 2. Forward fold the non-flat X_{max} acceptance and lower resolution of the out-FidFoV dataset onto the mocks
- 3. Test resulting distributions with AD test and compare with out-FidFoV result

12

On/Off analysis of out-FidFoV dataset

- Out-FidFoV shows a $\Delta \langle X_{max}
 angle$ of $\sim 5\,g/cm^2$
- Anderson-Darling test rejects uniform composition at 2.2 σ
- $\Rightarrow \mbox{ Question: is lower result in tension with main result, or} \\ \mbox{ due to decreased sensitivity of out-FidFoV data?}$

Evaluating the effects of out-FidFoV acceptance/resolution

- 1. Generate many mock datasets based on a $\Delta \langle X_{\rm max} \rangle$ of 9.1 g/cm² and $\Delta \sigma (X_{\rm max})$ of 5.9 g/cm²
- 2. Forward fold the non-flat X_{max} acceptance and lower resolution of the out-FidFoV dataset onto the mocks
- 3. Test resulting distributions with AD test and compare with out-FidFoV result

UHECR

- Out-FidFoV shows a $\Delta \langle X_{max}
 angle$ of $\sim 5\,g/cm^2$
- Anderson-Darling test rejects uniform composition at 2.2 σ
- ⇒ Question: is lower result in tension with main result, or due to decreased sensitivity of out-FidFoV data?

Evaluating the effects of out-FidFoV acceptance/resolution

- 1. Generate many mock datasets based on a $\Delta \langle X_{max} \rangle$ of 9.1 g/cm² and $\Delta \sigma (X_{max})$ of 5.9 g/cm²
- 2. Forward fold the non-flat $X_{\rm max}$ acceptance and lower resolution of the out-FidFoV dataset onto the mocks
- 3. Test resulting distributions with AD test and compare with out-FidFoV result

Map compares $\langle X_{max} \rangle$ of events within 30° of each bin to the rest of the sky

Red: lower mass than rest of sky Blue: higher mass than rest of sky

- TS is Welch's T-Test applied to inand out-of-hat X'_{\max} distribution
- Detector/analysis effects corrected for by event arrival declination

- Verifies mixed composition above the ankle.
- Suggests GMF could cause composition anisotropies; however...
- An unrelated anisotropy may have instead been captured by serendipitous use of the Galactic plane as a catalog:

→ Mass-dependent propagation effects can create composition anisotropies (N. Globus et al. 2008; Ding, Globus, and Farrar. 2021)

 \rightarrow However magnitude of difference is in significant tension with current models (Allard et al. 2021)

- Due to impending changes to our X_{max} reconstruction and atmospheric corrections, results are preliminary
 - \rightarrow New FD X_{max} publication in preparation
 - ightarrow This result will be fully published in parallel

- Verifies mixed composition above the ankle.
- Suggests GMF could cause composition anisotropies; however...
- An unrelated anisotropy may have instead been captured by serendipitous use of the Galactic plane as a catalog:

→ Mass-dependent propagation effects can create composition anisotropies (N. Globus et al. 2008; Ding, Globus, and Farrar. 2021)

 \rightarrow However magnitude of difference is in significant tension with current models (Allard et al. 2021)

- Due to impending changes to our X_{max} reconstruction and atmospheric corrections, results are preliminary
 - \rightarrow New FD X_{\max} publication in preparation
 - ightarrow This result will be fully published in parallel

- Verifies mixed composition above the ankle.
- Suggests GMF could cause composition anisotropies; however...
- An unrelated anisotropy may have instead been captured by serendipitous use of the Galactic plane as a catalog:
 - \rightarrow Mass-dependent propagation effects can create composition anisotropies (N. Globus et al. 2008; Ding, Globus, and Farrar. 2021)
 - \rightarrow However magnitude of difference is in significant tension with current models (Allard et al. 2021)
- Due to impending changes to our X_{max} reconstruction and atmospheric corrections, results are preliminary
 - \rightarrow New FD X_{max} publication in preparation
 - ightarrow This result will be fully published in parallel

- Verifies mixed composition above the ankle.
- Suggests GMF could cause composition anisotropies; however...
- An unrelated anisotropy may have instead been captured by serendipitous use of the Galactic plane as a catalog:

 \rightarrow Mass-dependent propagation effects can create composition anisotropies (N. Globus et al. 2008; Ding, Globus, and Farrar. 2021)

 \rightarrow However magnitude of difference is in significant tension with current models (Allard et al. 2021)

- Due to impending changes to our X_{max} reconstruction and atmospheric corrections, results are preliminary
 - \rightarrow New FD X_{max} publication in preparation
 - \rightarrow This result will be fully published in parallel

References

Aab et al. (2015). "The Pierre Auger Cosmic Ray Observatory". In: <u>Nucl. Instrum. Meth. A</u> 798, pp. 172–213. DOI: 10.1016/j.nima.2015.06.058. arXiv: 1502.01323 [astro-ph.IM].

- Aab, Alexander et al. (2014). "Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory: Measurements at Energies above 10^{17.8} eV". In: PRD 90.12, p. 122005. DOI: 10.1103/PhysRevD.90.122005.
- Allard, D. et al. (Oct. 2021). "What can be learnt from UHECR anisotropies observations? Paper I : large-scale anisotropies and composition features". In: arXiv: 2110.10761 [astro-ph.HE].
- Anderson, T. W. and D. A. Darling (1952). "Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes". In: Ann. Math. Statist. 23.2, pp. 193–212. DOI: 10.1214/aoms/1177729437. URL: https://doi.org/10.1214/aoms/1177729437.
- Bellido, Jose (2018). "Depth of maximum of air-shower profiles at the Pierre Auger Observatory". In: Pos ICRC2017. Ed. by Darko Veberic, p. 506. DOI: 10.22323/1.301.0506.
- Ding, Globus, and Farrar. (2021). "The Imprint of Large Scale Structure on the Ultra-High-Energy Cosmic Ray Sky". In: Astrophys. J. Lett. 913.1, p. L13. DOI: 10.3847/2041-8213/abf11e. arXiv: 2101.04564 [astro-ph.HE].
- Erdmann, Martin et al. (2016). "The Nuclear Window to the Extragalactic Universe". In: <u>Astropart. Phys.</u> 85, pp. 54–64. DOI: 10.1016/j.astropartphys.2016.10.002.

Farrar (2014). "The Galactic magnetic field and ultrahigh-energy cosmic ray deflections". In: <u>C R Phys</u> 15.4, pp. 339–348. Farrar and Sutherland (2019). "Deflections of UHECRs in the Galactic magnetic field". In: <u>JCAP</u> 05, p. 004. DOI:

10.1088/1475-7516/2019/05/004.

Globus, N. et al. (2008). "Propagation of high-energy cosmic rays in extragalactic turbulent magnetic fields: resulting energy spectrum and composition". In: Astron. Astrophys. 479, p. 97. DOI: 10.1051/0004-6361:20078653.

Jansson, Ronnie and Glennys R. Farrar (2012). "A New Model of the Galactic Magnetic Field". In: <u>ApJ.</u> 757, p. 14. DOI: 10.1088/0004-637X/757/1/14.

Pshirkov, M. et al. (2011). "Deriving global structure of the Galactic Magnetic Field from Faraday Rotation Measures of extragalactic sources". In: Astrophys. J. 738, p. 192. DOI: 10.1088/0004-637X/738/2/192.

Mass Composition of Cosmic Rays with Energies above 10^{17.2} eV from the Hybrid Data of the Pierre Auger Observatory (2020).

Vol. ICRC2019, p. 482. DOI: 10.22323/1.358.0482.

Potential effects of the GMF on a mixed UHECR flux

- (Erdmann et al. 2016) showed definite transition from diffusive to ballistic propagation in GMF around 6 EV
- (Farrar and Sutherland 2019) showed GMF obscures sources and lenses their images off the plane
- (Farrar 2014) showed effect where images of off-plane sources are lensed toward the plane
- Effect depends on primary rigidity:
 - ightarrow no effect particles with R < 6 EV
 - ightarrow deflection starts around $R=6\,{
 m EV}$
 - \rightarrow weakens for higher rigidity particles
- UHECR composition mixed, therefore as energy climbs:
 - \rightarrow effect starts then weakens for lightest primaries
 - \rightarrow kicks in for progressively heavier components bringing them to the plane as UHECR point to sources

Lensing of off-plane sources - proton 10 EeV

UHEC

Map compares $\langle X_{max} \rangle$ of events within 30° of each bin to the rest of the sky

Red: lower mass than rest of sky Blue: higher mass than rest of sky

- TS is Welch's T-Test applied to inand out-of-hat X'_{max} distribution
- Detector/analysis effects corrected for by event arrival declination

Removal of X_{max} elongation rate

Choice of hadronic model has insignificant influence on end result ($\approx 0.02 \text{ g/cm}^2$)

- (Erdmann et al. 2016) showed transition from diffusive to ballistic propagation in the GMF around 4 - <u>6</u> EV using both JF12 (Jansson and G. R. Farrar 2012) and PTK11 (Pshirkov et al. 2011)
- Threshold dependence on Galactic latitude of CR
- At fixed energy above this limit: High mass → diffusive → isotropic arrival Low mass → ballistic → preserve some source anisotropy
- Differing horizon of each primary species introduces potential of differing source distributions (N. Globus et al. 2008)

(Erdmann et al. 2016)

Motivating mass dependent anisotropies

- (Erdmann et al. 2016) showed transition from diffusive to ballistic propagation in the GMF around 4 <u>6</u> EV using both JF12 (Jansson and G. R. Farrar 2012) and PTK11 (Pshirkov et al. 2011)
- Threshold dependence on Galactic latitude of CR
- At fixed energy above this limit: High mass → diffusive → isotropic arrival Low mass → ballistic → preserve some source anisotropy
- Differing horizon of each primary species introduces potential of differing source distributions (N. Globus et al. 2008)

(Erdmann et al. 2016)

Motivating mass dependent anisotropies

- (Erdmann et al. 2016) showed transition from diffusive to ballistic propagation in the GMF around 4 - <u>6</u>EV using both JF12 (Jansson and G. R. Farrar 2012) and PTK11 (Pshirkov et al. 2011)
- Threshold dependence on Galactic latitude of CR
- At fixed energy above this limit: High mass → diffusive → isotropic arrival Low mass → ballistic → preserve some source anisotropy
- Differing horizon of each primary species introduces potential of differing source distributions (N. Globus et al. 2008)

Motivating mass dependent anisotropies

• (Erdmann et al. 2016) showed transition from diffusive to ballistic propagation in the GMF around 4 - <u>6</u> EV using both JF12 (Jansson and G. R. Farrar 2012) and PTK11 (Pshirkov et al. 2011)

These give rise to the possibility of mass dependent anisotropies in the UHECR flux associated with GMF.

 $\sigma_{\beta} / \deg_{00}$

0.1

High mass \rightarrow diffusive \rightarrow isotropic arrival Low mass \rightarrow ballistic \rightarrow preserve some source anisotropy

• Differing horizon of each primary species introduces potential of differing source distributions (N. Globus et al. 2008)

10

South

100

Field of View and X_{max} Acceptance

Fiducial FoV Cuts

Fiducial cut flattens X_{max} acceptance for the majority of selected events. Events with non-flat acceptance up-weighted via acceptance parameterization

 X_{max} acceptance of on- and off-plane probed with Sibyll-2.3c CONEX showers (p, Fe) with the profile shifted so that $X_{\text{max}} \in [300, 1500] \text{ g/cm}^2$ is sampled evenly

- Detector simulations account for time dependent state of the detector
- On- and off-regions corrected separately
 → weighting method from 2014 PRD employed
 (A. Aab et al. 2014)
- 1.4% events in data have less than full acceptance Detector and selection acceptance agree well within uncertainties

X_{max} Resolution and Systematic Uncertainties

atmosphere and the detector are combined into the X_{max} resolution to correct the X_{max} distributions. Systematic uncertainties from the atmosphere, FD calibration reconstruction and detector are summed for systematic error of the moments

X_{max} Reconstruction bias and resolution On/Off-plane

 X_{max} rec. bias and resolution on- and off-plane probed with 4-component (H, He, N, Fe) Sibyll-2.3c CONEX showers

- Detector simulations account for time dependent state of the detector
- Components reweighed to (Bellido 2018) mass fractions by energy
- Event-by-event comparison of reconstructed X_{max} to MC truth
- On- and off-regions each corrected by their energy parameterization

Reconstruction bias and resolution agree well within uncertainties

Systematic Error Summary from (A. Aab et al. 2014)

Error Source R	ef.	$\langle X_{max} \rangle$ Err 18.4 lg(E/eV)	or [g/cm ²] 19.6 lg(E/eV)	Applies to comparative analysis?
Detector Calibration		~ :	±3	nou applies to all events
Pixel Calibration Telescope Alignment			$_{\pm1}^{\pm2}$ $_{\pm1}$	yes: Eye-to-Eye differences yes: Eye-to-Eye differences
Reconstruction		$^{+4.3}_{-8.2}$	$^{+4.0}_{-4.2}$	
Reconstruction Bias Profile Fit Function		() 4	yes: sky region differences no: applies to all events
Lateral Width Correction		$^{+1.6}_{-7.1}$	$^{+0.1}_{-1.3}$	no: On/Off Plane geometric similarity
Atmosphere		$\leq^{+4.6}_{-3.8}$	$\leq^{+7.5}_{-4.7}$	
Fluorescence yield Multiple Scattering		±0 < :).4 +2	no: applies to all events no: On/Off Plane geometric similarity
VAOD Systematics		± 1.6 ± 2.8 ± 2.8	± 2 +37	yes: seasonal variation of VAOD
VAOD Normalization		+2.5	+6.5	
Other		\leq^+	2.5	
X _{max} Acceptance Invisible energy		<pre>< ±</pre>	-1.5 -1.2	yes: sky region differences no: applies to all events
Total from dedicated studies		$\leq ^{+2.60}_{-2.18}$	$\leq ^{+3.80}_{-2.77}$	see below

М. П	
Rec. Bias Error	et. Res. Error
Permutations $\Delta(\mu_{On}, \mu_{On})$ Permutations -2 0 2	rmutations $\Delta(\sigma_{0n} - \sigma_{0n})$ $-2 0 2$

Changes to the magnitude of the end result using a permutation of all parameterization errors

Source	Uncertair $\Delta \langle X_{\sf max} angle$	ty [g/cm ²] $\Delta \sigma (X_{\max})$
X _{max} Acceptance	$^{+1.14}_{-0.71}$	$^{+2.37}_{-1.61}$
Rec. Bias	± 0.36	± 0.01
Rec. Resolution	0	$^{+1.78}_{-0.24}$
Seasonal variation	$^{+1.00}_{-1.53}$	$^{+1.19}_{-1.23}$
Instrumentation	± 1.41	± 1.41
Sum in Quadrature	$^{+2.10}_{-2.23}$	+3.49 - 2.48

Observed variation of the first two moments of the on- and off-plane X_{max} distributions weighted by exposure.

Source	Uncertair $\Delta \langle X_{\sf max} angle$	ty [g/cm ²] $\Delta \sigma (X_{\max})$
X_{\max} Acceptance	$^{+1.14}_{-0.71}$	$^{+2.37}_{-1.61}$
Rec. Bias	± 0.36	± 0.01
Rec. Resolution	0	$^{+1.78}_{-0.24}$
Seasonal variation	$^{+1.00}_{-1.53}$	$^{+1.19}_{-1.23}$
Instrumentation	± 1.41	± 1.41
Sum in Quadrature	$^{+2.10}_{-2.23}$	+3.49 - 2.48

Los Leor		reo mparisons On: 85 Off: 82	Los Mora	idos	Stereo Comparisons On: 91 Off: 90
Loma Ar	narilla Co	reo mparisons On: 93 Off: 105	Coihueco -100		Stereo Comparisons On: 117 Off: 113
Site	events	Off $\langle X_m$	– On □ax〉	plane $\sigma(z)$	bias X _{max})
LL	167	-0.8	± 3.7	-3.2	2 ± 2.5
LM	181	-1.1 :	\pm 3.7	-1.0	$)\pm2.5$
LA	198	-0.1	± 3.2	+0.7	2 ± 2.2
CO	230	3.0 ±	3.1	-2.5	5 ± 2.1

Comparisons of on- and off-plane X_{\max} reconstructions between FD-sites using stereo events.

Source	Uncertair $\Delta \langle X_{\sf max} angle$	ty [g/cm ²] $\Delta \sigma (X_{\max})$
X_{\max} Acceptance	$^{+1.14}_{-0.71}$	$^{+2.37}_{-1.61}$
Rec. Bias	± 0.36	± 0.01
Rec. Resolution	0	$^{+1.78}_{-0.24}$
Seasonal variation	$^{+1.00}_{-1.53}$	$^{+1.19}_{-1.23}$
Instrumentation	± 1.41	± 1.41
Sum in Quadrature	$^{+2.10}_{-2.23}$	+3.49 - 2.48

Backup X_{max} Drift and On/Off Signal

Energy normalized FidFoV X_{max} on- and off-plane plotted separately vs time.

- Points are sets of 10 events
- Lines are cumulative means
- Solid fill is the running average over surrounding 40 events

Both On and Off separately display a similar trend to those seen in other studies No apparent affect on result.

UHECR

$$z_i = X_{max}^{norm} = X_{max i} - EPOS_{Fe}(E_i)$$

Anderson-Darling 2 Sample Homogeneity Test

$$TS_{AD} = \frac{n-1}{n^2} \sum_{i=1}^{2} \left[\frac{1}{n_i} \sum_{j=1}^{L} h_j \frac{(nF_{ij} - n_i H_j)^2}{H_j (n - H_j) - \frac{1}{4} n h_j} \right]$$

Modification to add sensitivity to distribution ordering

$$TS = egin{cases} TS_{ ext{AD}} & : \langle X_{max}^{norm}
angle^{on} < \langle X_{max}^{norm}
angle^{off} \ -3 & : else \end{cases},$$

- *n* size of pooled sample
- n_i size of sample *i*

 z_j the value of the j^{th} event in the combined data set ordered from smallest value to largest

 h_j is number of events in the pooled sample with a value equal to z_j

 H_j is number of events in the pooled sample with a value less than $z_j + \frac{1}{2}h_j$

 F_{ij} is number of events in the i^{th} sample with a value less than $z_j + rac{1}{2}h_j$

Measuring X_{max}: geometry reconstruction

Measuring X_{max}: Shower Profile Reconstruction

