

Testing Model Predictions of Depth of Air-Shower Maximum and Signals in Surface Detectors using Hybrid Data of the Pierre Auger Observatory

Jakub Vícha^a for the Pierre Auger Collaboration^b

^a Institute of Physics of the Czech Academy of Sciences, Prague ^b Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina

vicha@fzu.cz

Gran Sasso Science Institute, L'Aquila, Italy

Hybrid detection at the Pierre Auger Observatory

Hybrid detection at the Pierre Auger Observatory

UHECR 2022

Mass composition & tests of hadronic interactions

Deficit of simulated muon signal: previous analyses in Auger

1) Mass composition is inferred from X_{max}

measurements using the nominal X_{max} predictions of hadronic interaction (HI) models

Mass composition & tests of hadronic interactions

Deficit of simulated muon signal: previous analyses in Auger

1) Mass composition is inferred from X_{max}

measurements using the nominal X_{max} predictions of hadronic interaction (HI) models

2) Discrepancy in predicted and measured ground signal is usually evaluated using the inferences on the mass composition from the X_{max} analysis

Mass composition & tests of hadronic interactions

Deficit of simulated muon signal: previous analyses in Auger

1) Mass composition is inferred from $X_{\mbox{\scriptsize max}}$

measurements using the nominal X_{max} predictions of hadronic interaction (HI) models

2) Discrepancy in predicted and measured ground signal is usually evaluated using the inferences on the mass composition from the X_{max} analysis

This work

Mass composition fit of observed $[X_{max}, S(1000)](\theta)$ distributions with free adjustments of MC predictions not only to hadronic signal but also to X_{max}

UHECR 2022

Motivations for adjustments of MC predictions

- Properties of **4-component shower universality**: [Astropart. Phys. 87 (2017) 23, Astropart. Phys. 88 (2017) 46]
 - $S(1000) = S_{Had} + S_{em}$
 - S_{em} very universal
- Main differences between model predictions:
 - Scale of $\langle X_{max} \rangle$ and $\langle S_{Had} \rangle$
 - are approx. primary and energy independent

Motivations for adjustments of MC predictions

- Properties of **4-component shower universality**: [Astropart. Phys. 87 (2017) 23, Astropart. Phys. 88 (2017) 46]
 - $S(1000) = S_{Had} + S_{em}$
 - S_{em} very universal
- Main differences between model predictions:
 - Scale of $\langle X_{max} \rangle$ and $\langle S_{Had} \rangle$

are approx. primary and energy independent

- Ignored model differences:
 - R_{Had} (θ) see backup, PoS(ICRC2021)310
 - fluctuations of X_{max} and S(1000)
 - mass dependence of R_{Had} , ΔX_{max}
 - etc.

 $\langle {
m X}_{
m max}
angle ~ [{
m g}/{
m cm}^2]$

UHECR 2022

Global fit method

New !

Simultaneous likelihood ratio fit of **two-dimensional distributions** of X_{max} and S(1000) in 5 zenith-angle bins with **MC templates** for combinations of four primary nuclei (p,He,O,Fe)

MC templates: from ~15k showers per primary and model (EPOS-LHC, QGSJet II-04, Sibyll 2.3d)

UHECR 2022

Global fit method

Simultaneous likelihood ratio fit of

- two-dimensional distributions of

X_{max} and S(1000) in 5 zenith-angle bins with **MC templates** for combinations of four primary nuclei (p,He,O,Fe)

MC templates: from ~15k showers per primary and model (EPOS-LHC, QGSJet II-04, Sibyll 2.3d)

- New !

- Freedom in X_{max} (ΔX_{max}) and S(1000) (R_{Had}) and primary fractions
- Change of S_{Had} and S_{em} due to ΔX_{max} incorporated
- Degeneracy between mass composition and ΔX_{max} reduced due to the nearly model-independent correlation between S(1000) and X_{max} [Phys. Lett. B 762 (2016) 288]

UHECR 2022

Measured data

2297 high-quality showers for $\log_{10}(E_{FD} [eV]) = 18.5-19.0, \theta < 60^{\circ}$

Event selection according to [Phys. Rev. D 90 (2014) 122005, PoS(ICRC19)482] and [Phys. Rev. D 102 (2020) 062005]

UHECR 2022

J. Vícha (FZU): Testing HI Models using Xmax and Signal at Ground

11/21

Progressive adjustments to MC templates

Gideon-Hollister correlation coeficient [J. Am. Stat. Assoc. 82 (1987) 656]

UHECR 2022

UHECR 2022

UHECR 2022

^{15/21}

Systematic Uncertainties

• Experimental

1) Energy scale ± 14%

- 2) X_{max} measurement +8, -9 g/cm²
- 3) S(1000) measurement \pm 5%
- Method

4) Biases from MC-MC tests for each model

All four contributions summed in quadrature

Systematic Uncertainties

- Experimental
 - 1) Energy scale \pm 14%
 - 2) X_{max} measurement +8, -9 g/cm²
 - 3) S(1000) measurement \pm 5%
- Method
 - 4) Biases from MC-MC tests for each model

All four contributions summed in quadrature

UHECR 2022

Fitted MC adjustments

Total systematics

Significance of MC adjustments

Most favorable direction for models in combinations of 1σ^{sys} experimental systematics: Energy + 14% & X_{max} - 9 g/cm² & S(1000) - 5%

The discrepancy with the data >≈ 5σ^{STAT}

UHECR 2022

Less model-dependent mass composition

 $\langle X_{max} \rangle$ MC scale found lower at **energy 10^{18.5-19} eV** by ~10 g/cm² for EPOS-LHC mainly due to lower $\sigma(X_{max})$; checked by artificially smeared X_{max}

UHECR 2022

Summary

- Two-dimensional distributions of $[X_{max}, S(1000)]$ for energies **10**^{18.5} **10**^{19.0} eV and zenith angles < 60°, measured by the Pierre Auger Observatory, were fitted allowing for ad-hoc adjustments of the simulated X_{max} and hadronic signal for EPOS-LHC, Sibyll 2.3d and QGSJet II-04
- For all three hadronic interaction models, the improved description of the data is achieved,
 if in the simulations:
 - X_{max} is shifted towards deeper values

 \rightarrow Heavier mass composition !

- Hadronic signal is increased by ~15-25% \rightarrow Alleviation of the muon puzzle !

Caveat: other differences in model predictions under study (shower-to-shower fluctuations etc.)

• The statistical significance of the adjustments is **greater than** $\sim 5\sigma^{\text{STAT}}$ even for the combination of experimental systematic shifts within $1\sigma^{\text{SYS}}$ that are the most favorable for the models

Stay tuned: paper in preparation [Pos(ICRC2021)310]

UHECR 2022

Backup slides

$$N \propto N_0 \cdot E_0^{\alpha} \quad \kappa \propto \kappa_0 \cdot E_0^{-\alpha}$$

Matthews [Astropart. Phys. 22 (2005) 387] model: Ad-hoc change of multiplicity (N_0) or elasticity (κ_0) would change X_{max} independently on primary and energy

$$X_{\max}^{A} = X_{1}^{A} + X_{0} \ln \frac{\kappa E_{0}}{A \cdot 2N\xi_{c}^{\pi}} = X_{1}^{A} + (1 - \alpha - \omega) \cdot (X_{0} \ln \frac{E_{0}}{A \cdot \xi_{c}^{\pi}}) + X_{0} \cdot (\ln \kappa_{0} - \ln N_{0})$$

UHECR 2022

UHECR 2022

J. Vícha (FZU): Testing HI Models using Xmax and Signal at Ground

24/21

θ -dependent correlation between X_{max} and ground signal

UHECR 2022

J. Vícha (FZU): Testing HI Models using Xmax and Signal at Ground

25/21

Contributions to rescaling of ground signal

Fitting procedure
$$E^{Ref} = 10^{18.7} eV$$

$$B = 1.031$$

$$D = 58 g/cm^{2}$$

$$\forall n_{jz} > 0: \quad \mathscr{L} = \sum_{z} \sum_{j} \left(C_{jz} - n_{jz} + n_{jz} \cdot \ln \frac{n_{jz}}{C_{jz}} \right), \quad \forall n_{jz} = 0: \quad \mathscr{L} = \sum_{z} \sum_{j} C_{jz}$$

$$S(1000)(\theta) \cdot \left(\frac{E^{Ref}}{E_{FD}}\right)^{1/B} \cdot f_{SD}(\theta) = R_{Had}(\theta) \cdot g_{Had}(\theta, \Delta X_{max}, R_{Had}(\theta)) \cdot S_{Had}(\theta) \cdot \left(\frac{R_E \cdot E^{Ref}}{E_{FD}}\right)^{\beta} + R_{em} \cdot g_{em}(\theta, \Delta X_{max}) S_{em}(\theta) \cdot \left(\frac{R_E \cdot E^{Ref}}{E_{FD}}\right) + f_{SD}(\theta) = R_{Had}(\theta) \cdot R_E^{\beta} \cdot \left(\frac{E^{Ref}}{E_{FD}}\right)^{\beta-1/B} \cdot g_{Had}(\theta, \Delta X_{max}, R_{Had}(\theta)) \cdot f_{Had}(\theta) + R_{em} \cdot R_E \cdot \left(\frac{E^{Ref}}{E_{FD}}\right)^{1-1/B} \cdot g_{em}(\theta, \Delta X_{max}) \cdot (1 - f_{Had}(\theta)), f_{Had}(\theta) = \frac{S_{Had}(\theta)}{S(1000)(\theta)}$$

$$\Rightarrow \langle f_{SD} \rangle_{z} = R_{Had}^{z} \cdot R_{E}^{\beta} \cdot \left(\frac{(E^{Ref})^{\beta-1/B}}{\langle E_{FD}^{\beta-1/B} \rangle_{z}} \right) \cdot g_{Had}^{z} (\Delta X_{max}, R_{Had}^{z}) \cdot \langle f_{Had} \rangle_{z} + R_{em} \cdot R_{E} \cdot \left(\frac{(E^{Ref})^{1-1/B}}{\langle E_{FD}^{1-1/B} \rangle_{z}} \right) \cdot g_{em}^{z} (\Delta X_{max}) \cdot (1 - \langle f_{Had} \rangle_{z}) R_{em} = R_{E} = 1$$

$$\Rightarrow \langle f_{SD} \rangle_{z} = R_{Had}^{z} \cdot \left(\frac{(E^{Ref})^{\beta - 1/B}}{\langle E_{FD}^{\beta - 1/B} \rangle_{z}} \right) \cdot g_{Had}^{z} \left(\Delta X_{max}, R_{Had}^{z} \right) \cdot \langle f_{Had} \rangle_{z} + \left(\frac{(E^{Ref})^{1 - 1/B}}{\langle E_{FD}^{1 - 1/B} \rangle_{z}} \right) \cdot g_{em}^{z} \left(\Delta X_{max} \right) \cdot \left(1 - \langle f_{Had} \rangle_{z} \right)$$

 $X_{max}^{Ref} + \Delta X_{max}$ $R_{Had}(\theta) = R_{Had}(\theta_{min}) + (R_{Had}(\theta_{max}) - R_{Had}(\theta_{min})) \cdot \frac{DX(\theta) - DX(\theta_{min})}{DX(\theta_{max}) - DX(\theta_{min})}$

UHECR 2022